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Abstract 

Previously derived source functions and generalized electron absorption coefficients are employed 
in a new method to obtain the electron flux in an atomic gas between closely spaced electrodes taking 
into account inelastic collisions. Energy losses due to elastic collisions are assumed to be relatively 
unimportant compared with inelastic collisions. The initial energy of the electrons at the source 
and the applied electric field are assumed to be insufficiently large to produce more than one inelastic 
collision for any electron, but otherwise there is no restriction on the number of inelastic thresholds. 
Given these restrictions it is shown that the results obtained are consistent with the usual two-term 
approximation to the Boltzmann equation. It is further demonstrated that the electrodes have little 
effect on the electron flux when the generalized electron absorption coefficients are dominated by 
electron-atom collisions. Conditions under which inelastic collisions have a significant effect on 
the electron flux are derived. Finally, the connection between the present steady state analysis and 
quantities obtainable by a pulsed electron source experiment are discussed. 

1. Introduction 

Previously reported work which we refer to as Part I (McMahon 1983, present 
issue p. 27) is extended to include the effect of inelastic collisions on the electron 
flux between closely spaced electrodes. As emphasized in Part I, this theory is relevant 
to recent attempts to treat the boundary layer problem for electron swarms (Lowke 
etal.1977; Braglia and Lowke 1979; Robson 1981, 1982; K. Ness and R. E. Robson, 
unpublished data; Chantry 1982; Braglia 1982). The approach used by the present 
author in Part I differs from the others by omitting the effect of energy losses by 
elastic collisions. Although this pays the price of restricting the analysis to heavy 
atomic gases with electrodes and sources well within the boundary layer thickness 
of each other, it does enable an analytical solution of the flux problem unrestricted 
by any particularly convenient forms of the energy dependence of the momentum 
transfer cross section. One payoff of this approach is a better physical understanding 
of how the absorbing boundary influences the flux of electrons. A second advantage 
is the discovery of methods by which electrode sensitive terms can be eliminated 
so as to obtain potentially useful relations between experimentally measurable 
quantities and the momentum transfer cross section. The third profitable outcome 
here is to show how inelastic collisions can be introduced into the theory and, although 
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this no longer enables an analytical solution for the flux, the results can be described 
in straightforward physical terms that would be virtually impossible in a purely 
numerical approach. What the results show is that the inclusion of inelastic collisions 
in the theory is closely related to the boundary layer problem in that the generalized 
absorption coefficients and source strengths introduced in Part I can be used to 
describe the loss and gain of electrons in a given energy range by inelastic electron-atom 
collisions. It is believed that the insights provided by the present work will prove to 
be of value for more general developments of the boundary layer theory. 

2. Inelastic Collision Effects on the Electron Flux and Number Density 

To construct the electron flux with inelastic collisions we employ the somewhat 
unconventional approach of using physical arguments and results already obtained 
in Part I to guess the required result. This is then verified as the correct solution of 
the scalar and vector equations in the two-term approximation to the Boltzmann 
equation [Huxley and Crompton (1974), equations (6.36) and (6.37)]. For initial 
simplicity, we consider just one inelastic threshold. This case is readily extended 
provided that the initial energy of the electrons at the source and the electric field 
strength enable only one actual inelastic collision for any electron. Thus the theory 
applies for energies up to twice the lowest threshold energy. As in Part I we develop 
the basic results for infinite plane parallel electrodes A and B of separation L. As 
before, let there be a parallel source S of strength S electrons per second per unit 
area situated at a distance d from B. 

