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The evidence for the existence of systems that are dominated by electron-electron correlations is 
briefly reviewed, with particular attention being paid to (i) the processes of near-threshold electron
impact ionization and excitation of atoms and (ii) the structure of atomic doubly excited states and 
Feshbach resonances. New evidence is then presented for the existence of atomic resonances in 
which two excited electrons both have high val. es of the principal quantum number n (up to n = 8), 
and in which these two electrons reside on or near the Wannier ridge (i.e. with r1 ~ -rz). 

1. Introduction 

The independent-election model is usually an excellent first approximation 
when considering atomic structure or electron-atom collision processes, and it can 
be improved perturbatively to take account of the effects of electn;m-electron 
correlations. Nevertheless there remain some essentially non-perturbative systems 
in which these correlations are of major importance and for which the electrons 
cease to move approximately independently of each other. These correlation-dominated 
examples include atomic states in which electron-electron correlations are so strong 
that the independent-electron model fails to provide an adequate starting basis for 
classification purposes (see e.g. Fano 1976; Herrick and Kellman 1980). 

In the present paper we start in Section 2 with a brief review of the evidence for 
the dominance of electron-electron correlations in certain electron-atom collision 
processes, in particular the processes of near-threshold electron-impact ionization 
and excitation of atoms. In Section 3 the problem of the classification of correlation
dominated atomic states is discussed: examples of the experimental evidence are 
presented and the relevant theoretical models are briefly described. In Section 4 
experimental results are given of the observation of atomic resonance states of a new 
class. In these states two excited electrons both have high values of the principal 
quantum number n. The dominance of electron-electron .correlations in these states 
is discussed, and a simple model is described which indicates that in at least some of 
these resonances the two electrons reside on or near the Wannier ridge (i.e. with 
'1 ~ -'2)' A feature that the systems discussed in Sections 2, 3 and 4 have in common 
is that two electrons both reside at large distances (~lOA) from a positive ion core, 
and that the sum of their kineticenergies is less than about O' 5 eV. 
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2. Correlations in Threshold Ionization and Excitation Processes 

(a) Threshold Ionization 

F. H. Read 

The archetypal threshold process showing evidence of long-range electron-electron 
correlations is that of near-threshold ionization of an atom by electron impact: 

e+A ~ A + +e+e. (1) 

We start with this because it embodies in a simple way some important features that 
are present also in other two-electron correlated systems. The energy E above 
threshold, which is also equal to the total free (i.e. non-internal) energy of the three 
charged particles in the final state, is assumed to be very small (much less than the 
Rydberg energy R). The low value of E causes correlation effects to playa dominant 
role, thus allowing them to be observed. The same correlation effects are seen also 
in photo-double-detachment (Bryant et al. 1981). 
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Fig. 1. Relief plot of -C(a,812) withR = 1 and Z = 1. [Lin 1974; Fano and Lin 1975.] 

The essential physics of the threshold-ionization process can be understood by 
working in terms of the hyper spherical coordinates 

(2) 

where '1 and '2 are the positions of the two electrons with respect to the positive ion 
(taken to be a point particle for the present argument). These coordinates define 
the shape and size of the triangle that has the three charged particles as vertices. 
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Three further coordinates correspond to Euler angles defining the orientation of the 
triangle in the laboratory system, but because of the low vahle of E the system is 
essentially isotropic in these angles, which therefore need not be considered further. 

In terms of the hyperspherical coordinates, the potential energy of the system of 
two electrons and a positive ion of charge Ze is (in a.u.) 

v = -C(IX,012)/2R, (3) 

where 

2Z 2Z 2 
C(IX,012) = - + -.- - ( . 2 ° )t· cos IX smlX 1 -sm IXCOS 12 

(4) 

Fig. 1 shows - C as a function of IX and cos 012 (over the range 012 = 0 to n only), 
for Z = 1. We see a spike (at IX = !-n, 012 = 0) corresponding to electron-electron 
repulsion, and twovalleys (at IX = 0 and !n) corresponding to electron-ion attraction. 
In the vicinity of the point IX = !-n, 012 = n, which is often referred to as the Wannier 
point, we see that a saddle-shaped region exists, since - C decreases as IX diverges 
from!-n but increases as 012 diverges from n: Note that the saddle region is shallow, 
and that the potential therefore varies little over rather wide ranges of values of IX and °12. At the Wannier point itself we have r1 = -'2' so that the two electrons are at 
equal distances from, and on opposite sides of, the positive ion. As we shall see 
later, the saddle region plays a crucial role in determining the behaviour of a variety 
of systems containing two slow electrons. 

The dependence of Von IX and 012 in the region of the Wannier point is 

Vw = (2J2/R){ -(Z-!-) + 312(012 _n)2 -t(12Z-1)(1X _!-n)2 + ... }. (5) 

We see that the effective nuclear charge is Z-i, a point to which we shall return 
later. We see also that the dependence on 012 is that of an attractive simple harmonic 
potential, giving a form of stability to the 012 motion and causing the two electrons 
to tend to move to opposite sides of the positive ion. In contrast to this, the depen
dence on IX gives rise to an instability in the neighbourhood of the Wannier point. 
The potential energy is a maximum at IX = !n (for given values of Rand ( 12), and 
so the system tends to move away from this value of IX, causing the ratio 'l/r2 to 
diverge from unity. This has been called the radial correlation instability (Rau 1971). 
The region of potential mapped out near the Wannier point as R is varied (i.e. the 
region for which rl ~ -'2) is called the Wannier ridge (see e.g. Fano 1980). 

(b) Wannier Theory 

The way in which the potential energy (5) determines the behaviour of the three
particle system at low values of the excess energy E was first made clear by Wannier 
(1953), who integrated the classical equations of motion for this potential energy. 
To see why the classical treatment is justified it is useful to consider the critical radius 

Re = C(!n,n)/2E = (4Z-l)/EJ2, (6) 

at which I V I = E. Ionization occurs when the system starts with IX ~ in and then 
develops in such a way that as R increases IX stays in the vicinity of in until R becomes 
greater than about Re. In this way the system keeps away from the negative potential 
energy region of the valleys, so that I V I is subsequently able to continue to decrease, 
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with the result that the two electrons both eventually become free. If on the other 
hand Rc is reached when the system is far from the Wannier ridge then the attraction 
of the valleys will dominate so that I V I cannot subsequently decrease to zero, with 
the result that one of the electrons becomes bound to the positive ion and only one 
electron is left free to escape. The probability distribution in a at R = Rc therefore 
determines the relative probabilities of double escape (i.e. ionization) and single escape 
(i.e. excitation). The initial value of 812 is less critical, since as R increases 812 tends 
to converge to n, either by a damped oscillatory motion or monotonically. Each 
electron has of course a wavelength A, and the magnitude of this increases as E 
decreases, but the ratio of A (at the Wannier point and at R = RJ to Rc decreases 
with E: 

(7) 

We see therefore that at sufficiently low values of E the electrons can be considered 
as point particles for the present purpose, thus allowing the use of classical equations 
of motion. 

