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Abstract 

Relativistic intermediate-coupling wavefunctions are used to evaluate wavelengths and oscillator 
strengths for the resonance transition 2S2 'SO -+ 2s2p 'P~ and the intercombination transition 
2S2 'SO -+ 2s2p 3p~ for iron, krypton, molybdenum and tungsten beryllium-like ions. The con­
vergence of the results with respect to the basis set of orbitals is considered. It is shown that the 
same degree of accuracy can be achieved by using the three configuration basis composed of 2S2, 
2s2p and 2p2. The question of at what stage the Breit interactions should be included in the 
Hamiltonian is discussed. We also compare our calculated 2S2 'SO -+ 2s2p 3p~ intercombination 
oscillator strengths with those deduced from beam-foil experiments for iron and krypton. 

1. Introduction. 

The study of relativistic effects in the beryllium isoelectronic sequence has 
attracted much attention from theoreticians. The aim has been to develop a theory 
for calculating energy levels, wavelengths,oscillator strengths and transition 
probabilities accurately. However, discrepancies still exist between the different 
theories (Lawson and Peacock 1980). 

Theoretical calculations are based on several approaches, and one method is 
to form relativistic intermediate-coupling wavefunctions. The radial functions are 
calculated in the LS coupling scheme and the relativistic corrections are treated in 
the Pauli approximation as first-order perturbations of the nonrelativistic energy 
(Weiss 1976; Cowan and Griffin 1976; Glass and Hibbert 1978a, 1978b; Glass 
1979a, 1979b; Nussbaumer and Storey 1979; Glass 1981a, 1981b). Another approach 
is the relativistic multi-configurational Hartree-Fock approximation (Kim and 
Desclaux 1976; Armstrong et al. 1976; Cheng and Johnson 1977). The relativistic 
random-phase approximation method has also been used by Lin and Johnson (1977). 

The major unresolved question is that of how the relativistic effects should be 
included and of what changes they induce in the wavefunctions. Armstrong et al. 
(1976) and Cheng and Johnson (1977) using the relativistic multi-configurational 
Hartree-Fock method have evaluated oscillator strengths for the resonance transition 
and the intercombination (spin-orbit electric dipole) transition from boron to 
uranium in the beryllium sequence. They only included configurations in the wave­
functions which could be formed from the n = 2 complex keeping a Is2 core. 
Nussbaumer and Storey (1979) have evaluated transition probabilities for calcium, 
iron, krypton and molybdenum beryllium-like ions using 57 configuration basis 
wavefunctions. They did not consider the possibility of using the three-configuration 
basis composed of 2S2, 2s2p and 2p2. 
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In this paper we wish to report relativistic intermediate-coupling calculations 
for ions of the beryllium isoelectronic sequence which can be used in the theoretical 
and computational study of low-energy collisions of electrons by complex atoms and 
ions. The R-matrix method describing the scattering of low-energy electrons by 
complex atoms and ions has been extended by Scott and Burke (1980) to include 
terms of the Breit-Pauli Hamiltonian. The R-matrix code is compatible with the 
relativistic intermediate-coupling code used here (Glass and Hibbert 1978b). The 
large-scale configuration interaction expansion needed by Nussbaumer and Storey 
(1979) to obtain very accurate transition probabilities is too extensive to be used in 
the R-matrix method for electron-atom scattering. It is therefore of interest to 
investigate how few configurations are necessary in order to achieve configuration 
interaction wavefunctions corresponding to reasonably accurate transition energies 
and probabilities. 

In reporting this set of results it is also our aim to consider: (i) agreement between 
theory and available experimental data; (ii) the validity of the relativistic intermediate­
coupling scheme at moderately high Z. 

2. Relativistic Intermediate-coupling Wavefunctions 

The relativistic intermediate-coupling wavefunctions are represented by the 
configuration interaction expansion 

'l'(JM]) = I cf tf>i(rtiLiSiJM]) , (1) 
i 

where the {tf>;} are single-configuration wavefunctions constructed from the one­
electron functions (spin orbitals) 

u(r, ms) = r- 1 Pnl(r) Y'!"«(), ¢)x(ms)' (2) 

The angular momentum functions of the orbitals are combined according to 
coupling schemes {rtJ to form (Li' Si) and the total angular momentum J arises 
from the vector coupling 

J = L+S. 