To help guess the structure of the solution, we begin by regarding the swarm as 
undergoing elastic collisions everywhere between S and A except in the range z, z+dz 
measured from S (see Fig. 1 p. 31). Let the source strength for electrons of energy 
e'(z) = e(z) - ei be dSi , which is just the rate of inelastic collisions in a slab of thickness 
dz. We find then that 

dSi = inez) c(z) p(z) dz, (1 a) 

where 

(1 b) 

Here qi(e-ei) is the inelastic cross section for the threshold energy ei and N is the 
number density of gas atoms. That dSi is defined to be proportional to the local 
random flux introduces the assumption, as is shown later, that the major effect of 
inelastic collisions is through the distribution of electron energiesfo rather than through 
their contribution to the momentum transfer cross section. Given the source dSi , 

the methods of Part I can be easily used to calculate the fluxes of electrons that 
have lost energy ei' The new problem is to find how to describe the effect of a dis
tribution of sinks dSi on the flux of those electrons that have not yet lost energy 
through inelastic collisions. This problem is equivalent to the boundary value 
problem of Part I but complicated by effective 'boundaries' distributed throughout 
the gas. We introduce the notation r Ae(Z) and r Ai(Z) to denote the flux from S to 
A at z of electrons that have not undergone and have undergone inelastic collisions 
respectively. By the continuity equation we have in general 

(2) 
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where r A is independent of z. By considering the production of electrons in an 
infinitesimal slab one also finds by the continuity relation that 

dr Ai(z)jdz = -l-n(z) c(z) p(z). (3) 

With inelastic collisions only at z, z+ dz, the absorption coefficient IXA(Z) for 
Z ~ z+dz is still that given by equation (36a) of Part I. Forz::::::; z we introduce the 
notation IXA(Z; z) for the absorption coefficient at z, given inelastic collisions at 
z, z + dz. By definition we have 

r Ae(Z) = -l-IXA(Z; z) n(z) c(z), 

= -l-IXA(z)n(z)c(z), 

z::::::; z; 

Z ~ z+dz. 

(4a) 

(4b) 

By the continuity relation the r A'(Z) are actually both independent of z. For con
venience we can use equation (4a) at z = z to denote rAe == r Ae(Z, z) and r Ae(Z) 
at Z ~ z+dz we can denote as rAe. We also write 

(5) 

and the problem is to relate dIXA(z) to p(z) dz. Note that rAe only differs from rAe 
by including a contribution which makes up those electrons that undergo inelastic 
collisions. We can write therefore 

rAe = rAe+dr Ai +dr Hi' 

but by definition we have 

drAi+drHi = dSi · 

By combining equations (4)-(7) and (la) we find 

dIXA(z) = p(z)dz. 

(6) 

(7) 

(8) 

Using equations (5) and (8) we can find IXA(Z; z) by applying the coordinate trans
formation equation (36a) of Part I, giving 

1 e(z) 3e(z) f B(Z) de' 

IXA(Z; z) = {IXA(Z) + p(z) dz }e(z) + 4eE Bn e'l(e')" 
(9) 

To be able to guess the required expressions for r Ae(Z), r Ai(Z) and n(z) it is neces
sary to add the effect of one more region of inelastic collisions at say z', z' + dz', 
where we choose z' > z + dz. All of these quantities in the three regions bounded by 
z and z' are affected in different ways by inelastic collisions. For z::::::; z, we need 
to define IXA(Z;Z;Z'). This is easily obtained by the logical extension of equations 
(5) and (9) and we have 

1 e(z) 3e(z) J e(z) de' 
IXA(Z;Z;Z') = {IXA(Z;Z') +p(z)dz}e(z) + 4eE B(Z) e'l(e')· 

(10) 

For z + dz ::::::; z ::::::; z' we can use the absorption coefficient IXA(Z; z') and for z ~ z' + dz' 
the coefficient IXA(z) applies. It is then possible to construct r Ae(Z), r Ai(Z) and n(z) 
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in the three regions of Z. This can be done by a somewhat brute force calculation; 
however, a much more elegant approach makes use of the coordinate transformation 
properties described below. 

To begin we can extend equations (9) and (10) to absorption coefficients for the 
back electron flux in the B direction. Thus, in addition to equation (36b) of Part I, 
we define for IXB(Z) 

1 e( z) 3e(z) f e(z) de' 

IXB(Z;Z) = {IXB(Z) +p(z)dz}e(z) + 4eE e(z) e'[(e')' (11) 

