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Abstract 

The theory of quadratically convergent Hartree-Fock or self-consistent field (QC-SCF) orbital 
optimization is presented using the language of second quantization. Two methods that are appro
priate for the computational implementation of QC-SCF are described: the Newton-Raphson 
method and an approximate super configuration interaction (CI) approach, both of which can be 
implemented such that no four-index transformation is necessary. The Newton-Raphson formula
tion of QC-SCF is shown to be equivalent to solving the frequency-independent coupled perturbation 
Hartree-Fock equations, and consequently a close relationship exists between QC-SCF and the 
more general time-dependent coupled perturbation Hartree-Fock (TDCPHF) theory and the 
related theories of random phase approximation (RPA) and time-dependent Hartree-Fock. Matrix 
element expressions that are needed for RPA naturally arise in QC-SCF too, and a list of these for 
open-shell ground state wavefunctions is also given. Computational techniques that are believed 
to be useful for the solution of the TDCPHF and RPA problems are also briefly discussed. 

1. Introduction 

The Hartree-Fock self-consistent field (SCF) model has proved to be of crucial 
importance in physics and chemistry, since it provides a simple yet quite accurate 
description of the electronic structure of atoms and molecules as well as of nuclear 
structure (Slater 1930; Fock 1930a, 1930b; Roothaan 1951, 1960; Hartree 1957; 
Rowe 1970). In quantum chemistry especially the SCF molecular orbital method 
is still the most widely used approach to obtain ab initio estimates of molecular 
properties. Even when the Hartree-Fock method is inapplicable, for example, in 
describing molecular dissociation, the calculation of an SCF wavefunction is often 
a useful and corivenient starting point. 

The Hartree-Fock method is most readily applicable to the calculation of ground 
state wavefunctions and that is indeed what constitutes the majority of the reported 
calculations. The extension of the Hartree-Fock model to the calculation of excited 
states is most easily and elegantly achieved through the formalism of time-dependent 
Hartree-Fock (TDHF) theory, which is formally equivalent to the RPA (Rowe 1970). 
Intimately connected with these latter theories is of course the problem of calculating 
second and higher order induced properties, for example, electric susceptibilities, 
which in the Hartree-Fock framework gives rise to time-dependent coupled perturba
tion Hartree-Fock (TDCPHF) theory (Dalgarno and Victor 1966). 

The most widely used method of calculating SCF orbitals, for molecules especially, 
is based on the finite basis set expansion technique, i.e. linear combinations of (atomic) 
orbitals, as proposed by Roothaan (1951, 1960). The usual and traditional method 



640 G. B. Bacskay 

of orbital optimization is to write the relevant Fock equations as matrix pseud6-
eigenvalue equations which are solved iteratively until the required degree of self
consistency is achieved. In practical applications, convergence forcing and accelerating 
methods are often vitally important and many papers have addressed the latter 
problem alone. The Roothaan iterative scheme is essentially a simple relaxation 
method, and consequently its convergence is approximately linear (Pulay 1980) . 
. The alternative to the above orbital optimization method is to minimize the SCF 
energy directly with respect to the orbital coefficients, an approach that is utilized 
in the steepest descent and conjugate gradient methods (McWeeny 1956; Fletcher 
and Powell 1963; Hillier and Saunders 1970). Unfortunately, little is known about 
the efficiency of these techniques, and consequently they have not seemed to achieve 
widespread popularity or acceptance. The philosophy of the direct approaches has 
been adopted in the development of multiconfigurational SCF (MC-SCF) methods, 
culminating in the quadratically convergent MC-SCF theories of recent years 
(Dalgaard and J0rgensen 1978; Yeager and J0rgensen 1979a; Roothan et al. 1979; 
Siegbahn et al. 1980; Werner and Meyer 1980; Shepard and Simons 1980; Shepard 
et al. 1982). 

The basic principle of quadratically convergent orbital optimization schemes is 
to expand the energy as a quadratic hypersurface with respect to changes in the orbital 
expansion coefficients, for which the minimum is then located by solving the resulting 
Newton-Raphson (i.e. inhomogeneous linear) set of equations. The key to the success
ful application of the Newton-Raphson method is provided by the unitary (exponen
tial) transformation of the orbitals and the removal of the redundant parameters, as 
discussed in detail by Douady et al. (1980). 

