
The Infrared Absorption Spectrum 

of Water 

D. F. Coker, J. R. Reimers and R. O. Watts 

Aust. J. Phys., 1982, 35, 623-38 

Electron and Ion Diffusion Unit, Research School of Physical Sciences, 

Australian National University, P.O. Box 4, Canberra, A.C.T. 2600. 

Abstract 

A combination of quantum calculations and Monte Carlo methods is used to predict the infrared 

absorption spectrum of the water monomer, water dimer and the pure liquid. Full quantum 

calculations using internal coordinates are used to fit three Morse oscillators to the fundamental 

and overtone vibrations of the water monomer. This intramolecular potential is then combined 

with an accurate intermolecular surface to calculate the dimer spectrum from a normal mode 

analysis and from classical trajectory studies. The liquid state spectrum is obtained using a Monte 

Carlo simulation program together with a sequence of normal mode analyses of representative 

molecular configurations. Results are in good agreement with available experimental data suggesting 

that the potential energy surfaces used are reasonably accurate. 

1. Introduction 

If an accurate theory of the structure and properties of water is to be developed, 

it is important that the potential energy surfaces for the monomer and dimer be 

known. Many methods have been applied to the estimation of these surfaces, including 

both ab initio quantum calculations (Popkie et al. 1973) and semi-empirical methods 

(Watts 1977; Reimers et al. 1982). The usual method for developing an empirical 

intramolecular surface is to fit predicted vibrational spectra to experimental results 

(Wilson et al. 1955). For intermolecular potential surfaces a more substantial set 

of calculations involving gas, liquid and solid properties has to be undertaken (Watts 

and McGee 1976). As one example, Reimers et al. (1982) developed a semi-empirical 

effective pair potential for the rigid water dimer by fitting thermodynamic data 

for gas, liquid and solid phases. Recently Reimers and Watts (1982a, 1982b) have 

determined a potential surface for the water monomer by fitting three Morse functions 

to vibrational transitions in the infrared spectrum. In the present paper we review 

this work and show how the two surfaces may be combined to predict the infrared 

spectra of the water dimer and the liquid. 

The standard method for predicting the infrared spectrum of a single molecule 

is based on a normal mode analysis. It is assumed that in the region of the minimum 

the potential energy surface is to lowest order quadratic in atomic displacements. 

The force constants can then be determined by fitting the eigenvalues of the resulting 

secular equations to the infrared fundamentals (Wilson et al. 1955). A more realistic 

surface can be obtained by including higher order terms in the expansion in atomic 

displacements. The required eigenvalues are then obtained from those of the harmonic 

potential by perturbation theory. An alternative approach is to represent the atomic 
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interactions by Morse oscillators, or similar functions (Huffaker 1976a, 1976b, 
1980), and fit the resulting eigenvalues to experiment by varying the Morse parameters. 
If properly carried out, this route can give a surface, for diatomics, that is accurate 
for all eigenvalues up to dissociation (Huffaker 1977). Reimers and Watts (1982b) 
have used this second approach to determine a reasonable representation of the 
monomer potential surface. 

Although an approach similar to that outlined for the monomer can be used to 
study the spectral properties of van der Waals dimers, it is generally unproductive, 
primarily because it is very difficult to measure the vibrational fundamentals. High 
resolution spectra can be obtained from measurements on supersonic expansions 
(Gough et al. 1977; Miller 1980), but bulk gas meas urements show only a broad 
rotational-vibrational band structure. One method for modelling the second situation 
is to artificially broaden the transitions predicted by a normal mode analysis. A 
second method is to use a classical trajectory calculation together with a Monte Carlo average over initial conditions to determine a set of possible dimer motions. 
The vibrational spectrum can then be determined using linear response theory, 
whereby the Fourier transform of the dipole-dipole autocorrelation function gives 
the required results (Berens and Wilson 1981). A third approach that has been applied 
to the liquid phase for polar systems (Watts 1981) is to calculate the trajectories when 
an interaction with an external periodic field is included in the Hamiltonian. If the response to the field (dipole polarization for the infrared spectrum) is calculated, the 
power absorption and the spectrum can be determined. All three methods have been 
studied for the water dimer and, as will be shown, the predicted spectra are similar. 

