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Abstract 

Based on the Debye model, the free energy of a nonideal electron-ion plasma is calculated for inter­
action parameters 0 < Y < Ye below the critical solid state value Ye (y = Ze2n1/ 3 /KTis the ratio of 
mean Coulomb interaction energy to thermal energy), which takes into account the energy eigen­
values of (i) the thermal translational particle motions, (ii) the random collective electron and ion 
motions, and (iii) the static Coulomb interaction energy of the electrons and ions in their oscillatory 
equilibrium positions. From this physical model, the interaction part of the free energy is derived, 
which consists of a quasi-lattice energy, depending on the interaction parameter Y, and the free 
energies of the quantized electron and ion oscillations (long-range interactions). Depending on 
the degree of ordering, the Madelung 'constant' of the plasma is oc(y) = ii. for Y ~ 1, oc(y) :::; ii. for 
Y > 1 and oc(y) oc yl12 for y <{ 1, where ii. ~ 1 is a constant. The free energy of the high frequency 
plasmons (electron oscillations) is shown to be very small for y > 1, whereas the free energy of the 
low frequency plasmons (ion oscillations) is shown to be significant for y > 1, i.e. for proper non­
ideal conditions. From the general formula for the free interaction energy !!F of the plasma for 
o < y < Ye, simple analytical expressions are derived for !!F in the limiting cases Y ~ 1, Y ;(: 1 and 
Y <{ 1. 

1. Introduction 

In the classical work of Debye and Hueckel (1923) on electrolytes, the total 
Coulomb interaction energy was calculated from the continuum theoretical picture of 
every ion interacting with its surrounding space charge cloud. With more sophisticated 
methods, similar results were obtained for weakly nonideal plasmas (1' ~ 1) by Mayer 
(1950, cluster expansion), Ichikawa (1958, collective variable approach), Vedenov 
and Larkin (1959, graphical density expansion) and Jackson and Klein (1964, hydro­
dynamic continuum interaction model). Based on different methods, further significant 
investigations of moderately (1' .<; 1) and strongly (1' ~ 1) nonideal plasmas were 
given by Berlin and Montroll (1952), Theimer and Gentry (1962), Ecker and Kroell 
(1963), Ebeling et al. (1967), Vorobev et al. (1970) and Deutsch et al. (1981). 

In spite of differences in the theoretical approaches, the leading terms of the 
.analytical results for proper nonideal plasmas (1' > 1) give essentially the same 
formula for the free plasma energy, AF/NKT = -a1' +bln1' +c, due to Coulomb 
interaction, where l' = Ze2nt jKT is the ratio of the electron-ion interaction energy 
to the thermal energy and a, b, c are constants depending on the respective approx­
imations and assumptions. The thermodynamic functions of strongly nonideal 
plasmas (1' ~ 1) were also determined with the help of Monte Carlo and computer 
methods by Brush et al. (1966), Hansen (1973), Vorobev et al. (1969) and Theimer 
and Theimer (1978). 
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For a more comprehensive review of the subject, the reader is referred to Norman 
and Starostin (1970), and the more recent, detailed treatise on strongly coupled 
plasmas by Deutsch et al. (1981). 

At sufficiently high electron densities, for which Y > 1, classical statistical theories 
fail because of thermodynamic instabilities (Deutsch et al. 1981), which are inhibited 
by quantum mechanics. The classical plasma (pressure) would collapse for y > 1 
due to the negative electron-ion interaction energy, whereas in reality the pressure 
remains positive in a plasma due to the Fermi pressure (exclusion principle) of the 
electrons. For these reasons, we present here a quantum-statistical theory for non­
ideal plasmas based on concepts similar to those used by Debye (1912) for solids. 

The application of the Debye model to proper nonideal plasmas (y > 10- 1) is 
justified since a plasma exhibits a quasi-crystalline structure for y ;::; 10- 1 before it 
undergoes a diffuse transition into a solid metallic state at a critical value Ye' The 
role of the longitudinal phonons of the Debye theory is played here by the quanta 
of the plasma oscillations (plasmons). The theory takes into consideration (i) the 
energy eigenvalues of the random collective electron and ion oscillations, and (ii) 
the static Coulomb interaction energy (quasi-lattice energy) of the electrons and ions. 
The results are applicable to nonideal plasmas, with interaction parameters Y < Ye' 
in an approximation corresponding to the Debye theory. 