In the present paper the theory of quadratically convergent orbital optimization 
will be briefly presented and a practical and efficient computational scheme will be 
discussed that has been recently developed and applied to both closed- and open-shell 
systems (Bacskay 1981, 1982). As will become evident, a fundamental relationship 
exists between the quadratically convergent SCF (QC-SCF) and TDCPHF methods, 
and consequently the TDHF and RPA methods. This relationship will be explored 
and discussed in some detail. At the same time matrix element expressions will be 
derived and listed that are needed in open-shell TDHF-RPA calculations. Finally, 
possible computational schemes will be described that could facilitate the solution 
of the TDCPHF and TDHF-RPA equations. 

2. Theory of QC-SCF Method 

Consider an arbitrary single determinantal wavefunction I pO) written as the 
anti symmetrized product of a set of occupied spin orbitals {cfJn: 

I pO) = An cfJli), (1) 
i 

where A is the antisymmetrizer and i labels the occupied spin orbitals and the corre
sponding electron coordinates. In the finite basis set formulation of SCF theory 
there exists also a set of unoccupied or virtual orbitals {cfJ2}, and the full orbital 
space written as the row vector «jl0 is assumed to be real and orthonormal. 

Consider now a unitary transformation of the orbitals according to 

(2) 
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U = expX = 1+X+-!X2+ ... , (3) 

where X is a real skew symmetric matrix 

(4) 

(The subscripts s, t, U, v will be used to label any orbital, irrespective of occupancy, 

while i,j, (a, b) label the occupied (unoccupied) orbitals.) Now let 

V i,j,a,b, (5) 

that is, to first order only, mixing of the occupied and unoccupied subspaces is 

allowed. This restriction is necessary so that the Hessian will contain no singularities 

(Douady et al. 1980; Siegbahn et al. 1980). A given transformed orbital can thus 

be written as, for example, 

¢i = ¢? + L Xai¢~ +-!- L XjbXbi¢J + ... , (6) 
a j.b 

while the total single determinantal wavefunction 1 pO) is transformed according to 

IP) = exp(f) 1 pO) = (1 + f +-!f2 + ... ) 1 pO) . 

Here f is conveniently written in second quantized form 

where 

~ '\' ~ 

T = '-' X ai Dai' 
a,i 

(7) 

(8) 

(9) 

C i' ca ccr, c!) being the fermion annihilation (creation) operators that act on the relevant 

particle (hole) states of the Hartree-Fock (vacuum) state 1 pO). Equation (7) is 

basically equivalent to the Thouless (1961) theorem (see also Rowe 1970), according 

to which any other single determinantal wavefunction IP)', not actually orthogonal 

to 1 pO), can be written in the (un normalized) form 

IP)' = exp (~ c! Ci) 1 pO) . 
I,a 

(10) 

The energy expectation value corresponding to the transformed wavefunction 

is simply given as 

which can then be rewritten as 

since 

ft = -f, 

[f,H,f] = t([[f,H],f]+[f,[H,f]]) = -[[H,f],f]. 

(11 ) 

(12) 

(13) 

(14) 
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Using the expansion (8) we can write the energy as 

E = <tp0 IHI 'Po) + L Xa/'P° I[H, QaJI 'Po> 
a,i 

-t L L Xa/'P° I [Qai, B, Qbj] I 'P°>Xbj . (15) 
a,i b,i 

The first and second derivatives of the energy at X = 0 are thus given by 

(16) 

(17) 

and hence the energy correct to second order is conveniently written as a Taylor series expansion 

E(l) = Eo+XE'+tXE"X, (18) 

where X and E' are written as (super)vectors andE" as a supermatrix, and Eo is the 
energy expectation value corresponding to the zeroth order reference state I tpo>. 

For H Hermitean and a real orbital basis «1>0, the first and second derivatives of the energy can be simplified to 

E;i,bj = 2< 'Po I c[ ca(H - Eo bij bab)Ch C j I 'Po> 

+<'P0 I B(c! CiCb cj +Ch Cj c: Ci) I 'Po> 

= 2< 'Pf I H - Eo bij bab I 'P~> + 2< 'Po I HI 'PiJ> , 

(19) 

(20a) 

(20b) 
where {I 'Pi>} and {I 'PfJ>} are the familiar singly and doubly excited determinants with respect to I 'Po>. For future use the two terms in (20a) will be denoted by 

Aai,bj = 2<'P° I c[ caCH - Eo bij bab)t:t Cj I 'Po> 

= <'P0I[cica,H,ctcJI 'Po>, 

= <'Po I[c! Ci, H, Cb cJI 'PO>, 

_ <'TlO I At A H~ 'It A I'TlO> - - T ci Ca, , C j Cb T , 

given a real orbital basis and a Hermitean Hamiltonian H. 