It is not an easy matter to predict the infrared spectrum of a liquid. Standard 
methods for solids, based on normal mode calculations (Born and Huang 1954), 
require that the displacements of atoms from their lattice sites be small. This assumption clearly fails for a liquid, where there are no proper phonon modes. It is possible 
to use a molecular dynamics simulation together with linear response theory to 
obtain the required spectrum from the dipole-dipole autocorrelation function 
(McQuarrie 1976). This approach is very expensive to implement, particularly if 
the low frequency spectrum is required. A similar criticism can be made of the method 
based on applying a frequency dependent external field (Watts 1981) and measuring 
the corresponding polarization. The method used here is approximate and is based on a normal mode analysis. Although it does not give a complete description of the 
vibrational modes in the liquid, the method does give a good representation of vibra
tional bands in the range 500--4000 cm -1. 

2. Water Monomer 
The normal mode method for determining the vibrational spectrum of a system 

begins by expanding the total potential energy in a Taylor series in terms of the atomic 
displacement from equilibrium sites. As the first derivative terms in the expansion 
are zero, truncation of the expansion at second order results in a surface which is 
quadratic in displacements. Standard methods (Wilson et al. 1955) can then be used 
to describe the resulting system in terms of a set of independent harmonic oscillators. 
Quantum mechanical perturbation theory can then in turn be applied to describe 
the eigenvalues and eigenfunctions of the original Hamiltonian in terms of the 
corresponding properties of the harmonic oscillator Hamiltonian. Although this 
approach is mathematically appealing, there are severe computational problems. 
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In particular, the expansion of the required eigenfunctions in terms of Hermite 
polynomials converges slowly. For example, if the first 20 vibrational levels for water 
are to be calculated accurately, the harmonic basis set extends to at least 560 Hermite 
polynomials. Clearly it would be advantageous to use a more rapidly convergent 
basis set. 

It is not difficult to find reasons for the slow convergence of the harmonic oscillator 
basis set. For example, the correct interaction potential is a long way from being 
harmonic and higher order terms in the Taylor expansion are significant even in 
the ground vibrational state. Also, the harmonic oscillator is not capable of describing 
vibrations where the molecule is close to dissociation. Under these conditions the 
normal mode description itself breaks down and it is better to describe the molecular 
motions in terms of bond displacements. There are distinct advantages in using a 
basis set from a model that gives a good zeroth order description of both the potential 
surface and the higher energy motions. A local coordinate description, based on 
Morse oscillators, meets these requirements admirably. Such an approach has 
been applied to the bond stretching modes of water by Watson et al. (1981), who 
based their work on the analysis of Wallace (1975). 

There are many possible choices of local coordinate and we use a set based on 
the internal valence coordinates. Suppose Ro and 80 are the equilibrium bond 
length and bond angle respectively and then we define the mass-independent 
coordinates 

(la) 

(lb) 

(I c) 

with R 1, R2 and 8 the two O-H bond lengths and the HOH bond angle respectively. 
A significant advantage of using these local coordinates is that within the constraints 
ofthe Born-Oppenheimer approximation the potential surface is transferable between 
isotopes (Hoy et al. 1972). 

The intramolecular interaction is written as a sum of three Morse functions 

3 

4>(S1,S2,S3) = I Di{1-exp(-a i si)}2, (2) 
i= 1 

with Di and ai adjusted to fit experimental data. For water, the two stretch modes 
S1 and S2 are identical so that D1 = D2 and a1 = a2 and there are four fitted parameters. 
This should be compared with models based on Taylor expansions where there are 
sometimes 16 or more harmonic and anharmonic force constants (Eisenberg and 
Kauzmann 1969; Whitehead and Handy 1975). The values of Di and ai determined 
by Reimers and Watts (1982a) by fitting to 56 H 20, HDO and D 2 0 band origins 
are D1 = D2 = 131'1404 kcalmole-1, D3 = 99·0249 kcalmole- 1 and a1 = a2 = 
2· 134980A-l, a3 = 0·703372A-1. 

A Morse function gives a good description of bond stretching motions in that it 
accounts for the strong repulsion between atoms at short separations as well as 
allowing for molecular dissociation. Our use of this function to describe a bending 
mode is less obvious in that the bond angle 8 is constrained to the range (0,2n) 
and, for water, there is an inversion symmetry to be considered. As the coordinate 
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S3 also includes some stretching characteristic, and as we were primarily concerned 
with lower quantum excitations, we were able to develop methods for minimizing 
any problems due to periodicity. A full account is given elsewhere (Reimers and 
Watts 1982a). 