In analogy to the Debye theory, the following idealizations are made. The dis­
persion equations We,i = we,i(k) for the electron and ion sound waves are (a) extended 
to nonideal plasmas by redefining the specific heat ratios ICe,i' and (b) extrapolated 
to large wave numbers k '" nti' In thermal equilibrium, the entire wave spectrum 
o < k ;$ n:'i exists as a result of microscopic excitation and deexcitation mechan­
isms (detailed balance). A more rigorous approach must be postponed until the theory 
of longitudinal waves in nonideal plasmas is developed. 

The importance of non-ideal plasma phenomena has been recognized in astro­
physics for a long time. As has been shown recently, the physics of nonideal plasmas 
is also very important in fusion and weapons research. Even electric ball lightning 
appears to be explainable as a low temperature (T ~ 300 K) multiply ionized (n ~ 1019 

cm - 3) air plasma. Here the negative Coulomb interaction energy is larger than the 
thermal energy so that the plasma ball behaves like a Coulomb liquid, one which 
has a relatively long lifetime (Wilhelm 1980) since the nonideal state is energetically 
more favourable than the recombined gas phase. 

In stellar atmospheres and in particular in dense stellar interiors, nonideal plasma 
phenomena due to Coulomb interactions occur which are of quantitative significance. 
The pressure in such systems deviates considerably from the ideal (classical or quan­
tum-statistical) equation of state due to Coulomb interactions, where Ap = - oAF/a v 
and AF is the free energy contribution from the Coulomb interactions. The nonideal 
equation of state has been calculated for specific stellar models, for example by 
Salpeter (1961) for white dwarfs assuming a completely degenerate zero-temperature 
plasma state. In cooling stars, the Coulomb interactions become increasingly impor­
tant, until the thermal motions are insufficient to prevent the ions from localizing 
in a lattice structure. As a result, the star freezes from the centre into a crystalline 
solid (van Horn 1968). 

For the diagnostics of astrophysical plasmas, spectroscopic methods are frequently 
used. The Coulomb interactions change not only the width of the spectral lines 
(Stark broadening) but also their intensity, which depends on the ionization and com-
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position of the plasma. As a time-average effect, the binary and many-body Coulomb 
interactions annihilate the higher excited states of atoms and ions, and thus bring 
about an effective lowering Ae of the ionization energy, given by Ae = - L. v. oAF/aN., 
where N. is the number and v. the stoichiometric coefficient of particles of type s. A 
comprehensive theory of preionization has been given by Stewart and Pyatt (1966) 
for plasmas with nondegenerate free electrons using a finite temperature Thomas­
Fermi model, which gives the Debye-Hueckel and ion sphere limits of Ae as special 
cases. 

At sufficiently high electron densities in stars, the electric field of the (negative) 
electrons effectively reduces the Coulomb field of the (positive) nuclei so that their 
Coulomb barrier is lowered and their thermonuclear reaction rates are increased 
(Salpeter 1954). The screening energy Es of the electrons need not be large compared 
with the thermal energy KT in order to produce a significant effect, since Es/ KT enters 
exponentially into the reaction rates in which mainly nuclei from. the tail of the 
Maxwell distribution are involved. The transport of current and heat in astrophysical 
plasmas (Hubbard 1966) is changed by nonideal effects which modify the (Maxwell 
or Fermi) distributions of the electrons. 

2. Physical Foundations 
The object of our theoretical considerations is a quasi-homogeneous high pressure 

plasma consisting of electrons of charge -e and density n = N/Vand ions of charge 
+Ze and density n/Z = N/ZV, with typical densities in the range 1020 ;;5 n ;;5 1024 

cm - 3 and temperatures of the order T '" 104 K. For these conditions, the Debye 
radius D = {4nne2(1 +Z)/KT} -t is 6·901 {T/n(1 +Z)}t ;;5 10- 8 cm, i.e. D is smaller 
than atomic dimensions and the number of particles in the Debye sphere would be 
ND = tnnD 3 ;;5 1 for D < 10- 8 cm and this range of n. It is seen that the concept 
of Debye shielding completely breaks down, and statistical theories containing the 
Debye length as a characteristic parameter would be physically meaningless for high 
density plasmas. 