1 e(z) 3e(z) f e(z) de' 
IXB(Z; z'; z) = {IXB(Z'; z) + p(z')dz'}e(z') + 4eE e(z') e'[(e') ' (12) 

where IXB(Z;Z) is the absorption coefficient at z+dz ~ Z ~ z', influenced by inelastic 
collisions at z, z+dz, and IXB(Z; z'; z) is the absorption coefficient at Z ~ z' +dz' > z+dz 
influenced by both regions of inelastic collisions. Using equations (36) of Part I 
and equations (9)-(12) it is found that the following quantities are invariant under 
changes to Z: 

e(Z)IXA(Z;Z;Z')IXB(Z)/{IXA(Z;Z;Z')+IXB(Z)}, Z ~ z < z'; (13a) 

e(z)IXA(Z;Z')IXB(Z;Z)/{IXA(Z;Z')+IXB(Z;Z)}, z+dz ~ Z ~ z'; (l3b) 

e(z)IXA(Z)IXB(Z;Z';Z)/{IXA(Z)+IXB(Z;Z';z)}, z < z'+dz' ~ Z. (l3c) 

Other quantities of great utility are generalized source functions that take into 
account inelastic collisions. The obvious extensions of equation (37a) in Part I are 

r Ae(Z) IXA(Z; z; z') 
Z ~ z < z'; (14a) 

SA(Z) IXA(Z; z; Z')+IXB(Z)' 

rAe(z) IXA(Z; z') 
z+dz ~ Z ~ z'; (14b) 

SA(Z; z) IXA(Z; Z')+IXB(Z; z)' 

r A'(Z) IXA(Z) 
Z < z' + dz' ~ Z. (14c) 

SA(Z;Z';z) IXA(Z) + IXB(Z; z'; z) , 

Using equations (l3a), (l3b), (l4a) and (14b) we note that the following quantities 
are invariant under changes of Z: 

Z ~ z < z'; 

z+dz ~ Z ~ z'; 

z < z' + dz' ~ Z. 

(1 Sa) 

(ISb) 

(lSc) 

The application of these source functions relies on the fact that they are continuous 
across the regions z, z+dz and z', z' +dz' where inelastic collisions occur. This is 
easily shown using the continuity relation. To calculate r Ae(z) for z < z' +dz' ~ Z 
using equation (l4c), one uses the invariant relation (ISc) to introduce SA(Z';Z';z). 
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Then the continuity relation for SA at z' can be used to get SA(Z'; z) and again the 
invariance relation (I5b) can be employed to reduce this in terms of SA(Z;Z), After 
using the continuity of SA at Z and the transformation (l5a) one finally obtains the 
expression for r Ae(Z) in terms of S. The same method can be applied to all ranges 
of Z. To get r A;(Z) one has to know n(z) and n(z') so that the source strengths can 
be calculated using equation (la). These are obtained from the general approach 
for finding n(z). To get n(z), for z < z' + dz' ::( z say, one can use the definition 

(16) 

and relate this to S through the calculation of r Ae(Z) via equations (14). The result 
is most conveniently parametrized in terms of R(z) = n(z)/no(z), where no(z) is the 
number density that would have existed if there had not been any inelastic collisions. 

By examining the formulae for n(z), r Ae(Z) and r A;(Z) in the three ranges of z 
and retaining only first powers of p(z)dz and p(z')dz', the following are guessed 
as first approximations: 

6(Z)OC1.(Z) f L - d p(z') dz' fZ p(z') dz' 
R(z) ~ 1 - . -

OCA(Z)+OCB(z) Z 8(Z')OC1.(z') 0 OCA(z')+ ocB(z') , 
(l7a) 

(l7b) 

where r AO is the flux that would exist for no inelastic collisions. 
The exact form of r A;(Z) can be guessed immediately as 

f Z oc' (z') 
r Ai(Z) = , (_,; + ' ( ') inez') c(z') p(z') dz' 

o OCA L- OCB Z 

f L-d oc' (z') 
- , ('; , ( ') inez') c(z') p(z') dz' . 