Wannier (1953) used phase-space arguments, and related the ionization cross 
section to the volume of phase space available for double escape. The lower the value 
of E, the nearer the system must stay to the Wannier ridge for double escape to be 
possible, and so the volume of phase space corresponding to ionization becomes 
smaller. In the absence of correlations between the motion of the two electrons (in 
particular, in the absence of the instability in a), the available phase space, and hence 
the cross section, is proportional to E. The instability in a becomes important at 
low values of E, since the system then has a long time in which to toll off the ridge 
and fall into one of the valleys, thereby removing flux from the ionization channel. 
The resulting ionization cross section therefore starts at threshold more slowly than 
linearly. Wannier found the dependence 

(8) 

where 

n = t{(lOOZ-9)j(4Z-1)}! -to (9) 

For the process (1), Z = 1 and hence n = 1·127. The phase-space distribution of 
the initial state of the system (where R is small and the behaviour is not classical) was 
found not to affect this result, provided that no strong selectivity exists in this dis
tribution (the quasi-ergodic hypothesis). The Wannier law (9) has been confirP1.ed 
by the semi-classical treatment ofPeterkop (1971), the quantum-mechanical treatments 
of Rau (1971) and Klar and Schlecht (1976), and more recently by Peterkop and 
Liepinsh (1981). The law applies to all spin and angular momentum configurations 
of the two outgoing electrons except the 3se and 1 pe configurations (Greene and 
Rau 1982). For these two configurations the wavefunction is necessarily antisym
metric with respect to exchange of the radial distances of the two electrons, which 
implies that there is a node in the wavefunction at the Wannier point, which in turn 
causes the exponent 11 to be larger (3·881) than that given by equation (9). 

If we think of the processes of electron-impact excitation and ionization in terms 
of the evolution in time of an initially localized wave-packet formed by the impact, 
we see that the part of the wave-packet corresponding to ionization is the part that 
remains on or near the Wannier ridge. The radial correlation instability causes a 
reduction in the amplitude of this part near threshold, making the value of 11 in 
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equation (8) slightly greater than unity. We see also that the two electrons are highly 
correlated in the process of near-threshold ionization, in the sense that they must 
maintain the condition r 1 ~ -r2 for as long as R ~ Re• 

The smallness of the difference n - 1 makes experimental confirmation of the law 
difficult. The first attempts were measurements of the total cross section for electron
impact ionization of atoms (see e.g. Marchand et al. 1969 for references). Marchand 
et al. found that n = 1'16±0'03, but this type of result was not generally regarded 
as definitive because of the effects of the finite energy spread of the incident electron 
beam. More recently a photodetachment experiment using a relativistic H - beam 
(Bryant et al. 1981) has yielded n = 1·09 ± O' 11. 
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Fig. 2. Yield of 
very low-energy electrons 
resulting from 
electron-helium impact . 
[So Cvejanovic, 
personal communication.] 

Two experiments of a different type were carried out by Cvejanovic and Read 
(1974). In the first experiment they measured the difference in flight times of the two 
outgoing electrons, and were thus able to study the energy and angular correlations 
of the electrons. They confirmed the prediction of the Wannier theory (see also 
Vinkalns and Gailitis 1967; Peterkop and Liepinsh 1981) that the distribution in 
012 becomes more strongly peaked around 1800 as the excess energy E is decreased. 
They confirmed also (within the experimental errors) that the energy-distribution 
function of each electron is uniform. This result is relevant to the interpretation of 
their second experiment, in which a partial ionization yield, namely the yield of very 
slow electrons (having an energy less than Em, where Em is ,..,,20 meV), was measured. 
This yield is proportional to the total ionization cross section ( ,.." En) times the proba
bility that one of the electrons has an energy less than Em (,.." Em/E), giving for the 
partial ionization cross section 

(10) 
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This technique therefore results in a measurement of the difference n-lrather 
than n itself, thus providing a definitive test of whether or not n is different from unity. 

The original measurement by Cvejanovic and Read (1974) has been repeated by 
Cvejanovic (personal communication) with better resolution of the incident electron 
energy (20 meV), and a lower value of Em (approximately 10 meV). His spectrum is 
shown in Fig. 2. A detailed analysis of the energy dependence of the yield in the 
region above the ionization energy (Cvejanovic and Read 1974) gives the experimental 
result 

n-l = Od31 ±0'OI9, (11) 

providing a convincing verification of the Wannier law. A similar experiment was 
carried out later by Spence (1975), using a trapped-electron technique. More recently 
Pichou et al. (1978) have made a more detailed study of electron-impact ionization 
of helium, and have shown that the energy distribution of the outgoing electrons is 
uniform up to 3·6 e V above threshold. 

(c) Threshold Excitation 

The part of the spectrum of Fig. 2 that lies below the ionization energy (i.e. 
~ 24·588 e V) is also of relevance to the correlations that can exist between two 
slow electrons, as pointed out by Fano (1974). The peaks in the spectrum correspond 
to the threshold excitation of Rydberg states of helium. These states have large 
radii ("'n2 a.u.) and can only be produced when it is possible for one electron to 
reach these large distances while the other recedes to infinity. There is time therefore 
for the instability in (J( to make itself felt, implying the necessity for the appropriate 
correlated motion of the two electrons which thus causes a reduction in the threshold 
excitation yield. As in threshold ionization, the reduction in yield is particularly 
large when both the electrons have a final. kinetic energy which is small, and since 
the free electron necessarily has a very small kinetic energy in the threshold technique 
this implies that the bound electron should be in a Rydberg orbital having a high 
value of n. The influence of long-range electron-electron correlations is therefore 
similar above and below the ionization energy, and we see from Fig. 2 that there is 
an approximately symmetric cusp-like dip in the yield of slow electrons at the ioniza
tion energy. The symmetry is spoiled only by the discrete nature of the excitation 
peaks. 

The fact that threshold excitation of high-n states occurs only when the two 
electrons remain in the vicinity of the Wannier ridge for a sufficiently long time 
implies that the two electrons are correlated in angle, being confined to values of 
012 near to 180°. This angular correlation implies in turn that the angular momenta 
/1 hand 12 h of the two electrons tend to be high, since the sharply peaked function 
P(012) can be decomposed into Legendre polynomials of high order (in a way analogous 
to the decomposition of a sharp time pulse into sinusoidal components of high 
frequency). The angular momenta of the excited and outgoing electrons tend of 
course to be oppositely directed since the total angular momentum of the system 
remains small. In fact the Wannier theory implies (Fano 1974) that the maximum 
angular momentum 1m of the individual electrons is proportional to E -t, where E 
is now the binding energy of the excited high-n state. Since Eoc n- 2 , we see that 
1m oc nt. The fact, that the excited atoms have angular momenta from 0 to 1m, as 



Proceedings of Flinders Conference 

X 2~+ 
g 

.. 
'.,: 

~. 

' .... '" : .. : 0"' 

...... 

".:." ,":-,::. h".:~ ............ :.: ..• :,:.,~: ... _.,.:.::;:.: .•. ;'.:.-. 