The nonideal behaviour of plasmas is determined by the interaction parameter y 
(see the Introduction), where 

y = Ze2nt /KT = 1·671 x 10- 3 Znt/T. (I) 

It follows that O' 5Z ;;5 y ;;5 15Z for 1020 ;;5 n ;;5 1024 cm -3 and T", 104 K. For 
y ~ 1, the nature of the plasma changes from a 'thermally expanding' (y < 1) to 
an 'electrostatically contracting' (y > 1) plasma. For y > 1, the collapse of the 
plasma due to Coulomb attraction between electrons and ions is inhibited by the 
Fermi pressure of the electrons, i.e. by the quantum mechanical exclusion principle. 
Thus, in the region 0 < y < Yc the plasma undergoes a diffuse transition from a 
nonideal classical plasma (y < 1) to a quasi-crystalline plasma (1 ;;5 y < Yc), with 
an incomplete ordering comparable with that of a liquid. 

An understanding of strongly nonideal plasmas has been attempted via the model 
of discrete interacting particles in a dense gas (Deutsch et al. 1981). For the above 
reasons, however, it appears to be more adequate to calculate the thermodynamic 
functions of proper nonideal plasmas from the picture of collective electron and ion 
oscillations. In this approach, the free interaction energy is due to the static Coulomb 
interaction of the electrons and ions in their 'equilibrium positions' (Madelung energy) 
and their oscillation energies about average equilibrium positions (plasmon energies). 
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Since the plasma volume V contains N electrons and NjZ ions, there exist N 
(high frequency branch) and N/Z (low frequency branch) characteristic frequencies 
Wi of longitudinal oscillation. Each plasma oscillator of frequency Wi can have the 
energies E~ = (n+!)hw;, n = 0,1,2, ... , so that the energy of a plasma state with 
n = 1,2,3, ... plasmons of frequency Wi is 

E{i} = 'L nfzwi' (2) 
n 

where {i} refers to the entire set of given eigenfrequencies Wi' Accordingly, the 
partition function Q of the longitudinal plasma oscillations is 

Q = n'Lexp(-nhw;/KT) = n {l-exp(-hw;/KT)}-l. (3) 
i n i 

From Q, the thermodynamic functions such as pressure, internal energy, entropy, 
etc. are derived in the usual way; for example, the free energy of the piasmons is 

P = -KTlnQ = KT L In{l-exp( -hw;/KT)}. (4) 
i 

In the limit V ~ 00, the discrete eigenfrequencies Wi are replaced by continuous 
ones, W = w(k), in accordance with the dispersion law for space charge waves of 
wavelength A. = 2n/k, with 0 ::;:;; k::;:;; k. 

Electron Oscillations 

The high frequency branch ofthe space charge waves is due to longitudinal electron 
oscillations. Their frequency w for classical (n ~ ii) and completely degenerate 
(n ~ ii) electrons is given by (Sitenko 1967) 

w2 = w~{1 + (Ke/4n)Zy-l(kre)2}, n~ii (5) 

= w~{1 +n-1 29o(in)t(n/ii)t(Z/y)(kre)2} , n ~ ii, (6) 

where 

ii = 2(2nmKT/h2)3/2, (7) 

wp = (4nne2/m)t, (8) 

re = n -t (9) , 

are the critical electron density, the plasma frequency and the mean electron distance 
eKe = (Cp/Cv)e of the nonideal gas of electrons of mass m). Since kmax '" 2n/re 

(oscillations with A. < re are physically impossible), the electron oscillations propagate 
with w = w(k) > wp in nonideal plasmas. 

Ion Oscillations 

The low frequency branch of the space charge waves is essentially due to ion 
sound waves. Since the ions are presumed to be nondegenerate, the frequency of the 
ion oscillations is given by (Sitenko 1967) 

(10) 
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where 

n~ii (11) 

~ 1, n~ii (12) 

is a correction factor of order 1, which shows the influence of the electrons on the 
ion oscillations (Ki = (Cp / Cv)i of the nonideal gas of ions of mass M). 