Z OCA Z + OCB Z 
(18) 

It is easily checked that equation (18) satisfies (3). The exact number density 
n'(z) of electrons with energy 8'(Z) = 8(Z)-8i can be deduced from the definition of 
ocA(z) and ocu(z). Due to the elementary source dSi(z') alone, the number density 
n'(z) is given by 

1 '( ) ,. ) lOCA (z') ( , 
4n z c{z ='--()' '( ')+ '( ,)dS i z), 

OCA z OCA Z OCB Z 
for z ~ z' ; 

1 ocu(z') , 
=,--() '(') '( , dS;(z), OCB z ocA Z + OCB Z ) 

for z ::( z' . 

The logical generalization is 

in'(z) c'(z) = f Z rt~«z')) inez') c(z') , ( ~~'), ( ') dz' 
o OCA Z OCA Z OCB Z 

f L-d OCu(z') 1 ' , p(z') , 
+ ---;--( )4n(Z)C(z) '( ')+ ,C",,)dz. 

Z OCB z OCA Z OCB '" 
(19) 
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By calculating the Z derivative of n'(z) and introducing r Ai(Z) via equation (18) one 
finds the result 

r .( ) = eE 1(8'(z» '() _.1 '( ) I( '( » dn'(z) 
Al Z 3m c'(z) n Z 3 C Z 8 Z dz' (20) 

which closely resembles equation (9) of Part I except that the flux is now z dependent. 
By the continuity equation (2) and equation (3) we require that the exact expression 

for r Ae(Z) satisfies 

dr Ae(z)/dz = -inez) c(z)p(z). (21) 

In contrast the RHS of equation (17b) is easily seen to lead to no(z) instead of n(z) 
in equation (21). Thus equation (17b) is very close to the exact solution and it is 
obvious that we merely need to replace p(z') by R(z') p(z') in equations (17). One 
can indeed verify that this procedure is correct by asserting that r Ae(Z) satisfies the 
equation 

eE l(z) dn(z) 
rAe(z) = 3mc(z)n(z) -tlCz)c(z)~, (22) 

which like equation (20) has exactly the form of equation (9) in Part 1. To fully 
justify the replacement p(z) -+ R(z) p(z) in equation (17a) and verify equation (22) 
from a more basic standpoint one has to return to the guessing procedure described 
above, but developed with somewhat greater accuracy. The details are somewhat 
tedious and the reader is referred to a full treatment of the problem given elsewhere 
(McMahon 1982). 

So far our discussion has only considered inelastic collisions in the domain 
o ::( z ::( L - d. The effect of inelastic collisions in the region - d ::( z ::( 0 on rAe, 
r Ai and the electron number densities can be obtained by a symmetry argument 
after calculating r Be(Z), r Bi(Z) and the number densities in the region z ::( 0 for the 
case of inelastic collisions for z ~ 0 only. The details are given elsewhere (McMahon 
1982). The final results are 

J L-d 1 ri (z') 
inez) c(z) = inoCz) c(z) - -.- (') (') In(z') c(z') p(z') dz' 

Z riB(z) riA z + riB Z 

-JZ ~() (~~~') (,)lnCz')c(z')p(z')dz', (23) 
-d riA z riA Z riB Z 

JL - d (z') 
r Ae(Z) = iriA(Z) 1I0(Z) C(Z) + (~) (' inez') c(z') p(z') dz' 

Z riA Z +riB z) 

Jz riACZ') 1 ( ') ( ') ( ') d ' (24) 
- (') (') 4n z c z p z z. 

-d riA Z + riB Z 

Equations (18) and (19) are only slightly modified if the lower limit of 0 in the 
first integral is replaced by - d. Equations (20) and (22) are still satisfied. 

It only remains to show that our expressions for r Ae(Z), r Bi(Z) and n(z), n'(z) are 
consistent with the two-term approximation of the Boltzmann equation taking into 
account inelastic collisions. This demonstration is given in the Appendix and proves 
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that indeed isotropic inelastic collisions can be treated mathematically as electron 
'sources' and absorbing 'boundaries' distributed throughout the gas. 

3. Discussion of Inelastic Collision Effects on the Electron Flux 

Adding r A.{Z) and r Ai(Z) we have for Z ~ 0 

r A = r AO + rL
-

d inez') c(z') p(z'){ PBO(z') - P~o(z')} dz' 

-f ~ d inC z') c( z') p( z'){ P AO( z') - PAo( z')} dz' , (25a) 

where 

(25b) 

and similarly for P;"o(z) and P~o(z). Here P AO(Z) is the probability that an electron 
starting at Z is absorbed by electrode A (rather than B) given that there are no inelastic 
collisions. In equation (25a), Z ~ 0 is arbitrary because r A is not explicitly z-dependent 
by the continuity relation. 