L------,:':;--____ --L ____ -.l ____ ---L _ 

15 16 17 

Incident energy (e V) 

Fig. 3. Yield of metastable H2 molecules in Rydberg states having n in the range from 
approximately 31 to 48, resulting from electron impact on H2, as a function of the impact 
energy. [Hammond et al. 1982a.] 
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Fig. 4. Threshold excitation spectra of (a) krypton and (b) xenon. [Hammond et al. 1982b.] 
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do the outgoing slow electrons, is in stark contrast to the familiar Wigner threshold 
law, which gives the energy dependence 

(1oc. El+t, (12) 

when the residual atom is neutral and the scattered electron has angular momentum 
I h. The Wigner law implies therefore that the scattered electrons would predomi
nantly have I = 0 at threshold. The origin of this discrepancy is that long-range 
correlations are ignored in Wigner's analysis. 

The experimental verification of this correlation effect in threshold excitation is 
made difficult by the fact that the high-I excited states are not easily distinguished 
from the accompanying low-I states. Heideman et al. (\980) have employed optical 
selection by observing the decay photons, but have been able to do this only for 
n :( 6. Tarr et al. (1980) have employed a different method to isolate the high-I 
states. They have studied near-threshold electron-impact excitation of Hz and N z, 
and have exploited the fact that low-I states of molecules tend to have shorter life
times than high-I states of the same n value, since the low-l states can decay more 
easily by predissociation or autoionization. The high-n high-I states are therefore 
detected by allowing them to travel along a flight path, at the end of which they are 
field-ionized and detected. The low-I states tend to decay before reaching the end 
of the flight path. The energy resolution is poor (350 meV), but there is clear evidence 
of strong threshold peaks for high-I states. The existence of these threshold peaks 
has recently been confirmed by the high-resolution measurements of Hammond et al. 
(\982a). Fig. 3 shows an example of the yield of Rydberg states of Hz having n 
from approximately 31 to 48. Such states exist below each of the vibrational levels 
of Hi. It can be seen that the cross sections for exciting these high-n states are strongly 
peaked at threshold. 

More direct evidence in support of Fano's (1974) prediction comes from high
resolution threshold excitation measurements of krypton and xenon (Hammond et al. 
1982b). These atoms are used because Rydberg states of different I values are separ
ated in energy from each other more than they are in helium. Fig. 4 shows the yield 
of low-energy (;510 meV) scattered electrons as the incident electron energy is 
varied between the zP3 / Z and zP1/ 2 ionization limits. The known energies of the 
ns', np', nd' and nf' Rydberg series (obtained from optical studies) are indicated. It 
can be seen that as the 2P1 / Z ionization limit is approached the peaks assigned to the 
higher-l states tend to become more intense than those of the lower-l states. In other 
words, for those krypton or xenon atomic states that have approximately the same 
binding energy E to the ZP1 / 2 ion core, the states of high t seem to be increasingly 
more easily excited by near-threshold electron impact, as E becomes smaller, than 
those of lower t. The near degeneracy of the ns' and nf' series of xenon introduces 
a slight complication, as do the possible presence of post-collision interactions and the 
possible influence of the Wannier-ridge resonances (see Section 4), but it seems 
reasonable to conclude that these observations provide further evidence for the 
dominance of long-range electron-electron correlations in the excitation process. 

3. Correlations in Negative Ion Resonances and Doubly Excited States 

(a) Classification Problems 

Perhaps the most familiar doubly excited states are those observed by Madden 
and Codling (1963) in helium, using synchrotron radiation for the first time. Below 
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the n = 2 level of He + there are three 1 P series, the strongest of which was seen in 
the initial work of Madden and Codling. An important point about these and other 
doubly excited states, as pointed out by Cooper et al. (1963), is that the wavefunctions 
represent strong admixtures of single-particle configurations, and that they therefore 
cannot be classified in general by single-particle quantum numbers (see e.g. the dis
cussions of Fano and Lin 1975; Lipsky et al. 1977; Herrick and Kellman 1980). 
Numerical calculations, although very accurate (see e.g. Lipsky et af. 1977), have 
been unable to provide meaningful help in understanding the underlying physical 
structure of these states. Although the ± classification scheme (Cooper et af. 1963) 
provides some guidance, as do various other classification models (see e.g. Burke 
and McVicar 1965; Macek 1968; Wulfman 1973; Herrick and Sinanoglu 1975; 
Lin 1975; Klar and Klar 1980), the nature of the quantum numbers of these and 
other doubly excited atomic states has still not been firmly established. Two recent 
group-theoretical approaches, which may result in the closing of this gap in know
ledge, are those of Herrick and Kellman (1980) and Iachello and Rau (1981). We 
shall return to this point at the end of the present section. 

Fig. 5. Electron-atom 
elastic scattering spectra of 

(a) argon at 
a scattering angle of 113°; 

(b) neon at 
a scattering angle of 100°. 

[Brunt et al. 1977 b.] 
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A similar area of ignorance is that of the classification of Feshbach resonances. 
These resonances are short-lived negative ions that can be formed for example by 
electron-atom impact (see Schulz 1973 for references). Because they essentially con
sist of two electrons trying to cling to a singly charged positive ion (as opposed to 
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the doubly charged core of neutral autoionizing atomic states), the mutual correlation 
of the electrons becomes even more important in determining the behaviour and 
classification of these states. The resonances therefore represent ideal correlation
dominated systems with which to test two-particle classification schemes. 

Fig. 5 (from Brunt et al. 1977b) shows an example of a high-resolution (12 meV) 
measurement of the lowest pair of electron-impact resonances in (a) argon and 
(b) neon appearing as structures on the elastic-scattering differential cross section. 
At the time of discovery of these resonances it was suggested (Simpson and Fano 
1963) that the structure of the Ne- pair is that of two 3s electrons coupling to form 
a closed shell which then couples to the positive ion core in either the 2P3/2 or 2Pi / 2 
state, giving the classification 

(ls2 2S2 2p5 2P3/2,1/2) (3s2 is) 2P3/2,1/2 . 

In this 'external' coupling scheme the binding energy of the 3s2 pair to the 'grand
parent' ion core is 5·45 e V. Analysis of the spectra of Fig. 5 reveals that for both 
argon and neon the energy separation of the resonances is equal (within the experi
mental error of ± 1 meV) to that of the grandparent positive-ion states,showing 
that there is very little magnetic interaction or exchange correlation between the 
outer two electrons and the inner core. These resonances are therefore examples of 
nearly pure external coupling. 

An alternative coupling scheme is that of sequential (or aufbau) coupling, in 
which one electron is bound (with an energy of ~ 5 eV) to the ion core to form a 
parent state to which is added the remaining electron with a very low binding energy 
( ~ 0·5 e V). The degree of correlation between the outer electrons is then lower 
than with external coupling. Since we know that external coupling of an ns2 pair 
gives a greater binding energy due to the increased degree of correlation (see next 
subsection), we may suspect that external coupling will occur also for an nlnl' con
figuration in which I =F I'. In fact Read et al. (1976) and Buckman et al. (1982a, 
1982b) have shown that it is possible to interpret qualitatively the positions and 
widths of many of the higher lying resonances in neon, argon, krypton and xenon 
in terms of an external coupling scheme for both equivalent and non-equivalent 
electrons, but clearly more detailed theoretical studies are still required. The external 
coupling scheme has also been used to interpret the observed He- resonances (Brunt 
et al. 1977a), although here there are additional structures caused by a virtual state 
near the 2i S energy, by cusp effects at the energies of excited neutral states, and by 
the existence of a different type of resonance having the structure of an electron 
very weakly bound in'the polarization potential of an excited state (Nesbet 1978). 
We must therefore not expect all resonances to be of the external coupling type. 
Further evidence of external coupling comes from the calculations of Langlois and 
Sichel (1980) on doubly excited levels of neon. 