One advantage of using a normal mode analysis is that the kinetic energy operator 
is diagonal in the normal coordinates. This advantage no longer exists when a local 
coordinate description is used. Reimers and Watts (1982a) have shown that the full 
Hamiltonian for nonlinear molecules in local coordinates is given by 

(3) 

where JI is related to the inverse of the moment of inertia matrix, tt is the angular 
momentum operator conjugate to the angles describing rotation of a fixed-molecule 
frame of reference, 1i: is an angular momentum operator resulting from vibrational 
motion, P is the linear momentum operator conjugate to. the rectilinear components 
of the internal coordinates s, and G the Wilson G matrix is related to the matrix 
transforming cartesian coordinates to local coordinates. Without entering into 
details, the first term in equation (3) contains most of the centrifugal and Coriolis 
contributions to the kinetic energy, the second term represents the vibrational kinetic 
energy, and the third is a mass dependent term that can be considered an additional 
contribution to the potential energy. Watson (1968) has discussed this term in detail. 
The fourth and last term in (3) is the intramolecular potential energy, in our case a 
sum of three Morse oscillators. This Hamiltonian includes coupling between the 
vibrations and rotations due to a number of effects. In particular, centrifugal, 
and Coriolis effects cause the molecule to be distorted and vibrations change the 
moment of inertia matrix. The major contribution in this coupling comes from the 
term 1i:. JI.1i:. 

We calculated the eigenvalues and eigenfunctions of the full Hamiltonian using 
variational theory with three independent Morse oscillators as the reference state. 
This is done by writing the reference Hamiltonian as 

3 

flo = I -!GuP7+ D;{1-exp(-aiQi)} 2 , (4) 
i= 1 

where Qi are the rectilinear components of Si' All rotation-vibration coupling 
together with kinetic energy coupling between the local coordinates is ignored. 
The eigenfunctions of flo are known analytically, the rotational basis set being that of a 
rigid rotor and the vibrational set a product of the eigenfunctions of the Morse 
oscillator (Morse 1929; ter Haar 1946). The eigenfunctions of the full Hamiltonian 
are then written as a linear combination of the reference system eigenfunctions and 
the required eigenvalues determined using standard methods. A basis set including 
all combinations of seven excitations (120 functions), for the reference system, 
gives convergent eigenvalues for all possible excitations up to five quanta (56 levels) 
for the fuII Hamiltonian. The numerical problems associated with using a set of 
Laguerre polynomials as the basis set are similar to those for the Hermite polynomials 
used in the normal mode approach. However, the improvement in convergence 
is dramatic. 

Table I gives the observed and predicted vibrational frequencies for H20 together 
with their assignments in terms of both local and normal modes. Morse potential 
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parameters were fitted to this data, together with corresponding data for HDO and 
D20. Overall, the agreement with experiment is very acceptable with the average 
deviation for a total of 56 states from all three isotopes being 3·5 cm -1. Thelargest 
deviations from experiment occur for the bond stretch modes which invariably 
occur as a symmetric-anti symmetric combination of stretches in the two bonds. 
These two states are degenerate in the reference state and this degeneracy is lifted by 
off-diagonal terms in G and couplings with the centrifugal and Coriolis terms in 
the kinetic energy. Such terms give rise to a splitting that is about half that observed 
experimentally. The additional splitting arises from terms in the potential energy 
surface that depend upon the coordinates of all three atoms. It is clear from the 
results in Table I that the rising non-pairwise additive terms are small. 

Table 1. Vibrational band origins for H20 and their assignments in local 
and normal modes 

Assignments Frequencies (cm-i) 
Local CA Normal CA Calc. Obs. 

000 100 000 98 0 0 
001 100 010 98 1595 1595 
100s 100 100 85 3669 3657 
100a 100 001 92 3719 3756 
002 100 020 92 3150 3132 
200s 93 200 66 7213 7201 
200a 100 101 68 7229 7250 
110 93 002 82 7401 7445 
lOIs 99 110 82 5266 5235 
lOla 100 011 93 5306 5331 
003 99 030 79 4663 4667 
300s 97 300 43 10593 10600 
300a 98 201 42 10596 10613 
210s 97 102 45 10881 10869 
210a 99 003 64 10971 11032 
201s 94 210 65 8808 8761 
201a 99 111 69 8819 8807 
111 72 012 83 8986 9000 
102s 99 120 73 6820 6775 
102a 99 021 92 6850 6872 

A The contribution (%) of the stated assignment to the converged basis set. 