In weakly nonideal plasmas (y ~ 1) the electron sound waves are strongly damped 
for wavelengths .Ie < D due to trapping of the resonance electrons with thermal 
speeds comparable with the wave speed. For proper nonideal plasmas (y ;C; 1) the 
number of particles in the Debye sphere 4nD3 is no longer large compared with one 
and D < 10- 8 cm is smaller than atomic sizes, so that ordinary Landau damping 
is no longer possible. 

The ions are nondegenerate since ni ~ gi(2nMKT/h2)3/2 for the n-T region under 
consideration. The electrons are considerably degenerate for n > ii by equation 
(7), i.e. their kinetic energy is essentially given by the Fermi energy EF = h2(3n2n)t/2m 
for n > ii. For this reason, the nonideal behaviour of the electrons increases with 
increasing n as long as n < ii, but then decreases with increasing n as soon as n ;C; ii. 
From the condition Ze2nt = EF it follows that the electrons again form an ideal 
gas for n ~ 1023Z 3 • This anomalous behaviour is explained by the stronger increase 
of EF oc nt with n, compared with the increase of Coulomb energy Ee oc nt. 

It is recognized that the effects of degeneracy and nonideal behaviour on the 
dispersion of the ion sound waves (equation 10) are small. Similarly, the effect of 
nonideal behaviour on the dispersion of the sound waves of the degenerate electrons 
(equation 6) is negligible. But in the dispersion equation for classical electrons 
(equation 5), Ke has to be interpreted as a polytropic coefficient, where to order of 
magnitude Kh) ,...., Ke(O). 

3. Statistical Thermodynamics 

In the plasma under consideration, the electrons and ions interact through their 
longitudinal Coulomb fields (transverse electromagnetic interactions are negligible for 
KT ~ mc2). The electrons (s = e) and ions (s = i) have thermal velocities c. and 
random collective mean mass velocities Vs due to their oscillatory wave motions about 
the equilibrium positions, so that their local velocity is v. = v.+c., with <c.> = 0 
and <vs> = V., where we define <u.> = f us!. dvs as the average of Us with respect 
to the normalized velocity distribution!. of the species s. The resulting Hamilton 
function with Coulomb interaction gives for the free energy of the plasma the ideal 
(Fo) and nonideal (!1F) contributions: . . 

Fo = L F~O), !1F = L Es +EM • (13a, b) 
s=e,i s=e,i 

Here F~O) is the ideal free energy of the noninteracting plasma components s, EM is 
the Coulomb interaction energy of the electrons and ions in their equilibrium positions, 
and Ee •i is the free energy of the electron and ion oscillations, i.e. of the high and low 
frequency plasmons (equation 4). 

It should be noted that equations (13) take into consideration the most significant 
short- and long-range Coulomb interactions by means of the Madelung energy EM 
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and the plasmon energies Fs. As is evident from the derivation of equations (5), (6) 
and (1O), in which terms of order m/M are neglected, equations (13) contain the e-e, 
e-i and i-i Coulomb interactions at distances A. ~ n- t . 

Free Energy F~O) 

In high pressure plasmas, the electrons are partially degenerate for densities n > n, 
with n = 4·828 x lOtS T 3/ 2 cm-3, whereas the ions behave in general classically. 
Fermi statistics give for the free energy of the ideal electron gas (Tolman 1938) 

(14) 

where 

1 IOC! xP dx 
U/J.l/KT) = r{p+l) 0 exp{x -J.l/KT) + 1 , p = ·hi, (15) 

n = 2(2nmKT/h2?/2 U~:<J4KT), (16) 

define the Sommerfeld (1928) integrals and determine the chemical potential 
J.l = p{n, T) of the electrons respectively. The free energy of the translational degrees 
of freedom of the classical ideal ion gas is (Tolman 1938) 

(17) 

Quasi-lattice Energy EM 

The equilibrium positions of the electrons and ions, about which the electrostatic 
oscillations occur, form an electron 'lattice' and an ion 'lattice', with an incomplete 
ordering. In the Wigner-Seitz approximation, the Coulomb interaction energy of 
the electron-ion lattice is, independent of the lattice type, 

EM = -(l.yNKT; (I. ~ iX = 190 {4n/3Z)t , "I > I. (18) 

As the ordering of the plasma increases with "I, (I.{y) is a weak function of "I such that 
asymptotically (I. = iX for "I ~ 1. Equation (18) indicates that -EM/N '" Ze2 /ri is of 
the order of the average e-i interaction energy. For weak ordering ("I ~ 1) it will be 
shown that (I. oc "It. 