(b) Modified Rydberg Formula 

At this stage it is worth while to consider what form of electron-electron correlation 
is implied by external coupling. Read (1977) has considered atoms and ions having a 
configuration [core](ns2 is), and has investigated the consequences of supposing the 
following: (i) that each ns electron partially screens the other from the charge of 
the core, so that the Coulomb potential outside the core is effectively reduced from 
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Z/r to (Z - (J)/r, where (J is a screening parameter; (ii) that the stronger non-
Coulombic potential experienced by an electron when it penetrates the core is para-
metrized by the same quantum defect 6ns that a single ns electron would have in the 
atom or ion [core](ns). These two suppositions lead to the modified Rydberg formula 

E([core])-E([core]ns2) = 2R(Z-(J)2/(n-6IlY (13) 

for the energy with which the externally coupled ns2 electrons are bound to the core, 
where R is the Rydberg energy (13·606 e V). The quantum defect used in this formula 
has to be rendered free of the effects of magnetic interactions and exchange correlations 
by taking the appropriate energy averages (see Read 1977 for details). 

Table 1. Application of modified Rydberg formulae (13), (16) and (17) to configurations [core]ns2 
where n has its lowest value 

E and EI are the energies of the states [core]ns Z and [core] respectively 

Atom Config- Parameter L1 (%) using 
uration Zcore E (eV) EI (eV) t5I1S a A eqn (16) eqn (17) 

H- Is z 0 14·355 0 0·274 6·58 0·81 

He Is2 2 0 79·005 0 0·296 5·47 0·59 
He- Is 2sz 19·367 24·588 0·274 0·244 -1,60 -2·45 

Li Is2sz 2 56·31 81'032 0·166 0·252 0·22 -1,26 
Ne 2p4('Pz)3s2 2 41·87 62·647 1·008 0'259 1·08 -0,11 
Ar 3p4('Pz)4sZ 2 26·97 43·386 1·758 0·259 0·99 0·20 

Bel Is z 2sz 2 0 27·534 0·272 0·261 1·36 -0,37 
Bn Is z 2S2 3 0 63·087 0·204 0·265 1·13 -0'49 
FVI Isz 2sz 7 0 342·35 0·103 0·270 0·64 -0'61 

MgI 2p6 3s2 2 0 22·681 1·098 0·263 1·57 0·21 
Aln 2p6 3s2 3 0 47·277 0·926 0·265 1·19 0·00 
Sim 2p6 3sz 4 0 78·611 0·804 0·268 0·94 -0·13 
Sex 2p6 3s2 11 0 475·43 0·433 0·270 0·38 -0,32 

SrI 4p6 5s2 2 0 16·724 2·779 0·259 1·02 0·19 
BaI 5p6 6s2 2 0 15·215 3·668 0'256 0·72 0·04 
0- (4S)3s2 8·78 13·618 1·228 0·253 0·76 0·06 
Ne- 2psep3 / 2)3sZ 16·111 21·565 1·334 0·254 1·12 0·02 
Ac 3pSCZP3 / 2 )4s2 11·098 15·760 2·193 0·252 0·55 -0,03 
Kr 4psep3 / 2 )5s2 9·484 14·000 3·165 0·252 0·66 0·17 
Xe- 5pSCZP3 / Z)6s2 7·900 12·130 4·111 0·255 1·41 1·09 
Na- 2p6 3sz 1 0 5·682 1·373 0·256 1·77 0·50 
K- 3p6 4s2 1 0 4·842 2·230 0·253 0·90 0·19 
Rb- 4p6 5s2 1 0 4·663 3·195 0·253 0·75 0·16 
Cs- 5p6 6s2 1 0 4·365 4·131 0·251 0·39 0·01 

A From equation (13). 

The screening parameter (J can be found when all the other parameters in equation 
(13) are known. Table 1 shows some examples for configurations of the type [core]ns2 

in which n has its lowest possible value. Of more than 50 examples considered, only 
three give rise to values of (J that lie outside the range 0·25 ± 0 . 02, and of these, 
H- and He have a bare nucleus as the core, while Au - (not shown in Table I) has 
core d electrons which overlap the outer ns2 electrons. We see therefore that (J is 
remarkably constant, being usually slightly greater than 0·250 (while the average 
value is 0·257). 
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The significance of the value 0·25 is that this is the value that a has when the 
system of core plus two electrons exists on or near the Wannier ridge (i.e. when 
r1 ~ -r2), since we see from equation (5) that the potential energy is then 

Vw = -(2,j2/R)(Z-t) = -(2/r)(Z-t). (14) 

We see also from Fig. 1 that, because the region surrounding the Wannier point is 
nearly fiat, a is not greatly changed by the fact that the probability distribution of 
the two-electron wavefunction is distributed around (rather than at) this point. 

The fact that a is always ~O'25 for [core]ns2 configurations implies therefore 
that the two outer electrons have a high degree of correlation, in the sense that they 
spend most of the time on or near the Wannier ridge, screening each other as little 
as possible from the positively charged core. This value of a represents the minimum 
amount of screening. The maximum value of 0 . 5 occurs when the two electrons are 
completely uncorrelated. Another implication of the results shown in Table 1 is 
that the quantum defect bns for a single electron can still be used to parametrize the 
core when a second electron is present, a fact which will no doubt be of help when 
two-electron models (see next subsection) are applied to atoms having extended 
cores. 

Also shown in Table 1 is the error 

L1 = {EB(calc.)-EB(exp.)}/EB(exp.) (15) 

in the calculated binding energy if equation (13) is used with a = O' 25, i.e. 

EB(calc.)/(27·212 eV) = (Z-O·25)2/(n-bns)2. (16) 

We see that the absolute value of L1 is < 2 % for all the atoms considered, except 
the two-electron atoms H- and He. This is a remarkable achievement for a formula 
that contains no variable parameters. 

(a) 
0·0 

9·0 
0 0 1800 

Fig. 6. Conditional probability densities per" (}12) for He**. The dot indicates the position of 
electron 1: (a) 2S2 'S. state with r, = 2·74 ao, its most probable value; (b) 2s2p 3po state with 
" = 3· 5 ao, its most probable value. [Yuh et al. 1981.1 

To obtain an even closer fit to the experimentally measured binding energies we 
have added to equation (13) a further term (the justification for which will be dis
cussed in Section 3d below), to give the expression 

EB/(27' 212 eV) = {(Z -a)2/(n -bns)2} -c{(Z -a?/2/(n- bns)3}, (17) 
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where c is a constant. The best fit is obtained with (J = 0·23 and c = 0·09, and the 
resulting percentage errors are shown in the last column of Table 1. The quality 
of this fit is even more remarkable, since of the many and varied atoms considered 
(spanning Zeor. from I to 11, n from 1 to 6, and <5ns from 0 to 4·1) the error in using 
equation (17) is rarely greater than 1 %, even when the core is a bare nucleus. 