If it happens that (XA(Z)/(XB(Z) = (XA(z)/(X~(z) then r A = ['AO. In other words, 
inelastic collisions only affect r A by changing the probability of an electron which 
suffers an inelastic collision at any Z being absorbed by electrode A. It can be seen 
from equations (36) of Part I that if qm(e) ex e and if the most important Z values for 
inelastic collisions are such that (XA(Z), (XB(Z), (XA(z) and (X~(z) are dominated by electron
atom collisions, then P AO ~ P;"o and PBO ~ P~o so that inelastic collisions have 
little influence on rAin this case. At the surface of A, PBO and P~o are much smaller 
than PAO and P;"o for reasonable reflection probabilities 'A and 'A. Then PAO ~ P;"o 
for Z ~ L - d, so that the effect of the electrode surface is not as significant as one 
might expect (see the discussion in Section 4 of Part I). Another interesting case 
is E = 0 where we have 

1 1 3(L-d-z) 
--=-+--'-......,....,..,....,.--
(XA(Z) (XA 4/(e) , 

1 1 3(d+z) 
-- = - + -:-:-:-:--
(XB(Z) (XB 4/(e) , 

(26a, b) 

and similarly for (XA(z) and (X~(z). Because electron-atom collisions dominate P AO, 
PBO' P;"o and P~o, we see that again PAO ~ P;"o and PBO ~ P~o quite independently 
of the energy dependence of lee). It appears that significant effects on r A due to 
inelastic collisions are only possible if we have qm(e) not simply proportional to e 
and a nonzero electric field. 

As a check on this conclusion we should examine what happens if there is a very 
large perturbation on n(z) due to inelastic collisions. A model that can be solved 
analytically is that of a resonant inelastic cross section 

where Ae j is a width factor and iL(O) gives the scale of the cross section. Let inelastic 
collisions only occur for 0 ~ Zj ~ L-d, where e(zJ = ej. By equation (23), 
R(z) = R(zJ for z ~ Zj and 

( ) _ (1 4N Ae j iUO) )-1 R Zj - + . . , 
eE{ (XA(Zj) + (XB(Zj)} 

(27) 
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while r A is given by 

(28) 

A large perturbation on n(z) exists iffor instance .!le; ~ eEl;, where I; = {N i'i;(O)} -1. 

For Z; = L-dwe see that PAO ~ PAO as explained previously,and by equation (28) 
we have r A ~ r AO' For Z; at least several mean free paths from A then P AO ~ PAO 
only for E sufficiently small or qm(e) oc e. In all the latter cases, r A ~ r AO even 
though very large effects of inelastic collisions exist for n(z). 

It is useful to obtain an estimate of E which will produce an appreciable inelastic 
collision effect on r A' If qm(e')/e' is expanded out in powers of e' -e(z) we find for 
example that in equations (36) of Part I 

1 e(z) 3N(L-d-Z){ «» 1 ( ){ ( )}(Oqm(e')le') -( ) ~ -- + 4 qm e z +2e z eA-e Z !\' 
(XA Z (XA eA ue e(z) 

+O[{eA -e(z)YJ} , (29a) 

and that E :I: 0 gives for (XB(Z) 

_1_ '" e(z) 3N(d+Z){ « »_.1 ( ){ .)_ }(Oqm(e')le') 
( ) '" + qm e z 26 z 6tZ eB !\ , 

(XB Z (XBeB 4· ue e(z) 

+o[{e(z)-eB}2J}. (29b) 

Hence we find, where electron-atom collisions dominate, 

P ~o(z) ~ 1 +!eE(L _ d _ z){e'(z) (Oqm(e?ie') _ 6(Z) (Oqm(e?le') } 
P AO(Z) . oe e'(z) oe e(z) 

+ O[{eA -e(z)}2J + O[{e(z)-eB}2j. (30) 