High Frequency Contribution Fe 

Since the number oflongitudinal modes with wave numbers between k and k+dk 
in volume V is V 4nk2 dk/{2n)3, equation (4) gives lOr the free energy Fe of the high 
frequency electron oscillations of energy nw{k) 

where 

Ike 
Fe/KT{V/2n2) = 0 In[1-exp{ -nw{k)/KT}]k2 dk, 

w{k) = wi1 +a2k2)t , 

a2 == c~/w~ = (Ke/4n){Zjy)r; , 

== tV~/w~ = ion-l(t,n)t{n/n)t(Z/y)r;, 

n~n 

n ~ n 

(19) 

(20) 

(21) 

(22) 



Nonideal Electron-Ion Plasma 431 

by equations (5) and (6). The speed of sound em and the Fermi speed VF of the electrons 
are 

(23a, b) 

The number of modes in (0, fe) and V equals the number N of longitudinal degrees 
of freedom of the electron gas, i.e. 

(24) 

Integration of equation (19) by parts, under consideration of the equation 
f: KTV/6rr 2 = NKT, yields for the free energy of the high frequency plasmons 

where 

Ae = h/(mKT)t, 

n~ii 

(26) 

(27) 

(28) 

(29) 

By means of the successive substitutions (i) x = sinh~, dx = cosh ~ d~ and (ii) 
e = (hwp/KT) cosh~, de = (hwp/KT) sinh ~ d~, the integral (26) is transformed to 

:F(ep,ake) = (ake ep)-3f8e (e2_e;)3/2(eB _1)-1 de, 
Bp 

(30) 

where 

(31a, b) 

Since the leading expression in equation (25) is the logarithmic term, it is sufficient 
to give for :F(ep, ake) the series approximation (see the Appendix) 

:F(ep, ake)/23/2(ake)3e; 3/2 = 

m~l exp(-mep) n~o (!)(2ep)-n m-<S/2+n)yG+n,(Be -ep)m); Be < 3ep , (32) 

where 

is the incomplete gamma function (Abramowitz and Stegun 1965). Since y/Z ~ I 
for ep < Be < 3ep , the expansion (32) is useful where simple approximate relations do 
not exist. 
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Low Frequency Contribution Fj 

With the number of modes in the interval dk at k and volume V given by 
V4nk2dk/(2n)3, equation (4) yields for the free energy F j of the low frequency ion 
oscillations of energy hw(k) 

where 

FdKT(V/2n2) = I:i In[l-exp{ -hw(k)/KT}]k 2dk, 

w(k) = 8(k)CM k , 

CM = (KjKT/M)t 

(34) 

(35) 

(36) 

by equations (10) and (12). The number of modes in (0, kJ and V equals the number 
N/Z of longitudinal degrees of freedom of the ion gas, i.e. 

(37) 

Partial integration of equation (34), under consideration of the equation 
kr KTV/6n2 = (N/Z)KT, gives for the free energy of the low frequency plasmons 

Fi = (N/Z)KT(ln[l-exp{ -(hCM/KT) 8«() (}]-'1f(k j») , (38) 

where 

'1f(k.) = hCMk .-3 Ikl {8(k) +kc5'(k)}k3 dk 
1 KT 1 0 exp{(hcM/KT)8(k)k}-l" 

(39) 

Since the dispersion factor 8(k) is a bounded function varying very little with k, such 
that 1 ~ 8(k) ~ (1 + Z)t for k E (0, kj), it can be approximated by an average value: 

8(k) = b '" 1, n ~ Ii. (40) 

Since in addition the logarithmic expression is the dominant term in (38), the integral 
(39) can be approximated by 

(41) 

where 

(42a, b) 

Here '1f(ej) has the semi-convergent series expansions (Abramowitz and Stegun 1965) 

(43) 

(44) 

This completes the formal mathematical aspects of the theory, the physical impli­
cations of which require further discussion. 

4. Applications 

For applications of the theory to strongly, intermediate and weakly nonideal 
plasmas, it should be noted that the dimensionless parameters y/Z, hWp/KT, ake 
and n/Ii occurring in equation (25) for the free energy Fe of the high frequency plas-
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mons cannot be varied independently. Since both y/Z and Ae/re increase with in­
creasing n and decreasing T, nWp/KT ~ (AJre)(y/Z)t varies over a large n-T region 
similar to (y/Z)l (see equation 7). 