(c) Calculational and Theoretical Studies 

Rehmus et al. (1978) and Yuh et al. (1981) have investigated the electron correla
tions that exist in doubly excited states of helium by expressing 1 '1' 12 as a function of 
r 1, r2 , 012 and two other coordinates 01 and °2 , and then averaging over the redundant 
coordinates 01 and O2 to obtain the density function p(rl' r2' ( 12). One of these results 
is shown in Fig. 6, in which the density functions of the 2S2 IS and 2s2p 3p states 
are plotted as a function of r2 and °12 • It can be seen that these wavefunctions are 
localized near the Wannier point. Analogous strong correlations are found in the 
wavefunctions of other doubly excited states of helium. It is also interesting to note 
that an analogous spatial correlation seems to exist in fully or partially filled p shells 
(Read 1977). 

Let us now consider the various theoretical attempts to account for the correlations 
in doubly excited states of the atoms H - and He. The main task is of course to find 
a separation of coordinates that will allow the formulation of the underlying selection 
rules and quantum numbers referred to at the beginning of this section. 

\ 
• 

/ 
Bending. vibration 

Fig. 7. Schematic representation 
of the rotational-vibrational 
collective interpretation of 
supermuItiplet classifications 

Rotation of intrashell levels 
of two-electron atoms. 
The two electron clouds 
and the ion core 
form a linear XYX structure 
that vibrates and rotates. 

In several of the theoretical studies (see e.g. Macek 1968; Lin 1975; Klar and 
Klar 1980; Greene 1981; Watanabe 1982) hyperspherical coordinates have been 
used, with the implicit assumption that the 'breathing' motion in the scale distance R 
is significantly slower than the motion in Il( and °12 • This assumption allows R to 
be treated as the analogue of the inter-nuclear separation of a diatomic molecule, 
and Il( and 012 as the analogues of the electronic coordinates of the molecule, giving 
a Born-Oppenheimer type of separation. The eigenvalues of the Hamiltonian at 
constant values of R are therefore regarded as potentials which determine the motion 
in R. As in the evaluation of molecular energy levels, potential energy functions are 
calculated and then used to find the total atomic eigenenergies. This approach leads 
to reasonably accurate eigenenergies, and is also able to explain qualitatively the 
observed differences in transition strength in terms of the shape of the low-R repulsive 
part of the potential curves: the curves which extend to the lowest values of R give 
wavefunctions which have the greatest overlap with the target wavefunction and 
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hence have the highest absorption strength. In other words, the transition strength 
differences are ascribed in this model to a dynamical effect, rather than to the existence 
of selection rules. 

Some success has been obtained also with other types of coordinate separation 
(see e.g. Burke and McVicar 1965; Wulfman 1973; Herrick and Sinanoglu 1975). 
A promising approach is that recently evolved by Kellman and Herrick (1978) and 
Herrick and Kellman (1980), who have considered the classification of doubly 
excited states of helium in which both electrons have the same principal quantum 
number n. Their work is based on decompositions of the group to which two-electron 
atoms belong, but their results can be interpreted in terms of a simple model and its 
associated quantum numbers. The model is depicted in Fig. 7. The shaded areas 
represent the regions in which the two electrons reside for most of the time, with 
one electron on each side of the nucleus. This structure is similar to that of a linear 
XYX triatomic molecule, and so there are additional 'vibrationa1' and 'rotationa1' 
motions, as indicated in the figure. The electron wavelengths are of course comparable 
with the mean electron-nucleus separation, which gives the electrons a large spatial 
extent and makes the 'molecule' far less rigid than a real triatomic molecule. It 
therefore bends easily in any plane through the mean molecular axis, and since this 
bending vibration has a degeneracy of two it can also give rise to angular momentum 
about the mean axis. Symmetric and anti symmetric vibrational motions are incor
porated into the 'internal' structure shown in Fig. 7. Finally, rotational motion is 
superimposed on the internal and bending motions. 

The energy levels given by this model are therefore analogous to those of a linear 
triatomic molecule, namely 

(18) 

where Einl is the internal energy, co the vibrationalconstant, Be the rotational constant, 
v the vibrational quantum number, J the total angular momentum quantum number 
and 1 represents the component of angular momentum about the mean axis. The 
'molecular' quantum numbers v, J and 1 are related to the 'atomic' quantum numbers 
K, T and I that label the subgroups considered by Herrick and Kellman. Group
theoretical considerations impose certain constraints and cut-offs on the atomic, 
and hence the molecular, quantum numbers. In addition, the requirement that the 
wavefunction be anti symmetric with respect to exchange of the two electrons deter
mines the allowed value of the total electron spin S for given parity II and quantum 
number 1. The resulting values of the atomic terms for the n = 3 shell of helium 
are shown as a set of supermultiplets in Fig. 8a. Each supermultiplet, corresponding 
to a fixed value of J -1, forms a diamond structure. The corresponding energy levels 
are plotted in the same form in Fig. 8b. Because of the lack of experimentally measured 
energies it has been necessary to use accurately calculated values. 

We see from Fig. 8b that the proposed supermultiplet classication reveals a high 
degree of regularity in the energy spectrum. Other schemes of classification (for 
example, in terms of the independent-electron quantum numbers 11 and 12 ) are less 
successful in this respect. The classification also corresponds well with the energy 
level formula (18). Within each supermultiplet we see vibrational series of approxi
mately equi-spaced levels, and we see also that when v is non-zero the bending motion 
can contribute angular momentum 1. Levels having the same v but different 1 
(within a supermultiplet) are nearly degenerate, which explains for example the triplet 
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Fig. 8. (a) Supermuitiplet classification of doubly excited states of helium in the n = 3 shell; 
(b) calculated energies according to the same classification. [Herrick arid Kellman 1980.] 

of nearly degenerate levels near 70·5 e V. The lowest levels of the supermultiplets 
reveal the purely rotational component, their energies being approximately propor
tional to J( J + 1). This classification scheme seems to indicate therefore a new and 
useful separation of coordinates into internal, vibrational and rotational coordinates. 

More recently a different group-theoretical approach has been developed by 
Iachello and Rau (1981). They show that matrix elements of the Coulomb interaction 
for doubly excited is states can be approximated by a constant plus a pairing term, 
and that the pairing term gives rise to a highly correlated state similar to a Cooper 
pair)n an electron gas. They show also that the correlated state may be identified 
with the state that leads to the Wannier threshold law for the escape of two electrons 
from a Coulomb core. Clearly the understanding of electron-electron correlations 
in atoms such as doubly excited helium is developing at a fast pace, and the ultimate 
amalgamation of the various approaches, and also their application to heavier atoms 
and to resonances, is awaited with interest. 