The extent to which the reference system matches the correct basis set is indicated 
in Table 1. An: assignment of reference system states to several eigenvalues is given 
for both the Morse oscillator reference system and the normal coordinate basis. 
With few exceptions a single local coordinate reference state accounts for well over 
95 % of the character. For the normal coordinate reference system, only the ground 
state and one or two of the first quantum states approach this value. All other states, 
particularly those involving two or more quanta, have substantial mixing with 
reference system states representing higher excitations. This difference emphasizes 
the fact that an accurate description of the first 20 vibrational states requires a 
harmonic oscillator basis of at least 560 eigenstates or a Morse oscillator basis of 
56 eigenstates. 
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Table 2. Rotational energy levels for H20 

Values are given with respect to the band origins. Assignments are given in terms of quantum 
numbers J and K, while the symbols s and a refer to combinations of ± K states 

Assignment Frequencies (cm- I) Assignment Frequencies (cm-I) 
State CA Calc. Obs. State CA Calc. Obs. 

Vibration origin: 000 Vibration origin: 100s 

A = 28·97 B = 14·13 C = 9·30 A = 28·61 B = 13·87 C = 9·14 
lIs 100 23·5 23·8 lIs 100 23·1 23·3 
lla 100 38·1 37·1 lla 100 37·5 36·2 
10 100 43·1 42·4 10 100 42·4 41·4 
22s 85 69·4 70·1 22s 85 68·1 68·8 
22a 100 80·2 79·5 22a 100 78·7 77·8 
21s 100 95·1 95·2 21s 100 93·5 93·5 
21a 100 138·5 134·9 21a 100 136·3 131'5 
20 85 139·6 136·1 20 83 137·9 132·8 

Vibration origin: 001 Vibration origin: l00a 
A = 33·48 B = 13'75 C = 9·27 A = 28·57 B = 13'75 C = 9·01 

lIs 100 23·0 23·8 lIs 100 23·3 23·6 
lla 100 42·2 40·3 lla 100 37·5 35'7 
10 100 47·2 45·8 10 100 42·3 41·0 
22s 83 68·2 70·2 22s 85 68·7 69·1 
22a 100 83·3 82·4 22a 98 79·0 77·6 
21s 100 98·2 98·1 21s 100 93·9 93·3 
21a 100 155·1 147·6 21a 100 136'0 129·8 
20 83 155·9 148·8 20 85 137·1 131·4 

A The contribution (%) of the stated assignment to the converged basis set. 

The inclusion of full centrifugal and Coriolis terms in the Hamiltonian enabled 
the rotational fine structure to be examined. Table 2 gives the predicted and observed 
rotational frequencies, with respect to the band origins, for several vibrational states 
of H2 0. Agreement between calculated and experimental levels is generally good 
for H2 0, HDO and D2 0 (Reimers and Watts 1982b). It is interesting to examine 
the dependence of the rotational levels on the vibrational state. Such levels are 
relatively insensitive to excitations that are primarily concentrated in the bond 
stretching modes. However, the bending modes have rotational levels that are much 
more sensitive. This is readily understood in terms of the rotational constants A, 
Band C also given in Table 2. The constant A increases markedly as the bending 
mode is excited, because this type of motion decreases the moment of inertia with 
respect to the molecular axis perpendicular to the symmetry axis. As a consequence 
the rotational levels become more widely separated. The major contribution to the 
differences between observed and calculated rotational levels is attributed to the fact 
that A is consistently 5-10 % too large. 

3. Water Dimer 

The dimer spectrum can be predicted if both the intramolecular and intermolecular 
potentials are known. We have outlined the development of the first surface in the 
previous section. For the intermolecular potential surface we use a semi-empirical 
model developed by Reimers et al. (1982) that is a modification of a model described 
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Fig. 1. Geometry of the water dimer. (For values of distances and angles 
see Table 3.) 

v Mode Symmetry Frequencies (em-I) 
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Fig. 2. Fundamental vibrations of the (H20), dimer calculated using a 
normal mode analysis. 
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for the vibrating dimer by Watts (1977). The Reimers et al. surface is based on the 
best known dispersion coefficients (Margoefiash et al. 1978), a damping term for 
the dispersion at short distances (Doukatis et al. 1982), and three atom-atom short 
range terms containing empirically determined parameters. Parameters were obtained 
by fitting the monomer dipole and quadrupole moments, the second virial coefficient 
of steam, and the static lattice energy, structure and bulk moduli of ices I-h, VII 
and VIII. Calculations of the structure and thermodynamic properties of liquid 
water, as well as molecular beam scattering data, showed that the effective pair 
potential is reasonably accurate. 

