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Abstract 
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A calculation using Nilsson wavefunctions and an effective one-body spheroidal Coulomb potential 
yields extremely large values for the Coulomb matrix element even for relatively small deformations 
of 66Ge. 

1. Introduction 

The Fermi nuclear matrix element is given by 

where I i) and I f) are respectively the initial and final state wavefunctions and F ± the 
appropriate operator. In the CVC theory (Feynman and Gell-Mann 1958) we have 

Here T± = fillN(x)T±o/N(x)d3x is the isospin operator for the bare nucleons, 1t± 
that for 1t mesons, and other operators can be included if we do not restrict ourselves 
to just the pions. This naturally leads to the following selection rule for 0+ ~ 0+ {J 
decays: 

and AJ = O. 

Therefore, the Fermi nuclear matrix element for a {J transition between states that 
differ in isospin should be zero, and a nonvanishing MF for such decays should 
therefore be attributed to the presence of isospin impurities from charge-dependent 
effects. In this paper, the charge-dependent effect we consider is that due to the 
Coulomb potential from which we obtain the effective Coulomb matrix elements 
<VCD)' 

If the CV C theory is not valid, then there is another reason why M F should not be 
zero. In the conventional theory we have F ± = T ± (and not F ± = T ±), and therefore 
exchange currents inside the nucleus can induce Fermi transitions with AT =f. O. 
These contributions to M F are as large as those due to charge-dependent effects 
(Yap 1968). However, we assume the validity of the CVC theory in this paper. 

Recent studies (Raman et al. 1975) have shown that the effective Coulomb matrix 
elements 1< VCD) I as deduced from {J-decay experiments are generally rather small, 
almost all of which are less than 20 keV. The three exceptions are 64Ga ~ 64Zn, 
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57Ni -+ 57CO and 66Ge -+ 66Ga. The first has been studied in our previous paper 
(Yap and Saw 1981). The second is rather difficult to study theoretically because 
of the presence of the Gamow-Teller contributions. Here we look at the last: the 
13+ decay from the 0+ state of 66Ge to the 0+ state of 66Ga, which has the experimental 
value of I <VCD) I ~ 143 keY. 

IF> --_____ --'----_JY 
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Fig. 1. Partial level diagram for the 13+ decay of 66Ge to 66Ga. 

2. Calculation 

Using the Nilsson (1955) model we calculate the effective Coulomb matrix elements 
< Vco) for the 13+ decay of the ground state of 66Ge to the ground state of 66Ga. 
The partial level diagram for this decay is shown in Fig. 1, where I P), I A) and 
IT <) are the parent, analogue and antianalogue states respectively. The configuration 
of the Nilsson orbit for the ground-state wavefunction of 66Ga 

I J=M=K = 0, T=2, Tz= -2) 

is shown in Fig. 2a, where the values of Qi[NinziA;],i = 1,2,3, depend on the 
deformation parameter 13 of the parent nucleus in the case of 13+ decay. The assign
ments for Qi[NinziA;1 for various values of the deformation parameter in 66Ge 
are as follows: 

i = 1, ~-[312]; i = 2, !--[31O]; i = 3, ~-[301]. 

The respective configurations for the wavefunction of the analogue state and the anti
analogue state (constructed so that it is orthogonal to the analogue state) 

I J=M=K=O, T=2, Tz= -1), I J=M=K=O,T=I,Tz=-I) 

are shown in Figs 2b and 2c respectively. 
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Fig. 2. Configurations for (a) the parent ground-state wavefunction in 66Ga, and (b) the analogue 
and (c) the antianalogue wavefunctions in 66Ge. 

The Fermi matrix element MF due to the Coulomb potential is 

= rL<P ILIA) = 2rL, 

with the admixture coefficient rL given by 

rL = -<T< I VCD I A)/I1E, 
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and VCD given by (Damgard 1966) 

Vco = {(Z-1)e2/R}{-i-!(r/R)2}+a(r/R)2Y2o, 

. = {(Z-1)e2/r}+a(R/r)3Y2o, 

for r < R; 

forr>R, 

(1 a) 

(1 b) 

where R is the radius of the nucleus and a is related to the Bohr deformation parameter 
pby 

Using equations (1) and Figs 2b and 2e, together with the assignments of orbitals 
given above, it is straightforward, though rather tedious, to calculate the effective 
Coulomb matrix elements <T< I Vco I A) = <Vco). 
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3. Results and Discussion 

0·) 0·2 
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Fig. 3. Variation of 
1< VCD >1 as a function 
of the deformation 
parameter f3. 

As 1< Vco) I could depend sensitively on the deformation parameter p, the theoretical 
values of I < V co) I should be calculated as a function of p, which is expected to be 
around 0·2 in the present case (Meller and Nix 1981). Fig. 3 shows the variation of 
1< VCD) I with the deformation parameter p. We see that even if the prolate deforma
tion of 66Ga has the very small value of p = 0'1, the effective Coulomb matrix 
element still has the extremely large value of73 keY. We feel that it would be of much 
interest to have a reasonably accurate determination of the It value of this decay. 
Furthermore, it is of interest to note that all three decays mentioned with large 
values of the Coulomb matrix element are p+ transitions of medium-weight nuclei 
with N ~ Z. 
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