(2Ia) 

(2Ib) 

(22a) 

(22b) 

(22c) 

Equation (18) represents a quadratic expansion ofthe energy with respect to the 
orbital 'rotations' {XaJ, and provided the (Hessian) matrix of second derivatives 
is positive definite a minimum can be found that yields the Newton-Raphson 
equations: 

OE(l)/OX ai = E~i + L E;i,bj Xbj = 0, 
b,j 

and hence the solution is simply written as 

Vi,a, (23) 

(24) 
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An alternative approach to obtain X is by a matrix diagonalization technique, 
which is referred to as an approximate super configuration interaction method, i.e. 
it uses the technique of CI. Thus, an energy functional e[X] is defined as 

(25) 

where 1 + D(2) is an energy denominator defined by 

(26) 

which for a orthonormal spin-orbital basis reduces to 

1 + D(2) = 1 + I ('1'0 I .d:i .dad tp°)X;i (27) 
i,a 

= 1 + I Sai,aiX;i' (28) 
i,a 

where S is a diagonal matrix, in fact, a unit matrix. It is readily shown that e[X] 
contains third and higher order errors in comparison with the exact quadratic 
expression E(2) , and consequently convergence is still essentially quadratic, but the 
radius of convergence is larger than for other second order procedures such as the 
Newton-Raphson scheme (Yarkony 1981; Bacskay 1982; Shepard et al. 1982). 
The approximate super CI approach can most simply be developed by noting that 

e[X] = ('I'I HI '1')/('1' 1'1'), (29) 

where 

1'1') = 1'1'°) + I Xai I tpi) +t I I XaiXbj I tpiJ> , (30) 
i,a i,a j,b 

and in (29) both numerator and denominator are evaluated up to quadratic terms 
in {XaJ. Minimization of equation (25), i.e. of (29), leads to the secular equations 

(31) 

which, in principle, are readily soluble by a suitable matrix diagonalization program. 
Since for ground state wavefunctions only the lowest eigenvalue is required, the 
iterative eigenvalue routines that are widely used in most CI packages, such as the 
variation-perturbation (Briindas and Goscinski 1970) and Davidson (1975) methods, 
are readily applicable. 

The key to the practical computational implementation of the QC-SCF method 
is the use of the direct CI technique (Roos 1972; Roos and Siegbahn 1977), coupled 
with one of the above iterative diagonalization methods. As discussed in detail 
elsewhere (Bacskay 1981, 1982), the iterative solution of equation (31) can be carried 
out directly in terms of the atomic integrals or supermatrices, that is, avoiding the 
time consuming four-index transformation needed for the construction of the 
Hessian E. Thus E is not constructed explicitly, only vectors of the form 

(32) 
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where {hI} represents a set of suitable basis vectors in terms of which the column 
vector in equation (31) is expanded. The construction of one qI requires approximately 
the same computer time as the setting up of the Fock matrix in the traditional 
schemes. The same iterative approach discussed above can be used to solve the related 
inhomogeneous linear, that is, Newton-Raphson equations (23) and (24), as discussed 
by Pople (1968) and Bacskay (1981, 1982). 

In the iterative Hartree-Fock orbital optimization process, once X is obtained 
the unitary matrix U of equation (3) is constructed according to (16): 

U = expX = V(cosldJ)Vt +XV(sinldJ)ldl-1V, (33) 

where V is the unitary matrix that diagonalizes X 2, i.e. 

(34) 

noting that X 2 is a negative semi-definite Hermitean matrix, hence its eigenvalues 
d2 are all negative or zero. 

Having obtained a set of updated orbitals we repeat the process until the first 
derivatives of the energy, i.e. the Brillouin matrix elements {Ea;}, all fall in magnitude 
below a suitably chosen threshold value. 

Test calculations that have been carried out to date indicate that QC-SCF com
pares favourably with the traditional Roothaan scheme, but is most useful in calcula
tions where a high degree of convergence is required, for example in finite field and 
force field calculations (Bacskay 1981, 1982). In typical cases the computer time 
requirements are'" 30 % less for QC-SCF. 