Numerically, we have 

y/Z = 1·670x 1O- 3 nt /T, 

n/ii = 2·071 x 1O- 16 nT- 3 / 2 , 

ake = 1·100 Kt(-y/Z)-t , n~ii 

= 2· 294(n/ii)t(y/Z)-t , n ~ ii. 

(45a, b) 

(45c) 

(46a) 

(46b) 

For example, for T = 104 K, y/Z ~ 1 if n ~ 1021 cm- 3 and nWp/KT ~ I if 
n ~ 5 x 1020 cm - 3, as to order of magnitude. Thus, for typical conditions of 
nonideal plasmas, y/Z and nWp/KT are of the same order of magnitude. It is also 
recognized that in general n/ii ~ I if y/Z ~ 1, and n/fi ~ I if y/Z ~ 1. 

In equation (38) for the free energy Fi of the low frequency plasmons, only one 
characteristic parameter Bi occurs since b(k) ~ (5 ~ 1. By equation (42b) , this 
parameter is 

Bi = nCM(5kdKT = (6rc 2 }1-KJ(5Adi\ 

= 1·496 x 10- 5 Z -t(m/M)t(nt/Tt)(5 ~ I, (47) 

where 

(48a, b) 

Accordingly, for typical nonideal plasma conditions, we have Bi ~ I since Adri ~ 1 
(classical ions), although in general Ae/re > 1 (degenerate electrons) for y/Z > 1 or 
nWp/KT> 1. 

The deviation AF of the free energy of a nonideal plasma from ideal behaviour 
is due to the quasi-lattice energy EM and the plasmon energies Fe •i (see equation 13b). 
Since the theory of electron oscillations has not yet been developed for arbitrary 
degrees of degeneracy (n ~ fi), the contributions of the electron oscillations to AF 
in the cases n ;:5 nand n ~ n have to be estimated from the dispersion equations for 
n ~ fi (equation 5) and n ~ fi (equation 6) respectively. Fortunately, it turns out 
that I Fe I ~ I AFI for y/Z ~ 1, so that quantitatively reliable approximations for 
AF can be derived. 

Strongly Nonideal Plasmas 

By equation (6) the spectrum w(k) of electron oscillations extends over a band 
Aw ~ wp above the plasma frequency for y/Z ~ 1, since kre:::;; ke r ~ I and 
(n/fi)tZy-l ~ 1. Application of the mean value theorem for integrals to equation 
(25) shows that the free energy Fe of the high frequency plasmons vanishes exponen­
tially for 8p -+ 00, i.e. y/Z -+ 00: 

Fe/NKT = (In[1-exp{ -Bp(1+a2k;)t}] 

( kA )-3 Jak ) 8p a e e 4 2 _"-
- {(I -2).1.} 1 x (1 + x) 2 dx -+ 0, exp 8p +X 2 - 0 

8p -+ 00; (49) 
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with 0 ~ x ~ ake. Accordingly, we get I Fe IjNKT ~ 1 for Bp ~ 1, i.e. yjZ ~ 1. 
On the other hand, the free energy of the low frequency plasmons is by equation (38) 
for nondegenerate ions 

Fj ~ (NjZ)KT(lnsj -t) 

= (NjZ)KT[lny +In{(6n2IZ4)tb(KjKTIM)tl(e2Ih)}-tL Sj ~ 1. (50) 

It is noted that "lIZ ~ 1 is compatible with Sj = hcMkj bjKT ~ I as explained above. 
Equations (49) and (50) demonstrate that the contribution of the electron oscil­

lations to the free energy is negligible in strongly nonidea1 plasmas with "lIZ ~ 1. In 
this limit, the nonideal part of the free energy is due to the quasi-lattice energy EM 
and the ion oscillations: 

IlFINKT = -Eiy +(I/Z)ln y + (1/Z)In(f3cMlvB ) -I/3Z, "lIZ ~ 1, (51) 

where 

(52a, b) 

Note that In y depends on both nand T, whereas In(f3cMlvB ) depends only on T, 
where the Bohr speed is VB = 2·1l8x 108 cms- 1 ~ CM = (KjKTIM}'r. 