When the second term on the RHS of equation (30) becomes comparable with ± 1, 
appreciable inelastic collision effects should exist for r A' Equation (30) explicitly 
shows that these effects require deviations from a simple linear energy dependence 
of qm(e). It should be noted that our discussion so far has assumed eA ~ 0 and 
e~ ~ 0 so that electrons which have undergone inelastic collisions are still energetic 
enough to reach both electrodes. If this is not the case we then have PAO(z) = 1 
and because in general P AO(Z) :I: 1, there is always an effect of inelastic collisions 
onrA • 

To repeat the exercise in Section 8 of Part I of finding relationships between 
experimentally observable quantities and the momentum transfer cross section is 
more complicated when inelastic collisions have significant effects on the electron 
flux. Inelastic collision effects could in principle be distinguished in observations 
of r AI r B through their influence on the density dependence. When electron-atom 
collisions dominate we have 
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X 1+ B B [ ( 3B rx J E(Z) dB' )-1 
4eE En B'[(B') 

{3 (1 1 )-11 JEA dB' }-I] 
- 4 BArxA + BBrxB eE ED e'l(B') , 

(31) 

which shows that the dominant part of P AO(Z) is density independent and the first 
correction (assuming rxA and rxs are density independent) is proportional to N -1. 

In equation (25a), p(z') is proportional to N. The gas density dependence of n(z) 
is gauged a little easier if we work with the ratio R(z) = n(z)lno(z). By the first 
iteration of equation (17a) for R(z) we see that the most important density dependent 
correction to R(z) ~ 1 is proportional to N 2 , partly because p(z') ex N and partly 
because {rxA(Z') + rxB(Z')} -I ex N. The resonant inelastic cross section model shows 
this density dependence (see equation 27). This model shows further that for strong 
inelastic collision effects R(z) should vary as N - 2. For inelastic collision effects on 
n(z) which are not too strong, equation (25a) shows that r Air AO ~ 1 + O(N2). The 
density dependence of P AO(Z) only contributes to a correction of O(N 3). When 
we combine these results with the analysis of r AO given in Section 8 of Part I we find 
that equation (40) there is replaced by 

~: ~ (r: qm(B')IB' dB' / r:A 
qm(B')IB' dB') 

( 1 +N-1AA +NBA +N2CA) 

x 1+N-1AB+NBB+N2CB ' 
(32) 

provided that I R(z) -11 ~ 1. For a strong inelastic collision effect on the distribution 
function [i.e. R(z) ~ 1] and assuming R(z) ex N -2, we see that a significant deviation 
from the zeroth density power of equation (32) would exist. 

The theory is simplified if the electrons that have undergone inelastic collisions 
can be separated from the others. A method of 'scanning' the energy distribution 
is described in Section 9 of Part I. Suppose a fine mesh grid is present at say z = ZOo 

Then the flux of electrons that have lost energy is r Ai(ZO) and the rest of the electrons 
make up the flux r Ae(ZO)' The grid-anode system acts as a single effective electrode 
which has some influence on the latter two fluxes. However, we omit the surface 
effects and assume as usual that electron-atom collisions dominate. We can regard 
r Alzo) and r Ae(ZO) as contributing to a source function for electrons near the grid 
and further let us assume that the grid-anode separation is small enough to neglect 
further inelastic collisions between them. Then equation (46b) of Part I in the present 
case is equivalent to 

(33) 

where rxG is introduced here to represent the fact that virtually all back-scattered 
electrons go to the grid rather than the cathode or electrode B. At z = Zo, rxG should 
be much larger than rxA' If rxG is not too strongly energy dependent then information 
about each separate r Ai and r A" can be obtained via equation (46a) of Part I. 
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4. Relation of Steady State to Pulsed Electron Source Transport Theory 

Rather than use continuous electron currents, an idealized experiment may instead 
use a pulsed electron sourceS. It is necessary to solve the full time dependent scalar 
and vector equations to get the time dependent pulse shapes of electron arrivals at 
the electrodes. Nevertheless, results obtained by our time independent analysis are 
still applicable. For instance, 

(34) 

is the probability that an electron reaches and is absorbed by electrode A without 
loss of energy in the gas. Similarly one can define PBe, P Ai and PBi. If these probabili
ties can be obtained by distinguishing the two groups of electrons by their different 
contributions to the current pulse shape, then information on qm(e) and q;(e-ei) is 
obtainable using the theoretical results already given. The average time for the 
electrons in each energy group to reach the electrodes can be calculated from the 
time independent theory. The time element dt is related to the number of collisions 
dXby 

dt = {l(e)jc} dX. 