In order to derive the working equations that are most suitable for restricted 
(open or closed shell) Hartree-Fock (RHF) calculations it is more convenient to 
write the operators t and {Qts} of equations (8) and (9) in terms of the generators 
of the unitary group {.Pts } (Pople 1968; Paldus 1974, 1975, 1976; Shavitt 1978; 
Matsen 1979; Matsen and Nelin 1979): 

t = L XtsQts, (35) 
s<t 

(36) 

where 

(37) 
(f 

the summation over (J implying summation over IX and f3 spins. The operators {.Pts } 

satisfy the commutation relations 

(38) 

which readily follow from the anticommutation properties of the fermion creation 
and annihilation operators. 

For the more general open-shell RHF calculations the (spatial) orbital space is 
split into three subspaces D, P, V spanned by the sets of doubly partially occupied 
and unoccupied orbitals {4>?}, {4>~}, {4>2} respectively. The condition for an optimized 
RHF wavefunction that represents a ground state is that the energy must be at its 
minimum with respect to any unitary transformation of the orbitals. Consequently, 
the wavefunction I pO> must be invariant under any unitary mixing of the D and 
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P subspaces, and the energy must be stable under unitary transformations that result 
in the mixings VI D, DIP and VI P. Thus, after setting to zero the redundant param
eters {XiJ,{Xpq},{Xab} (where i,j label D orbitals, p,q label P orbitals and a,b 
label V orbitals), three distinct types of first derivatives are obtained, namely {E~J, 
{E;;}, {E~p}, and six types of second derivatives {E;;,bJ, {E;;,pj} etc. Explicit 
formulae for these have been given elsewhere (Bacskay 1982) in terms of one- and 
two-electron integrals and the coupling constants w, x,y (Guest and Saunders 1974) 
that are necessary to write down the average energy expression over all degenerate 
configurations where appropriate. 

3. Relationship of QC-SCF to TDCPHF, TDHF and RPA Theories 

In the equations of motion method (Rowe 1970; McCurdy et al. 1977), given 
the ground state wavefunction 10) for the system, an excitation operator 61 for state 
I A) is defined by 

6110) = I A), 6 .. 10) = O. (39a, b) 

Here 61 and its Hermitean conjugate 6). satisfy the equations of motion 

(40a, b) 

and also 
(41) 

where OJ .. is the excitation energy and the double commutator is defined as in equation 
(14) : 

(d, 6, c] = -!([d, [6, c]] + [[d, 6], cD. (42) 

Equation (41) is the equation of motion for 61 and is particularly useful for a varia
tional or finite basis solution. 

In the RPA 10) is the Hartree-Fock ground state and 61 is expanded in the 
simple particle-hole (spin-orbital) form 

61 = L {Ya;(.1)c!(\ -Za;(.1)cica}· (43) 
i,a 

In order to apply RPA to open-shell RHF ground states, the excitation operator is 
written in terms of the generators of the unitary group: 

61 = L {Yai(.1)Eai -Za;(.1) Eia} + L {YpJ.1)Epi -Zpi(.1) EiP} 
i,a i,p 

(44) 
p,a 

where, as in Section 2, the indices i,j label doubly occupied orbitals, p, q partially 
occupied orbitals, a, b unoccupied (virtual) orbitals and s, t, U, v are used to label 
any orbital where necessary. Given the excitation operator according to equation 
(44), the variational solution of (41) yields the well-known equations 

[ 
.. ~ . : .. ~.] [. ~.] = OJ .. [~r.] [. ~.lJ ' 
- B* . - A * Z 0 . D Z 

(45) 
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where 
(46a) 

(46b) 

(46c) 

and where g is the degeneracy of the ground state, one component of which is 10d)' 
The above generalization of RPA to cover degenerate ground state wavefunctions 
is consistent with the QC-SCF and TDCPHF theories. 

Explicit formulae for the A, B, D matrices have been derived inductively and 
explicitly verified for non-degenerate and doubly degenerate (for example n1 , n3) 

ground states. While the formulae given in the Appendix are expected to be correct, 
they should be verified for other cases as well, for example the pl,p2,p4,p5 con
figurations. 