The radial functions are expanded in analytic form as 

where k ~ n -I and where 

k 

Pn1(r) = L Cjnl ¢jnlr ) , 
j=1 

(3) 

(4) 

(5) 

We also require the radial functions, for a given value of I, to form an orthonormal set: 

Ioo Pnlr)Pn.tCr) dr = bnn ., 1+ 1 ~ n' ~ n. (6) 

We have used the configuration interaction code elV3 (Hibbert 1975; Glass and 
Hibbert 1978b) in the LS coupling mode to determine the radial functions {Pnl}' 
We chose the Is, 2s and 2p functions as the Hartree-Fock functions of the Is22s2p 3pO 

state. 
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With this set of radial functions, the relativistic intermediate-coupling wave­
functions in equation (1) were determined by including in the summation for each 
symmetry (J and n) all possible configurations with a common 1S2 core, with the 
different Li and Si satisfying (3). The expansion coefficients {ef} were determined 
by diagonalizing the Hamiltonian matrix with respect to this basis. The Hamiltonian 
consists of the nonrelativistic electrostatic terms, plus the Darwin, mass-correction, 
spin-orbit, spin-other-orbit, spin-spin, spin-contact and orbit-orbit contributions. 

Table 1. Wavelengths and oscillator strengths for the 2S2 --+ 2s2p transitions in the 

beryllium sequence 

Notation: A, present calculation; B, Armstrong et al. (1976); C, Kim and Desc1aux 
(1976); D, Lin and Johnson (1977); E, Cheng and Johnson (1977); F, Nussbaumer 
and Storey (1979); G, Dietrich et al. (1978); H, Dietrich et al. (1980). Note that G 

and H are experimental results 

2S2 ISO -> 2s2p I p~ 2S2 ISO --+ 2s2p 3p~ 
Ion Calc. A (A) I A (A) I(x 10- 2 ) 

Fe XXIII A 131·52 0·157 263·96 0·149 
B 130·03 0·156 0·150 
C 0·150 
D 0·150 0·150 
E 130·03 0'155 0·150 
F 133·03 0·157 264·48 0·157 

G 132·83 263'74 0·24±0·07 

KrXXXIII A 73·72 0·138 170·52 0·534 
B 71·61 0·137 165·44 0·54 
C 165'68 
D 0·137 
E 71·61 0·137 165·44 0·54 
F 74·19 0·137 172'52 0·527 

H 169·9 0·564 

MoXXXIX A 51·45 0·140 138'65 0·762 
B 49·20 0·140 132'95 0·75 
C 49·20 0·141 
D 0·140 0·589 
E 49·20 0·140 132·95 0·75 
F 51·83 0·138 141·96 0·722 

WLXXI A 7·81 0·268 59·19 0·985 
B 7·03 0·265 53·66 0·99 
C 7·05 0·266 
E 7·03 0·267 53·66 0·99 

3. Results and Discussion 

In Table 1 we compare our results for the wavelengths A. and oscillator strengths 
f (length form) for the resonance transition 2S2 ISO -+ 2s2p 1 p? and the inter­
combination transition 2S2 ISO -+ 2s2p 3P? with the various theoretical and experi­
mental results. For the oscillator strengths, agreement between the different theoretical 
calculations is very good. Experimentally derived oscillator strengths for the inter­
combination line in iron and krypton have been given by Dietrich et al. (1978) (entry 
G) and Dietrich et al. (1980) (entry H). For iron, agreement between theory and 
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experiment is poor; there is disagreement by almost a factor of two. For krypton, 
calculated and experimentally derived oscillator strengths agree to better than 6 %. 
The discrepancy between theory and experiment for iron is, perhaps, due to the. 
difficulties experienced in the beam-foil experiment. It would be highly desirable to 
measure the lifetime of the intercombination line in iron by another method. 

Agreement between our calculated wavelengths and the corresponding theoretical 
results is good. The discrepancy ranges from 1 % for iron to 10 % for tungsten. 
It is interesting that where the relativistic intermediate-coupling scheme and the 
relativistic multi-configurational Hartree-Fock results differ the former results 
are in better agreement with the experimental measurements. Dietrich et al. (1980) 
argued that the discrepancy between theory and experiment is due to the omission 
of the Lamb shift contribution by the theoreticians. If the discrepancy is due to the 
contribution from the radiative corrections (13940 cm -1 for krypton; see Dietrich 
et al. 1980) the effect of configuration mixing upon the radiative corrections should 
be properly taken into account. However, this is not an easy task. 