We obtained a full potential surface for distorting water molecules by combining 
the monomer potential with the dimer surface. Our calculations are based on the 
assumption that the pairwise additivity of intermolecular potentials can be extended 
to the separate determination of the inter- and intramolecular terms. The results 
obtained suggest that this approximation is reasonably accurate, at least for the water 
dimer. 

Table 3. Structure of H20 monomer and dimer 
The terms 'donor' and 'acceptor' molecule are defined in Fig. 1. Distances are in A and angles 

in degrees 

Monomer 
Dimer 

R, 
Donor 

R z o 

0·9572 0'9572 104·52 
0·9788 0·9568 103·75 

Acceptor 
R, Rz 0 

0·9572 0·9572 104·52 
0·9606 0·9606 104·61 

Roo 

2'745 53·45 53·75 

Initially, the dimer vibrational spectrum was determined from a normal mode 
analysis. Two water molecules were placed in the hydrogen bonding configuration 
shown in Fig. 1. A local minimum in the potential surface was found by allowing 
all atomic coordinates to relax. The resulting dimer structure belongs to the Cs 

point group. As shown in Table 3, the intramolecular structure of both molecules 
is distributed from the monomer result. A normal mode analysis was then made 
using the intramolecular Morse potentials developed by Reimers and Watts (1982b) 
and the intermolecular pair RKW potential of Reimers et al. (1982). Results for the 
calculations together with the monomer normal mode vibrations predicted by the 
Morse interactions are given in Fig. 2. No attempt has been made to obtain accurate 
eigenvalues for the full potential surface. In the case of the monomer, the eigenvalue 
of the bending mode is 46 cm -1 lower than the normal mode frequency, the symmetric 
stretch is 183 cm- 1 lower, and the asymmetric stretch 131 cm- 1 lower. We expect 
the eigenvalues for the six higher frequency dimer modes to be lowered similarly 
in an exact calculation. 

The water dimer has twelve fundamental vibrations, six of which are associated 
with monomer modes. These monomer modes occur in pairs and their degeneracy 
is broken by the intermolecular interactions. All six low frequency modes are 
associated primarily with relative motions of the two molecules and are not very 
sensitive to the form of the intramolecular potential. Two of the high frequency 
modes are derived from the (monomer) intramolecular bending motion (V7 and vs), 
two from the (monomer) symmetric stretch (V9 and V10) and two from the (monomer) 
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asymmetric stretch (V11 and v12). It is convenient when discussing these vibrations to 
use the terms 'donor' (D) and 'acceptor' (A) molecules as defined in Fig. 1. 

Both bending modes V7 and Vs in Fig. 2 are shifted with respect to the monomer 
value. The acceptor molecule has a bending frequency V7 lowered by about 20 cm- 1 

and the donor molecule mode Vs is raised by around 40cm -1. Hence the intermolecular 
forces weaken the acceptor bend and strengthen the donor bend. In the case of the 
acceptor molecule, both stretching frequencies V10 and V11 are lowered by around 
34 cm -1. They retain their form as symmetric and anti symmetric O-H stretches 
respectively. The two stretching modes in the donor molecule, V9 and V12, behave 
quite differently. First, the symmetries of the two modes are now the same and V9 

is almost entirely due to the motion of the hydrogen atom involved in the hydrogen 
bond, whereas V12 is associated with the vibration of the other hydrogen atom. 
Next, the hydrogen bonded atom oscillates at a frequency that is 310 cm -1 lower 
than the monomer mode, whereas the other stretching frequency is lowered only 
by 14cm-1 • The lowering ofv9 by 300cm- 1 is observed in the infrared spectrum 
of liquid water, as will be discussed in the next section. This can be understood 
by examining the effective potential for the O-H stretch. Fig. 3 shows this potential 
for the two modes in the monomer and dimer. Clearly, the dimer hydrogen bonded 
atom moves in a much broader potential well than it does in the monomer. This is 
a direct effect of the strong O-H intermolecular attraction. 
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Fig. 3. Potential energy as a function of normal mode displacement for the 
monomer (symmetric stretch) and the dimer (modes Vg and V12) using the 
RKW2+ Morse potential. 