It· is remarkable that the electron oscillations contribute little to the free energy 
compared with the ion oscillations for "lIZ ~ 1. This result holds even for moderately 
nonideal conditions ("lIZ> 1). Thus, we disagree with the formula 

F = nBo +3NKTln(hwoIKT) 

stated without derivation (for 3N degrees of freedom!) by Norman and Starostin 
(1970), according to whom 'all the vibrations have exactly the same frequency Wo 

near the plasma frequency wp'. The derivation of this formula requires hw(k)IKT ~ 1 
for the electron oscillations, which implies "lIZ ~ 1. But the latter inequality contra­
dicts their assumption w(k) ~ Wo ~ wp ' since the frequency spectrum extends over 
a large band Ilw > wp above wp for "lIZ ~ 1. For these reasons, the free energy 
proposed by them is not applicable to proper nonideal plasmas ("lIZ> 1), nor is it 
correct for less nonideal conditions ("lIZ < 1). 

Intermediate Nonideal Plasmas 

For intermediate nonideal conditions (1 ;;S "lIZ < 10), the spectrum w(k) of 
electron oscillations extends over a region Ilw < O(wp) above wp by equation (6), 
since (nlii)tZy- 1 < 1 and Me ~ ke re '" 1. Also in this case, a relatively simple 
f()rmula can be devised for the free energy. The logarithmic term in Fe (see equation 
25) is negligible compared with that in Fj (see equation 38) for "lIZ> 1, since 
Bp ~ hCMbkJKTfor "lIZ> 1 by equations (45) and (47). Acc()rdingly, the nonideal 
part (13b) of the free energy is for intermediate nonideal plasmas ("lIZ ~ 1) 

IlFINKT = -Eiy + (1/Z)ln y + (l/Z)ln(f3cMlvB) -(l/Z)(§(sj) -ff(Bp , ake). (53) 

For "lIZ ~ 1, the ions can be assumed to be non-degenerate, Sj = hCMbkJKT ~ 1 
by equation (47), so that the ion integral (41) reduces to 

(54) 
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Since Be > ep ~ 1 and ake ep ~ 1 (equations 46) for "lIZ ~ 1, the electron integral 
(30) is significantly smaller than <:9'(Bj) = t: 

~ 1, "lIZ ~ 1. (55) 

The lower and upper bounds of §'(ep , ake) have been obtained by means of the mean 
value theorem for the integral (30): 

fEe 
§'(ep,ake) = (akeepy-3(82-e;)3/2 (e B-l) de, 

Bp 

(56) 

While for strongly nonideal conditions the contribution of the electron oscillations 
to the free energy is completely negligible, this contribution is still insignificant for 
intermediate nonideal conditions ("lIZ ~ 1) by equation (55). For more exact evalu­
ations, the small term §'(ep , ake) in equation (53) can be computed from (30) or (32). 

Weakly Nonideal Plasmas 

Although the theory of weakly nonideal systems is well understood, it is interesting 
to investigate whether the present model for proper nonideal plasmas gives reasonable 
results in the limit "lIZ ~ 1. For "lIZ ~ 1 we get ake ~ 1 by equations (46), and the 
spectrum w(k) of electron oscillations extends over a large region Llw ~ wp above 
wp by equation (5). The electron integral then becomes 

YIZ~ 1, (57) 

I.e. 

(58) 

Although epake is independent of "lIZ by (27) and (28), the expansion (58) is valid 
since the electrons are certainly nondegenerate, as Aelr. ~ 1 for "lIZ ~ 1, and 

(59) 

For nondegenerate ions, the integral (41) is <:9'(ilJ = t by equation (43), since Bj ~ 1. 
Thus, one obtains from equations (18), (25) and (38) for the interaction part of the 
free energy of weakly nonideal plasmas: 

LlFINKT = -O!(y)y + (1/Z)ln "I + (1/Z)ln(fkMlvB) 

"lIZ ~ 1, (60) 

where the logarithmic term in (25) has been expanded for ep ake ~ 1. 
In equation (60), O!(y) is the Madelung constant of the weakly nonideal plasma 

with weak electron and ion ordering, with O!(y) ~ 0 for "I ~ O. Comparison of the 
term -O!(y)y(NKT) in (60) with 

LlF = -(NKT)int(1 +Z)3/2e3nt(KT)-3/2 
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of the Debye-Hueckel (1923) theory (weakly nonideal plasmas) yields the result 

y/Z ~ 1. (61) 

The previous theories of weakly nonideal plasmas do not lead to the logarithmic 
terms in (60) since they do not take into account the effects of electron and ion 
oscillations. 