(d) Semi-empirical Formulae 

The success of the modified Rydberg formula (16) in fitting the binding energies 
of configurations [core]ns2 , where n has its lowest value, and the insight offered by 
the Herrick and Kellman (1980) rotor model in describing the structure of the higher 
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Table 2. Atomic configuration, quantum numbers and energies in rotor model 

Configuration v J Energy (a.u.) Configuration v J Energy (a.u.) 

(s2+pz+d2+ ... ) lse 0 0 0 ro (p2+d2+f2+ ... ) 3pe 1 1 1 2ro+B 
(sp+pd+dH ... ) 3po 0 1 0 ro+2B (sp+pd+df+ ... ) lPQ 1 1 1 2ro+B 
(Sd+p2+d2+ ... ) lne 0 2 0 ro+6B (pd+df+fg+ ... ) 3n· 2 2 2 3ro+2B 
(sf+dHfg+ ... ) 3po 0 3 0 ro+12B (S2+p2+d2+ ... ) lS' 2 0 2 3ro+6B 

(Sd+p2+d2+ ... ) lne 2 2 2 3ro+2B 
(pd+df+fg+ ... ) In· 2 1 2ro+5B 
(sd+pHdg+ ... ) 3ne 2 1 2ro+5B 

Table 3. Measur~ and fitted values of vibrational (ro e V) and rotational (B e V) constantS in rotor model 

Atom n rom rorlt Bm Brit Atom n rom roflt Bm Brit 

H- 2 0·52 0·92 0·090 0·151 BII 2 8'37 8·66 2·32 2'70 
3 0·27 0·055 0·045 Mg 3 4·40 3·73 1·36 0·93 

He 2 1·84 3·20 0·24 0·80 AlII 3 7·23 5·63 2·33 1'76 
He- 2 1·43 0·31 0·24 Sim 3 9·91 7·52 3'28 2'74 
Li 2 4·16 0'77 1·04 Sex 3 22'74 10·01 13·99 
Be 2 4·98 4·97 1·36 1·24 

energy configurations [core ]ns np, [core ]np2 etc., give encouragement to the task of 
combining these two models to give energy formulae that fit the wider class of states. 

In Table 2 we show the possible configurational mixtures of the lower lying rotor 
states depicted in Fig. 8, together. with their corresponding vibrational-rotational 
energies, as given by equation (18). By including the effects of anharmonicity, centri
fugal distortion and rotational-vibrational coupling the energy becomes (Kellman 
and Herrick 1980) 

E = Eint+(.O(v+ 1)-x(v+ 1)2 + {B-IX(v+ 1)}{ J( J + 1)_/2} 

(19) 

and although Kellman and Herrick show that for helium the constants x, IX, G and 
D are not always significantly smaller than (.0 and B, we shall ignore the extra terms 
for the time being. Using the data summarized by Read (1977), values of B for 11 
different atoms can be deduced from the energy differences of their [core](ns21S) 
and [core](nsnp 3p) terms, and similarly values of (.0 for seven of these atoms can be 
deduced from the energies of the [core](ns np 1 P) terms, or from the means of these and 
the energies ofthe [core](np2 3p) terms, where available (see Table 3). To parametrize 
these results we start with the expressions given by Kellman and Herrick (1980) for 
the values of (.0 and B (in a.u.) when the electron-core separations both have the fixed 
value r: 

(.0 = 1/2r 3/2, 

B = 1/4r2. 

(20) 

(21) 

Now at the Wannier point the potential energy of the system is given by equation 
(14), and from the virial theorem (see e.g. Cowan 1981) the mean potential energy 
is related to the binding energy by 

(22) 
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Putting 

(23) 

where (r- 1) denotes the mean value, and replacing the screening constant 0·25 by 
u, and also using equation (13) to parametrize EB , we now obtain 

(24) 

and hence 

(25) 

Similarly, or by making use of the expression for (r-2) for hydrogenic atoms(Cowan 
1981), the approximate parametrization of B becomes 

(26) 

To fit the measured values given in Table 3 the proportionality constants in 
equations (25) and (26) have been treated as adjustable, but u has been fixed at the 
value that appears in equation (17) (namely O' 23). The best fits, given in Table 3, 
are obtained with the expressions 

Wfit/(27'212 eV) == 0·4(Z-0·23)3/2/(n-(jns)2, 

Bfit/(27'212 eV) = 0·075(Z-0·23)2/(n-(jns)3. 

(27) 

(28) 

We see that in both cases the proportionality constants are less (by factors of 0·8 
and O· 3 respectively) than those appearing in equations (25) and (26). These reduc
tions are presumably due, at least in part, to the presence of the higher terms in 
equation (19). 

Since the term [core]ns2 has the zero-point vibrational energy hw (note that the 
bending mode is doubly degenerate), it seems appropriate to add this to the binding 
energy of the [core]ns2 term before fitting with the modified Rydberg formula. Treat
ing the proportional constant for the vibrational energy as an adjustable parameter 
again, we obtain equation (17) which, as already noted, gives an excellent fit to the 
measured binding energies. The constant c that gives the best fit is 0'09, which is 
smaller than that expected from equation (27) by a factor of O' 225. It seems therefore 
that a part of the zero-point energy is already incorporated in some sense into the 
electronic energy (Z-u)2/(n-(jns)2. The fact that the screening constant which gives 
the best fit is 0·23 rather than 0·25 also needs to be considered. We see from equation 
(5) that the quadratic term in IX in the expansion of V near the Wannier point can be 
combined with the screening constant 0·25 at the Wannier point to give an effective 
screening constant 

u = O' 25--t(12Z-1)«IX-!-n)2). (29) 

To reproduce u = O' 23 requires 

(IX -!-n)rms = 0·115/(Z-l2)t. (30) 

The wavefunction density plots of Lin (1982) show that the range of IX over which 
ns2 states extend is at least as large as that given by equation (30). Note that the 
quadratic term in 012 in equation (5) is already allowed for in that it gives rise to the 
bending vibration. 
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Fig. 9. Yield of metastable (23S and 21S) helium atoms resulting from electron impact on 
helium as a function of incident electron energy. The energy resolution is 15 meV. [Buckman 
et al. 1982c.] 
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Fig. 10 • .Yield shown in Fig. 9, but taken over four restricted energy regions with improved 
statisti<;al accuracy. The relative normalization of the four regions is arbitrary. The energies 
of the Isns 3S and lsnd 1D states of helium are indicated for n = 3-7 (to show the ranges of 
energies covered by the Isn multiplets). The energies of the more prominent He- resonances 
as well as the ionization energy E, are also indicated. [Buckman et al. 1982c.] 



Proceedings of Flinders Conference 

4. 'Wannier-ridge' Resonances 

(a) Experimental Evidence 

493 

In Section 2 we discussed the effects of long-range correlations between two 
unbound electrons (as exemplified in the process of near-threshold electron-impact 
ionization) and between a bound and an unbound electron (as exemplified in the 
process of near-threshold electron-impact excitation of atomic states of high I). 
The typical energy of electrons for which such effects are important is ± E, where 
E;:S O' 5 eV. In Section 3 we were concerned with the correlations that exist in 
atomic and resonance states in which the two excited electrons are in valence or near
valence orbitals, with a combined binding energy to the relevant ion core that is 
typically a few electron volts. In the present section we are concerned with resonance 
states for which the binding energy is ;:S 0·5 e V, so that both the excited electrons 
have high values of the principal quantum number n. 