Then using equation (30) of Part I specialized to infinite plane parallel electrodes we 
find that the average S to A transit time for electrons when there are no inelastic 
collisions is 

(35) 

This is not equivalent to the average transit time of electrons that do not suffer 
inelastic collisions even though inelastic collisions are energetically possible. At 
first sight this may seem a surprising statement. Before discussing it in detail we 
examine a closely related phenomenon. 

Let us define the probability of electrons in the zero energy loss group starting 
from S being absorbed by A as 

This probability can be obtained using equation (24) and its obvious extension to 
r Be(Z): 

P A(O) = (r AO - f L-d ~)(Z') ( ') inez') c(z') p(Z') dZ') 
-d rf.A(Z +rf.B Z 

( f L-d )-1 
X S - -d inez') c(z') p(Z') dz' , (36) 

and P A(O) is apparently not equal to P AO(O) which is just r AOj S. In order for these 
two probabilities to be equal it is easily shown that the condition 

fL- d 1 , , , (IXA(Z') rf.A(O)), _ 
4 11(Z )c(z )p(Z) (') ( ') - (0) (0) dz - 0 -d rf.A Z +rf.B Z rf.A +rf.B 
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needs to be satisfied. There is no reason why this should hold and, for example, it 
is easily shown to be false in the model of a resonant inelastic cross section. Similar 
to the statement that the average transit times of electrons that do not undergo 
inelastic collisions depend on whether inelastic collisions are energetically possible, 
we may find equally surprising the statement that the probability of transfer from S 
to A of the same electron group is also dependent on whether inelastic collisions are 
energetically possible. This initial surprise stems from the fact that any electron 
which itself does not undergo an inelastic collision does not 'know' anything about 
inelastic processes in the sense that it does not interact significantly with electrons 
that have lost energy. The solution to this paradox is that the averaging procedure 
is influenced by whether or not inelastic collisions occur. For instance when inelastic 
collisions are possible, rAe is more heavily weighted to those electron trajectories 
which have the lowest number of electron-atom collisions. Electrons with the longest 
paths to A are more likely to be selected out of the zero energy loss group. 

We can build up the expression for (S, A) for the zero energy loss electron group 
when inelastic collisions can occur using the techniques of Section 2, assuming 
p(z) ¥- 0 only for z ~ O. We begin by noting that with no inelastic collisions 

4 
dX(s) = l() () ds, eE s (XA s 

which is equivalent to equation (30) of Part I when da = daA for parallel plane 
electrodes. Let inelastic collisions only occur in the range z, z+dz. The average 
time interval corresponding to the distance dX (s; z; z) where z ~ z is just 

-t 
dt(s; z; z) = 4(tm)t s ( ) ds, 

eEr1.A z; z 
(37a) 

where s(z) == s. For z ~ z+dz the time interval for electrons that do not suffer 
inelastic collisions becomes 

(37b) 

whereas for those electrons that do lose energy equation (37b) is to be modified by 
replacing r1.A(Z) by r1.A(Z). The net average times of electron transit are then obtained 
by integrating between Ss and s(z) in the case of equation (37a) and integrating 
equation (37b) between s(z) and SA' By affecting the diffusion modified drift velocity 
of the electrons via r1.A(Z;Z), the average transit time of electrons in the zero energy 
loss group are influenced by inelastic collisions. 