The six low frequency modes correspond to intermolecular vibrations and are 
assigned as in Fig. 2. Modes V4' Vs and V6 are all directly concerned with hydrogen 
bond distortions, and cover the 0-0 stretch, and the O-H-O bending modes that 
are in-plane and out-of-plane respectively. It is of particular interest that the two 
bending modes are stiffer than the stretch, indicating that the 'hydrogen bond' is 
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fairly directional. The modes V2 and V3 correspond to the acceptor molecule rocking 
and rolling about its symmetry axis, and the lowest energy mode V1 is the hydrogen 
bond torsional motion. 

Experimentally, it is difficult to prepare isolated water dimers for spectroscopic 
studies, the best methods being based on free jet expansions (Dyke 1977; Dyke et al. 
1977; Odutola and Dyke 1980). Under such conditions there is substantial cooling 
of the internal modes of the molecules in the jet. The water dimer is expected to be 
at a vibrational temperature of about 50 K (35 cm -1), and there will be significant 
excitation of the low frequency modes and corresponding broadening of the spectral 
lines. It is useful under such conditions to study the structure and dynamics of the 
dimer using classical trajectory methods (Bernstein 1979). We have developed 
programs that enable us to study collisions between vibrationally excited water 
molecules, vibrational predissociation of vibrationally excited van der Waals dimers, 
and the effect of external fields on the internal motions. The numerical algorithms 
are based on multi-time-step integration that largely uncouples the vibrational 
motions of the atoms from the much slower translational motions of the molecules 
(Reimers and Watts 1983). Trajectories are followed with greatly improved 
efficiency compared with the usual single time-step methods. All classical trajectory 
studies reported in this section are based on the dimer intermolecular potential 
together with a harmonic intramolecular potential. Studies with the full intra
molecular surface are currently in progress. 

4 X 1 

X40 X 200 

o 3000 4000 5000 

v (em-I) 

Fig. 4. Dimer vibrational spectrum obtained from the Fourier-Laplace 
transform I (v) of the dipole autocorrelation function using the RKW2 + harmonic 
potential at 50 K. 

The most common method for obtaining the infrared spectrum from classical 
trajectories is based on linear response theory (McQuarrie 1976). This theory relates 
the spectrum to the Fourier-Laplace transform of the dipole autocorrelation function 

I (v) = {<Xl <p(O). p(t) exp( - i vt) dt , (5) 



Proceedings of Flinders Conference 633 

where p(t) is the dipole moment of the system at time t. The average is over a 
Boltzmann distribution of initial conditions, which we generate at 50 K using a 
Monte Carlo algorithm. Both high and low frequency noise is caused by the require
ments that a discrete time step be used and the time integral be truncated. The 
direct effect of this noise was removed by windowing techniques (Bracewell 1978). 
The results we give were obtained from 4 x 104 trajectories. Trajectories were 
followed for about 2·5 X 10-13 s, giving a resolution of 133 cm -1 in the spectrum. 

The resulting spectrum for the range 0-5000 cm -1 is given in Fig. 4. The spectrum 
consists of four broad bands. One below 600 cm- 1 is attributed to the low frequency 
dimer modes VI' v2 and V3 identified from the normal mode analysis. A band centred 
on 700 cm -1 is attributed to the hyd~ogen bond stretch and bending modes V4-V6' 

Intramolecular bending modes are active between 1500 and 1800 cm -1 and finally 
the stretching modes are observed between 3500 and 4000 cm- 1• Our resolution 
was not sufficient to distinguish between the two types of stretching motion. In 
all cases, the times are broadened by thermal averaging. 

The method of non-equilibrium molecular dynamics is a useful approach to 
calculating time-dependent properties of dense fluids (Hoover et al. 1980). It has 
been successfully applied to the frequency-dependent dielectric properties of simple 
diatomic systems (Watts 1981) and to the prediction of Raman scattering spectra 
of liquid halogens (Evans et al. 1982). The method consists of including a frequency
dependent field in the equations of motion and calculating the response. Vibrational 
fundamentals can be identified by observing the response to a frequency-dependent 
electric field of a dimer that is initially stationary. Thermal effects are included by 
averaging the response (which can be either the induced dipole moment or the power 
absorbed) over a Boltzmann distribution of initial conditions. 