Inclusion of additional correlation effects in the wavefunctions has been looked 
at by Lin and Johnson (1977) using the relativistic random-phase approximation 
method (calculation D) and by Nussbaumer and Storey (1979) using the relativistic 
intermediate-coupling method (calculation F). In both calculations correlation effects 
within the n = 2, between the n = 2 and n = 1 and within the n = 1 shells were 
included. From the results in Table 1 it is seen that, for the higher members of the 
sequence, wavefunctions formed from configurations from the n = 2 complex while 
keeping a Is2 core are adequate. 

In the Introduction we pointed to two matters we wished to consider in this paper. 
As far as the first, we have seen that the wavelengths calculated using the relativistic 
multi-configurational Hartree-Fock calculations are not in agreement with the 
experimental results; instead, the relativistic intermediate-coupling calculations 
appear to give better agreement with experiment. 

Our second aim was to look at the validity of the relativistic intermediate-coupling 
scheme at moderately high Z. The question is of how the relativistic effects should 
be included and of what changes they induce in the wavefunctions. Armstrong et al. 
(1976), Kim and Desclaux (1976) and Cheng and Johnson (1977) in determining 
the relativistic radial functions used the Dirac operator which includes the nuclear 
spin-orbit term. As the calculation of the Breit interaction with wavefunctions of 
the correct symmetry are complicated the relativistic contributions to the energy 
levels are evaluated as a spherical average over configurations. However, Cheng 
et al. (1978) have shown that the use of J2 eigenfunctions, instead of a configuration 
average, in evaluating the Breit interaction leads to a substantial improvement in 
the fine structure. 

Perhaps the resolution of the problem lies in the size of errors introduced in the 
two schemes. One must remember that the Breit operator is itself an approximate 
expression for use in a relativistic treatment. Although its use in higher order 
perturbation theory incorrectly gives higher order corrections both to the energy 
and wavefunction, these corrections are very small for low Z (i.e. rxZ is small). We 
have shown that the error associated with including the spin-orbit, spin-other-orbit, 
spin-spin, Darwin contact and mass correction terms in the Hamiltonian in order 
to determine the configuration mixing is not too serious. For high Z, when a full 
relativistic treatment is needed, the nuclear spin-orbit term dominates the others. 
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Hence the use of first-order perturbation theory, with the wavefunction determined 
as an eigenfunction of a sum of one-electron Dirac operators, gives satisfactory 
results. From the variation with Z of the relative importance of the relativistic 
operators it would seem that a satisfactory dovetailing of the two philosophies can 
be achieved when the transition from one to the other becomes necessary. 

A further modification to the relativistic intermediate-coupling scheme would 
be the inclusion of the one-electron Darwin and mass-correction terms as well as 
the usual nonrelativistic terms in the Hamiltonian at the optimization stage of the 
radial functions. The major relativistic effects would be incorporated into the radial 
functions while still retaining a J-independent relativistic formalism. 

While the main qualitative features of the beryllium sequence described here are 
probably correct, it is more difficult to assess the quantitative accuracy, especially 
for the more highly ionized systems. The results for tungsten should probably be 
treated with some caution, although it is almost impossible to give a quantitative 
estimate of the reliability. For highly ionized atoms, quantum electrodynamic effects 
such as the Lamb shift contribution could be more important than the Breit inter­
action in attaining accurate transition energies between configurations. Highly 
ionized atoms thus provide a sensitive test of the theoretical treatment of relativistic 
and quantum electrodynamic effects. 

The purpose of the present work was not only to present accurate theoretical 
calculations but to investigate how few configurations are necessary in order to 
achieve configuration interaction wavefunctions corresponding to reasonably accurate 
wavelengths and oscillator strengths. From the results presented here it is seen that 
for highly ionized atoms in the beryllium isoelectronic sequence the same degree of 
accuracy can be achieved by using the three configuration basis composed of 2S2, 
2s2p and 2p2. That is, it is not necessary to include additional radial functions 
(n > 2) in the basis set. 
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