Table 4. Observed properties of He - resonances 

Values in parentheses indicate error in last significant figure 

n 
1st 2S resonance 

2 19· 367(5) 
3 22,450(5) 

4 23 '443(5) 
5 23· 851(10) 

6 24· 079(10) 
7 24· 216(10) 

8 24· 306(20) 

A Second narrow dip. 
B Final broad peak. 

Observed energies (eV) 
2p resonance 2D resonanceA 2nd 2S resonanceB 

22· 600(10) 22· 660(10) 22,881(5) 

23· 518(10) 23· 579(10) 23· 667(5) 
23 '907(10) 23· 943(10) 23 '985(10) 

24·142(10) 24,185(10) 
24· 258(10) 24· 284(10) 

C Ratio (peak-to-valley)jmean for the first 2S resonance in each group. 

1st 2S 
reI. htC 

O' 55(1) 
O· 051(1) 
0'018(1) 
0,0061(4) 
0'0046(4) 

In recent experiments Buckman et al. (1982c) have measured the yield of meta
stable helium atoms (in either the 21S or 23 S states), that result from electron-helium 
impact, as a function of the incident electron energy. Their results are shown in 
Fig. 9. The threshold and resonance structures that appear in this excitation function 
occur in distinct groups, each group being labelled by the appropriate principal 
quantum number n. For the threshold features (such as those appearing at 20·616 
and 20·964 eV) the value of n refers to the principal quantum number of the excited 
electron in the corresponding excited state of helium (in this example the Is 2s 1 S 
and Is2p 3p states at 20·616 and 20·964 eV respectively), whereas for the resonance 
features the value of n refers to the lower of the principal quantum numbers nl and 
n2 of the two excited electrons. The lower energy resonances in each group have 
n 1 = n2, while those at higher energies can have n1 #- n2' 

The threshold and resonance features in the groups labelled n = 2 and 3 have 
been well studied previously, both experimentally and theoretically (see e.g. Brunt 
et al. 1977a; Nesbet 1978; Andrick 1979 and references therein). Of greater interest 
in the present work are the groups at higher values of n. The existence of these 
higher lying resonances was first established by Heddle and coworkers (see Heddel 
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1977 for a summary and references), who measured optical excitation functions of 
several high-lying states of helium. To study these resonances at high resolution in 
the metastable excitation function, Buckman et al. (1982c) have used a greatly im
proved sensitivity since the features are very small compared with the non-resonant 
cross section. Fig. 10 shows in greater detail the groups with n from 3 to 7. 

The energies and I values indicated in Fig. 10 (and included also in Table 2) for 
four prominent resonances in the n = 3 group are those established by angular 
distribution studies (Andrick 1979). The calculations of Nesbet (1978) indicate that 
the lower three of these resonances are of the intrashell type (for which n1 = nz), 
having the dominant configurations Is 3sz zs, Is 3s 3p zp and Is 3s 3d zD respectively, 
while the remaining one is of the intershell type. These same four features appear 
to be present also in the group having n = 4. For each of the groups where n is 5, 
6 and 7, the lowest Zs feature appears as a narrow dip and is clearly discernible 
(although it is much less so for n = 8), and also the energies of two other prominent 
features in each group, namely a second narrow dip and a final broad peak, can be 
confidently established. These energies are indicated in Fig. 10 and given in Table 4. 
Energies of the Isns 3S and Isnd ID states of He are also shown in Fig. 10, repre
senting the span of neutral-state energies at each value of n. The energies obtained 
for some of these resonances by Heddle and coworkers (see Heddle 1977), at a 
significantly lower resolution, are on the whole consistent with those given in Table 4. 

The high nZ resonances in,He - have also been observed recently in electron-impact 
excitation functions of various states of helium (Hammond et al. 1982b). Some 
examples of these excitation functions are shown in Fig. 11. As one might expect, 
resonances with a given value of n appear most strongly in excitation functions of 
the states that have the principal quantum number n - 1. This was established also 
by the optical excitation studies of Heddle (1977). Work is proceeding (Cvejanovic, 
personal communication) on the behaviour of these resonance structures in electron
impact excitation functions as a function of the angle of scattering and of the excitation 
channel. 

Some qualitative conclusions can be drawn immediately from the spectrum shown 
in Fig. 11 by comparing the positions of the multiplets of singly excited states of 
He with those of the doubly excited states of He-. For the singly excited states the 
excitation energies are well approximated by the Rydberg formula 

(31) 

where E J is the ionization energy and where the quantum defect 15n1 converges to a 
constant at high values of n (i.e. n ~ 4); for example, for the 3S and 1 D states, 15 
converges to O· 30 and ~ 0 respectively. The energy separation between two states 
that differ in n by unity but have the same symmetry is 

(32) 

which is proportional to n*-3 at high n (where n* = n-(5). Similarly the energy 
separation between two states that have the same n but different symmetry is 

(33) 

which again becomes proportional to n* - 3. The energy span of each multiplet and 
the energy separation of neighbouring multiplets are therefore both proportional 
to n*-3 (Fano and Cooper 1968), and the ratio of span to separation is a constant. 
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Fig. 11. Electron-impact excitation functions of various states of helium in 
the region below the ionization potential. The relative normalizations are 
arbitrary. The vertical lines show the energies of excited states of helium. 
[Hammond et at. 1982b.] 
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Fig. 12. Quantum defects (obtained from the one-electron formula 
31) of the observed He - resonances plotted as a function of the 
principal quantum number II of the two excited electrons. The 
circles correspond to the first 2S resonances, the squares to the 2D 

resonances or (in the case of the higher II values) the second narrow 
dip in each II group, and the triangles to the second 2S resonances 
or the final broad peak in each group. 
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This is the behaviour of the singly excited state energies that are indicated in Fig. 10. 
In contrast we see from this figure that the ratio of multiplet energy span to multiplet 
separation is not a constant for the He - resonance states. Indeed it is clear that the 
multiplets start to overlap at n ;<; 8. 

Another way of underlining the essential difference in character between the 
multiplets of He* and He-** is to try to apply the single-electron Rydberg formula 
(31) to the energies of the He - states. The resulting values of (5nl are shown in Fig. 12. 
We see that these effective single-electron quantum defects do not converge to constant 
values at high n. This piece of evidence clearly indicates therefore that two excited 
electrons are involved, and that these electrons are strongly correlated. 