An understanding of the observed effects is obtained by considering a single 
harmonic oscillator in an applied field F(t) == fcos vt. The classical Hamiltonian is 

(6) 

and we consider the equations of motion both when the field is on-resonance V = vo, 
with Vo = (klm)t, and when it is off-resonance. When the field is on-resonance, the 
total energy will increase as 

(7) 

so that for t reasonably large E will increase quadratically. When the field is off
resonance the response becomes sinusoidal at the sum and difference frequencies 
v+vo and V-Vo. Anharmonic terms will give similar effects if they are small or if 
the excitation is not allowed to grow too large. We determined the vibrational spectrum 
of the dimer by studying the response of an initially motionless system and following 
the induced motions. If the field was on-resonance, integration of the equations of 
motion was stopped when the total energy reached hv, and if the field was off-resonance, 
trajectories were followed for about 10- 11 s. By varying the frequency and polariza
tion of the applied field it was possible to identify a number of fundamental and 
overtone frequencies. 

Fig. 5a shows the energy as a function of time induced by a field polarized in the 
y direction (see Fig. 1) and oscillating at a frequency of 3900 cm- 1 . The oscillatory 
behaviour is cleasly identified and the distribution of energy among normal modes 
shows that there are strong beats at difference frequencies of V11 - V = 22 cm -1 and 
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Fig. 5. Energy as a function of time using the RKW2 + harmonic potential for a 
water dimer in an applied electric field: (a) The field of strength 0'050V A-l 
is polarized in the y direction and has a frequency of 3900 cm -1. Contributions 
from two nearby vibrational modes Vll and V10 are indicated. (b) The field of 
strength 0·008 V A -1 is polarized in the x and y directions and has a frequency 
of 3922 cm- 1 • 

Vl0 - V = - 57 cm -1. No beats were observed with the asymmetric stretch V12 , 

although this is close to 3900 cm -1, as its symmetry is such that it does not respond 
to fields polarized in the x or y directions. Fig. 5b shows the effect of changing the 
frequency so that the field is on-resonance at Vll = 3922 cm -1. The energy increases 
quadratically and any beats with other nearby modes are lost in the size of the resonant 
response. A detailed analysis of these types of response enables both the fundamental 
and overtone spectra to be determined. 

It is important to consider the relative efficiency of these three methods for 
determining the dimer spectrum. A full quantum calculation is, in principle, the 
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correct method for calculating the fundamental and overtone frequencies. However, 
such calculations are very time consuming for a system having twelve vibrational 
modes together with three rotations, and requires a large basis set if accurate 
eigenvalues are to be obtained. Linear response theory relies upon the use of classical 
mechanics and is subject to considerable unwanted noise in the Fourier transform. 
In addition, in its usual form it is only capable of describing the fundamentals. It 
has the advantage that Boltzmann averaging is included so that band shapes can 
be obtained with reasonable accuracy. However, at low temperatures the method 
gives very poor results for the intensities due to the neglect of zero point motion. 
The non-equilibrium calculations, which also include Boltzmann averaging, represent 
a fast method for determining the properties of a small region of the spectrum but 
require very extensive calculations before the full spectrum is obtained. 

4. Liquid Water 

Two of the methods used to predict the dimer spectrum, namely linear response 
theory and non-equilibrium molecular dynamics, can be directly applied to the liquid. 
However, if reasonable resolution of the spectrum is required, a complete study using 
either method demands an excessive amount of computing. Consequently we have 
obtained results using an approximate method that can be expected to give a 
reasonable estimate of the liquid infrared spectrum, particularly in the range 
500-4000 cm -1. Although we have only considered the fundamental vibrations, the 
method can in principle be applied to overtone bands. 

The approximation starts by generating a long sequence of possible liquid con
figurations using a Monte Carlo method (Barker and Watts 1969; Watts 1974). 
At regular intervals the system is frozen and a normal mode analysis made for the 
spectrum of one water molecule, 'under the assumption that the rest of the lattice 
can be regarded as an external inhomogeneous field. This approximation accounts 
for nine vibrational modes: three intramolecular modes (V7' VB and V9) and six modes 
(VCV6) associated with the vibration and libration of the molecule in its lattice. 
Clearly, this approximation neglects most of the low frequency lattice modes, including 
all phonon-like modes, and only approximates coupling between low and high 
frequency modes. However, it is expected to be fairly accurate at higher frequencies 
where, at least in the liquid, it is reasonable to assume that the lattice modes are 
largely uncoupled from the molecular modes. An additional assumption, that has 
particularly severe consequences for the three lowest frequency modes, is that the 
molecule is at a local minimum in its multi-dimensional potential surface .. Although 
there are effects at all frequencies, this approximation sometimes leads to negative 
eigenvalues for the lowest frequency modes. 