The TDHF theory (Rowe 1970; Jamieson 1971; Jamieson and Watts 1980) is 
equivalent to the RPA although often preferred for its physical appeal. Briefly, in 
TDHF we look at the time development of an arbitary wavefunction 1 q>(t) that at 
every instant in time is a single determinant. Thus, utilizing the Thouless theorem 
we write 

Iq>(t) = exp{-(i/Ii)Eot}exp(~Ca;(t)c!c}O), (47) 

where 10) is the ground state Hartree-Fock wavefunction with energy Eo. Application 
of the variational principle to leading order yields 

(48) 

By putting 

(49) 

and substituting (49) into (48) yields, after equating positive and negative frequency 
components, the RPA equations (4S) with A, B, D defined in the appropriate spin
orbital basis. 

In the context of this paper it is however the TDCPHF approach (Dalgarno and 
Victor 1966) which is of more interest. This method involves solving the perturbed 
TDHF equations in the presence of an external time-dependent perturbation: 

f(t) = {exp(ist)+exp( -iet)} V, 

where V is a time-independent operator, for example the dipole moment operator 
if the perturbation is due to an oscillating electric field. Application of the variational 
principle to the perturbed TDHF problem yields to leading order the inhomogeneous 
equations 

(A-sD)qy(s)+B~(s) = - V, 

B* qy(s)+(A*+sD)~(s) = - V, 

where in a spin-orbital basis 

Vai = (OI[v,c!caIO) = (01 Vc!cdO), 

(SOa) 

(SOb) 

(SI) 
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or in a spatial-orbital basis for an RHF ground state 

(52) 

Note also that the poles in the second order response function, 

Ei8) = -1 I<01[V,c~Ci]10>{l{ifa;(8)+:¥a;(8)}, (53a) 
i"a 

correspond to the RPA excitation energies {wA}' since in the RPA formalism 

(53b) 

where 

(54) 

If the external perturbation is time independent, given a'real-orbital basis, i.e. 
real A, B, D and V, then equations (50) can be rewritten as 

(A+B){ '29'(0)+ ~(O)} = -2 V, (A-B){'29'(O)-~(O)} = O. (55a,b) 

Hence for 8 = 0 we have according to (55b) 

'29'(0) = ~(O), (56) 

whereas the solution of (55a) yields 2 '29'(0), i.e. the first correction to the Hartree-Fock 
unperturbed ground state wavefunction in the presence of the static perturbation. 
Equations (55a) are known as the coupled perturbation Hartree-Fock (CPHF) 
equations and have exactly the same form as the Newton-Raphson equations (23), 
since A + B is in fact the Hessian matrix E", while V takes the place of the vector 
of first derivatives E'. Thus, as discussed in more detail elsewhere (Bacskay 1981), 
the Newton-Raphson formulation is equivalent to solving the CPHF equations, 
treating E' as an 'external' perturbation. 

As discussed in Section 2, as well as elsewhere (Bacskay 1981, 1982), the solution 
of the CPHF equations (55a) is readily accomplished by an iterative scheme that 
does not require A + B explicitly but rather a set of vectors 

(57) 

the solution to (55a) being expanded as 

(58) 

As already noted {q[} can be constructed directly from the atomic two-electron 
integrals, thus no four-index transformation is required, making this scheme very 
attractive computationally. The CPHF calculations of dipole polarizabilities of 
N 2, O2 and NO have demonstrated that the iterative scheme discussed above is 
efficient, requiring about six iterations to achieve a six significant figure accuracy in 
the calculated polarizabilities. 

The question that naturally arises is whether the above type of iterative scheme 
could be applied to the solution of the TDCPHF equations, that is, to the calculation 
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of dynamic properties. If we assume A, B, D to be real, the TDCPHF equations can 
be written in the form 

(A + B){ Wee) + .?l'(e)} -eD{ W(e)- .?l'(e)} = - 2 V, 

(A - B){ Wee) - .?l'(~)} - eD{ Wee) + .?l'(e)} = 0, 

(59a) 

(59b) 

and an iterative solution could well be feasible using suitable sets of basis vectors 
to expand W(e) + .?l'(e) and W(e)- .?l'(e). Numerical work is to be shortly undertaken 
to examine the feasibility of such a scheme. Whether such an approach is ultimately 
preferable to the standard method, i.e. the explicit construction of the A, B, D matrices 
from the molecular two-electron integrals, depends of course on the efficiency of 
the proposed iterative scheme and on the number of frequencies e for which the 
calculations are to be carried out. 