(b) Interpretation 

Fano (1980) has recently pointed out a connection between the behaviour of an 
atomic Rydberg electron in a strong magnetic field, giving rise to Landau standing 
waves, and the behaviour of two slow electrons escaping from the field of an atomic 
ion in the process of near-threshold electron-impact ionization of an atom. In both 
examples there is unstable motion along a potential ridge. In the case of two electrons 
escaping from an atomic field the ridge is the Wannier ridge at Y1 = -Yz, where the 
potential is given by equation (14). Fano (1980) has suggested that, in analogy with 
the formation of Landau standing waves, the form of the two-electron potential 
ridge might give rise to series of quasi-standing wave patterns formed by reflection 
of the wave-packet representing the two-electron system. The wave-packet prop
agates along the ridge and is reflected when the kinetic energy becomes zero (i.e. 
at the radius r1 ,z at which V is equal to the total energy of the system). These standing 
waves could manifest themselves as resonances in electron-atom scattering at 
energies near to, and below, the ionization energy. We believe that some of the reso
nances seen in the present work, in particular the lower energy resonances in each 
group, are of this type. Since Wannier (1953) was the first to realize the importance 
of the potential ridge region for determining the behaviour of low-energy two-electron 
systems, we refer to such resonances as 'Wannier-ridge' resonances. 

The He - resonances can also be related to those that might arise from the Kellman
Herrick model described in Section 3. The lowest of the intrashell states having 
n1 = nz = n is that for which the quantum numbers v, J and l in equation (18) are 
all zero, and we assume that the internal structure of this state (giving rise to the 
internal energy term in equation 18) is that of a 'Wannier-ridge' state. The higher 
energy states of the supermultiplets presumably correspond to systems in which 
there is motion away from and through the Wannier ridge, in addition to motion 
along the ridge. An aspect of the rotational-vibrational model which is directly 
relevant to our present observations is that the predicted total span of energy AE" 
of all the members of the supermultiplet corresponding to n1 = nz = n is equal to 
2(n-l)w, and that Herrick et al. (1980) find that w is approximately proportional to 
n- 3 .38 for He** and n- 3 .Z5 for H-**, causing AE" to be approximately proportional 
to (n_l)n- 3 . 3 for both these atoms. At high values of n we see therefore that AEn 
decreases with n more slowly (i.e. n- Z .3) than the energy spacing between the lowest 
levels of neighbouring multiplets (since this spacing is approximately proportional 
to n- 3 , regardless of whether equation 13 or 31 is applicable). In other words the 
supermultiplets will begin to overlap at some sufficiently high value of n. As pointed 
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out above, we can see from Fig. 10 that this does indeed happen for the He - resonances 
that we have observed. 

Two additional points for which we can offer no explanation at present concern 
the heights and widths of the observed resonances. The ratios of the peak-to-valley 
heights of the lowest member of each supermultiplet to the mean yield at the corre
sponding resonance energy are given in Table 4. These ratios are approximately 
proportional to n- 6 , but it must be remembered that the ratios are affected to an 
unknown .extent when the resonances have natural widths less than the apparatus 
energy resolution, as seems to be the case for the higher lying resonances. As far 
as the widths themselves are concerned, these do not change smoothly with n. In 
particular, the lowest n = 4 resonance is noticeably broader than the lowest n = 3 
and 5 resonances. 

Table 5. Application of modified Rydberg formulae (13), (16) and (17) to configurations [coreIns2 
where n is higher than its lowest possible value 

Values given in parentheses indicate error in last significant figure 

Atom Config- Parameter L1 (%) using 
uration Zcore E(eV) E, (eV) 6r1s a A eqn (16) eqn (17) 

H- 2S2 9·557 14·355 0 0·274 -5·38 -5·37 

He 2S2 2 57·82 79·005 0 0·235 -1·67 -2·81 
He- Is 3s2 1 22·450(5) 24·588 0·265 0·233(1) -4·3(2) -2·9(2) 

Is4s2 1 23·443(5) 24·588 0·262 o· 233(2) -4·3(4) -1·9(4) 
Is 5s2 1 23·851(10) 24·588 0·260 0·220(5) -7·6(13) -4·7(13) 
Is 6s2 24·079(10) 24·588 0·260 o· 215(8) - 8·7(18) -5·5(18) 
Is 7s2 24·216(10) 24·588 0·259 o· 212(11) -9·5(25) -6·0(25) 

A From equation (13). 

A further point of interest in the spectrum of Fig. lOis the presence of the cusp-like 
feature at the ionization energy EJ (24·588 e V). The feature appears in this form 
after a sloping background has been subtracted from the measured yield. We see 
that the metastable excitation cross section rises as the incident energy approaches 
E1, at which point a discontinuous decrease in slope occurs. The analogous features 
in the metastable excitation functions of argon and krypton have been observed 
previously by Brunt et al. (1976). Since the high-n Rydberg states of all these atoms 
are metastable they contribute to the observed yield in this region, but in all three 
cases this contribution is small and it consists of a sharp increase in the yield starting 
just below EI (Hammond et al. 1982a), similar to that shown in Fig. 3 for Hz. Only in 
the case of xenon is this contribution significant, due to the very low detection effi
ciency for the lowest metastable states of this atom (Brunt et al. 1976). The cusp in 
Fig. 10 must therefore be present in the cross section of the 23S and 21S states and 
of other low-n states that cascade to these. Possible explanations of the existence 
of the cusp are (a) that it represents an accumulation of Wigner cusps due to the 
successive openings of the high-n excitation channels; (b) that it represents a Wigner 
cusp due to the opening of the ionization channel; (c) that it is caused by the series 
of high-n Wannier-ridge resonances that converge at E 1; or (d) that it is some other 
manifestation of the correlations that exist between two slow electrons. 
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(c) Energy Parametrization 

Substitution of the Wannier-point potential energy (14) into Schrodinger's equation 
immediately gives the modified energy formula (13) with (J = O' 25 and c5ns = 0, where 
n can have any value from its minimum to infinity (see also Heddle 1976, 1977). 
The results of applying the modified Rydberg formulae (13) and (16) and the extended 
form (J 7) to the measured energies of the Wannier-ridge resonances are given in 
Table 5. Also included are data for two other states of the type [core]ns 2 , where n is 
higher than its minimum value. Clearly these three formulae are not as successful 
here as they are for the states of lowest n. The errors in using the semi-empirical 
formula (17) are however still small in absolute terms; for the H - 2S2, He 2S2 and 
He- Is7s2 states, for example, the errors are 0'25,0'59 and 0·02 eV respectively. 

Using equation (28) to estimate the energy differences 2B between the I s(ns np 3p)2p 
and the Is(ns2?S states, we find 

2B(n) ~ 2·4/(n-0· 26)3 eV, (34) 

which tends to be somewhat smaller (by a factor of ~ 2) than the observed differences. 

5. Conclusions 

The theme that is common to the topics discussed in Sections 2, 3 and 4 is the 
importance of the Wannier-ridge region in determining the behaviour of systems 
that contain two slow electrons. These electrons may either both be unbound, as in 
the threshold ionization process, or one may be bound and the other free, as in the 
threshold excitation process, or both may be bound, as in negative-ion resonances. 
In all examples considered, the sum of the moduli of the total energies of the two 
electrons is small: 

Etot = 1 Etot •1 1 + 1 Etot •2 1 ~ O· 5 eV. (35) 

A theoretical connection between the three types of system has yet to be forged. 
The threshold ionization process has been adequately explained, but threshold 
excitation has been treated only qualitatively so far, as have the Wannier-ridge 
resonances. Clearly the time is ripe for a further theoretical advance. 
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