The Monte Carlo method (Watts 1974) was used to generate a sequence of 106 

possible configurations for 64 water molecules interacting through the inter- and 
intramolecular potentials described earlier. Standard periodic boundary conditions 
(Watts and McGee 1976) were used to reduce the effects of finite system size. After 
every 500 configurations, 20 molecules were chosen at random and their nine 
vibrational frequencies calculated using a normal mode analysis as described above. 
The resulting eigenvectors, assumed to be the corresponding harmonic oscillator 
functions, were used to calculate oscillator strengths for every mode. A histogram 
of the frequencies, with 20 cm -1 resolution, gave the predicted density of states, and 
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Fig. 6. Liquid water at 298 K: (a) Density of states together with an analysis 
into normal modes. (b) Oscillator strength distribution, where the solid arrows 
indicate monomer frequencies and dashed arrows maxima in the experimental 
infrared absorption spectrum for the liquid. 

a corresponding histogram of oscillator strengths as a function of frequency gave 
the predicted infrared spectrum. 

The density of states calculated at 298 K is shown in Fig. 6a together with the 
individual contributions from the three highest vibrational frequencies. There are 
rather broad bands centred on 3500 and 1700 cm -1, and there is a broad band of 
rotational-vibrational frequencies below 1000 cm -1. Our analysis of the dimer 
spectrum associates the band in the range 500-1000 cm -1 with hydrogen bond 
bending and stretching motions. A detailed analysis of this band shows that there 
are two major contributors, corresponding to the in-plane and out-of-plane dimer 
modes discussed in Section 3. The band centred near 1700 cm- 1 is almost entirely 
associated with the monomer bending mode, and has been significantly broadened 
by interactions with other molecules in the liquid. It is moved to higher frequencies 
by about 70-100 cm -1 ,a shift that is observed experimentally in the infrared spectrum 
of water (Bayley et al. 1963). The broad band centred around 3400 cm- 1 is associated 
with the two monomer stretching modes. From the analysis in Fig. 6a, we see that 
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the· separation between these two modes is about 400 cm -1, in agreement with the 
separation found from the dimer analysis given in the previous section. The positions 
of the two peaks at 3200 and 3600 cm -1 are close to observed structures in the infrared 
spectrum (Bayley et al. 1963). 

The oscillator strength as a function of frequency is shown at a temperature of 
298 K in Fig. 6b. Arrows indicate the positions of the monomer frequencies and of 
the band maxima in the liquid observed experimentally. Clearly, the positions of the 
predicted bands are, in general, in good agreement with observed band maxima. 
However, the two experimentally observed features in the band near 3400 cm- 1 are 
closer than the maxima in the two components obtained from our analysis. Although 
our spectrum is not well resolved near the maximum, the structure in the combined 
band, which corresponds to the experimental observation, is closer to the measllred 
data. Overall, agreement between theory and experiment for band positions is very 
pleasing. 

Calculated intensities and bandwidths are less satisfactorY. The ratio of the bending 
mode to stretching mode extinction coefficients is about one-third (Bayley et al. 1963), 
whereas our spectrum predicts about equal intensity. Similarly, the spectrum shown 
in Fig. 6b has a width at half maximum for both the bending mode and the stretching 
modes that is too large by 100-200 cm- 1• This lack of agreement between observed 
and calculated intensities is, perhaps, to be expected as this property is very sensitive 
to the dipole moment function of the molecule. Although the monomer potential 
predicts that the dipole moment is a function of the internal state, it is likely that the 
predicted excited state values are incorrect. 

Several interesting variations in the water spectrum occur if the temperature is 
altered. In particular, the distribution of intensity between the two maxima observed 
experimentally in the stretch band around 3400 cm -1 alters. At low temperatures the 
lower frequency maximum contains much of the intensity, whereas at high tem
peratures the other mode is more intense (Walrafen 1967). We have made calculations 
at other temperatures in order to examine this effect. An analysis of the density of 
states shows that at low temperatures the splitting between the two components is 
small, both Vg and V9 being in the range 3200-3400 cm -1. At high temperatures 
V9 moves to higher frequencies while Vg remains close to 3200 cm-1 • In addition 
the higher frequency mode becomes more heavily populated at the expense of the 
lower. Thus our results are in qualitative agreement with experiment. The problems 
associated with calculating intensities discussed in the previous paragraph remain. 
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