On the other hand, if A, B, D are to be constructed explicitly a useful and efficient 
algorithm would be to carry out partial four-index transformations of supermatrices 
rather than of two-electron integrals. For example, all elements of A + B, i.e. of E ", 
are very simply related to the elements of the supermatrices P and K (Bacskay 1981, 
1982) and are readily constructed in the same order as the supermatrix elements. 
For the construction of A - B, however, another supermatrix T is needed, where 
(see the Appendix) 

Tst,uv = [sultv]-[svltu]. (60) 

To summarize this section, the equivalence of the CPHF and the Newton-Raphson 
formulation of QC-SCF has been demonstrated. While the solution of the TDCPHF 
and TDHF-RPA equations is certainly more complex, it is possible that the techniques 
that were developed to solve the QC-SCF equations could be generalized so as to be 
useful for these problems also. 

4. Summary and Conclusions 

In this paper the theory of quadratically convergent orbital optimization for 
Hartree-Fock wavefunctions has been presented. Two schemes for numerical 
implementation have been discussed, the Newton-Raphson and the approximate 
super CI methods, both of which can be used in iterative approaches, thus avoiding 
the four-index transformation. In certain applications QC-SCF was found to have 
significant advantages over the traditional scheme, yet hardly more difficult to imple
ment on the computer. 

The connection between QC-SCF and CPHF has been discussed, thus establishing 
a relationship with RPA and TDHF. The matrix element expressions that are needed 
for open-shell QC-SCF calculations are also those that occur in RPA-TDHF and 
are listed in the Appendix. Finally, the feasibility of making use of existing QC-SCF 
computational techniques for· TDCPHF and TDHF-RPA calculations has been 
commented on. 

It should be noted at this point that the ideas outlined in this paper have recently 
been extended to multiconfigurational SCF (MC-SCF) ground state wavefunctions. 
Thus MC-SCF wavefunctions are nowadays routinely obtained by quadratically 
convergent methods (Dalgaard and J0rgensen 1978; Yeager and J0rgensen 1979a; 
Roothaan et al. 1979; Siegbahn et al. 1980; Werner and Meyer 1980; Shepard and 
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Simons 1980; Shepard et al. 1982), while the theories of TDHF-RPA, TDCPHF 
and CPHF have been suitably generalized for MC-SCF reference states (Yeager 
and J0rgensen 1979b; Albertson et al. 1980a, 1980b). Recent calculations using 
these techniques have indicated that they are capable of good accuracy and in some 
cases are preferable to the traditional RPA type calculations. Nevertheless, for a 
wide class of atomic and molecula.r problems the techniques based on a Hartree-Fock 
reference state remain valid and most useful. 
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Appendix. RP A Matrix Elements for Open-shell RHF Ground States 

For definitions of the Fock matrices FDV,FPv,FDP see Bacskay (1982). The 
notation for two-electron integrals is [st I uv] = (s(l) u(2) I iii I t(1) v(2): 

Aai,bj= 4[ailbj]-2[abl ij] +2F~r b/j - 2F8v bab, 

Bai,bj = 4[ail bj]-2[ajl bi], 

AIII,pj = (2-w)(2[ailpj]-[ajlpi]+F~~, 

Bai,pj = (2-w)(2[ailpj]-[aplij]), 

Aal;bp =w(2[ailbp]-[ablpi] -FfJ bab) , 

Bai,bp = w(2[ai I bp] -lap I bi]), 

Aap,bq = 2x[ap I bq]-2y[ab 1pq]+w(F:r bpq -F~: bab) , 

Bap,bq = 2x[aplbq]-2y[aqlbp], 

Api,qj = (4-4w+ 2x)[pi I qj] - (2- 2w+ 2y)[pq I ij]+(2- w)(F~: bij - F8P bpq) , 

Bpl,qj = (4-4w+2x)[Pil qj]-(2-2w+2y)[pjl qi], 

Api,aq = 2(w-x)[pilaq]-(w-2y)[palqi], 

Bpi,aq = 2(w-x)[pil aq]-(w-2y)[Pq I ai]+!(2-w)FPaP bpq -!wFf.,Y bpq" 

The D matrix is diagonal with the following elements: 

Dai,ai = 2, Dpi,pi = 2-w, Dap,ap = w. 

The V matrix elements for TDCPHF calculations are 

Vpi = (2-w)<PIf>li), 
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