10 '4 
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Numerical Illustrations 

Fig. 1. Free energy Fo < 0 per unit 
volume of an ideal plasma as a function 
of n for three values of T (K) (Z = 1). 

Fig. 2. Deviation t..F < 0 of the free 
energy from both Fo < 0 (left) and the 
thermal energy NKT (right) as a 
function of n for three values of T (K) 
(Z = 1). 

Fig. 1 shows the (negative) free energy Fo per unit volume of an ideal Z = 1 
plasma versus n for three values of Tbased on equations (14)-(17). Here Fo serves as a 
reference quantity, relative to which the quantitative significance of the nonidea1 
contributions are measured. It is seen that 1 Fo 1 increases with increasing nand T. 

Fig. 2 shows the deviation flF < 0 of the free energy of a Z = 1 plasma from its 
ideal value Fo < 0 versus n for three values of T based on equations (13b), (25) and 
(38). In the n-T region under consideration, 1 flFI is less than the magnitude 1 Fo I, 
but is considerably larger than the thermal energy ~ NKT. Here flF/ Fo only exhibits 
a significant T dependence at large densities n > 1019 cm - 3. 
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Fig. 3 shows the free energies Fe and Fi of the high (e) and low (i) frequency 
plasmons of a Z = 1 plasma based on equations (25) and (38). Here 1 Fi 1 is consider­
ably larger than 1 Fe I, in particular at higher densities. The T dependence of Fe,;/Fo 
increases with increasing density n. Comparison of Figs 2 and 3 indicates that 
I1F ~ Fe + Fi, i.e. the quasi-lattice energy EM (equations 18 and 61) is not the dominant 
nonideal effect. 

Figs 2 and 3 demonstrate the quantitative importance of the nonideal effects 
I1F = EM+Fe+Fi' in particular of the low (i) and high (e) frequency plasmon con­
tributions Fi and Fe (Fi > Fe), for the evaluation of the free energy F = Fo + I1F 
of high density plasmas. 
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Fig. 3. Free energies Fe•1 < 0 of high 
(electrons) and low (ions) frequency 
plasmons as a function of n for three 
values of T (K) (Z = 1). 

For quantitative calculations, it is noted that the free energy I1F is hardly affected 
by inaccuracies in the large maximum wave numbers ke and ki' which have been 
determined in accordance with the Debye theory which implies strong coupling 
(y ~ 1). For weakly nonideal plasmas (y ~ 1), it appears to be more meaningful to 
determine k. = 2n/i.. from the minimum wavelength i.. ~ 2y., where Y. = (j-nn.)-+ 
is the mean particle radius and s = e, i. Both models give, however, essentially the 
same result since k~/k: rv 1. The theory presented does not contain the Debye 
length D, which no longer exists for nonideal plasmas with y ~ 1. Also, in this 
respect, our theory differs from most of the previous nonideal plasma theories, which 
are extensions of the weakly nonideal plasma limit. 
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Appendix. Expansion of ff(sp, ake ) 

The integral (26) is conveniently rewritten in the form 

where 

I(sp, a) = f8 (s2-s~)3/2(e"_l)-1 ds, 
Bp 

Since e > 0, i.e. e-' < 1, there exists the series expansion 

00 

(e8 _1)-1 = L e- rn., s > o. 
m=l 

(AI) 

(A2) 

(A3) 

The substitutions u = s - sp and du = de, together with equation (A3), transform 
(A2) into 

(A4) 

For u < 2sp , i.e. a < 3sp, the binomial expansion 

u/2sp < 1 (A5) 

is used, which reduces (A4) to the double series 
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for s < 3ep , where 

yG+n,(s-ep)m) = m 5/2+n f~-·p u3/2+n e- mu du (A7) 

is the incomplete gamma function (Abramowitz and Stegun 1965). In an analogous 
way, the integral (A2) can be solved for u > 2ep , i.e. 3ep < 8. 
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