One can go further and introduce two regions of inelastic collisions z,z+dz and 
z',z'+dz'. Because of the connection of rAe(z) with (XA(Z;Z;Z'), (XA(Z;Z') and r1.A(Z) 
in the regions Z ~ z < z', z+dz ~ Z < z' and Z ~ z' +dz' respectively, it is evident 
that dt(z) is always related to n(z) and r Ae(Z) by 

dt(z) = {n(z)/r Aiz)}dz, 

which leads us to 

fL - d 

t(S, A) = 0 n(z)Jr Ae(Z) dz. (38) 
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Equation (35) is a special case where F Ae(Z) = F AO. The same approach can be 
applied for electrons that suffer inelastic collisions. The average transit time of 
electrons that have an inelastic collision at Z is 

t '(S, A; z) = f: n(z')JF Ae(Z') dz' + {L-d 4Jc'(z') tX;"(z') dz' , 

where we have already substituted for the quantity 

dn'(z'; z)jdF Ai(Z) = 4Jc'(z') tX;"(z'). 

(39a) 

(39b) 

Here dn'(z'; z) represents the contribution to the number density of electrons which 
have inelastic collisions at z,z+dz, and dFAi(z) is their contribution to the flux for 
z' ;;?; z. Because these electrons are assumed not to undergo further inelastic collisions 
this latter flux is not z' dependent. The final expression for t'(S, A) is obtained by 
weighting over the conditional probability that the inelastic collision occurs in the 
range z, z + dz given that an inelastic collision definitely occurs between z = 0 and 
L-d. Of the electrons that are absorbed by electrode A, the probability that they 
have suffered an inelastic collision is FAlL - d)j FA- The contribution of z, Z + dz 
to this probability is 

The required conditional probability is F AJ F Ai(L - d) times this expression, and thus 
we find 

1 f L - d 

t'(S,A) = FAlL-d) ° in(z)c(z)p(z)t'(S,'A;z)dz. (40) 

Equations (38), (39a) and (40) assume that inelastic collisions only occur for 
Z ;;?; O. Equation (38) is not affected by inelastic collisions for z ~ 0 other than 
through n(z) and F Ae(Z) being affected by these collisions. Equations (39a) and (40) 
need to introduce p(z) for z ~ 0 explicitly. For z ~ 0 we have 

t '(S, A; z) = {O n(z')JF B.(z') dz' + {L-d 4Jc'(z') tX;"(z') dz' . (41) 

The expression for the conditional probability to weight equation (41) is not changed. 
Then combining the positive and negative z contributions we see that in general 

t '(S, A) = 1 d (f ° inez) c(z) p(z) dz f a n(z')JF Biz') dz' 
FAlL-) -d Z 

f L - d fZ 
+ a inez) c(z) p(z) dz a n(z')JF Ae(Z') dz' 

+ f ~:d inez) c(z) p(z) dz I L
-

d 4Jc'(z') tX;"(z') dZ') . (42) 

From equations (23) and (24) it can be shown that n(z)JF Ae(Z) is never larger than 
no(z)JF AO. It follows from equation (38) that t(S, A) ~ toeS, A). That inelastic 
collisions speed up the average transit time of the zero energy loss electron group 
is physically sensible because the least likely electrons to undergo inelastic collisions 
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are those that drift and diffuse from S to A the most quickly. The times t(S, A) and 
t'(S,A) have been derived under steady state conditions and how they relate to actual 
time dependent pulse profiles requires further development to time dependent 
transport theory. 

5. Summary 

The generalized electron source strength functions SA(Z) and SB(Z) and the 
generalized absorption coefficients IJ(A(Z) and IJ(B(Z) have been used to construct 
expressions for the electron number density and electron flux under simplifying 
restrictions appropriate for an atomic gas between a pair of closely spaced electrodes. 
The new method of taking into account inelastic collisions has been shown to be 
equivalent to solving the two-term approximation to the Boltzmann equation. 
Without appealing to special models of elastic and inelastic cross sections it has been 
possible to obtain a relatively general understanding of how inelastic collisions 
influence the electron flux. The connection between the results of our steady state 
analysis and parameters that may be measured in a pulsed electron source experiment 
has been pointed out. Although requiring further development in order to introduce 
less restrictive assumptions on the energy loss processes, it is believed that the methods 
and concepts introduced here have provided useful insights into the transport problem 
near the gas-electrode boundary. 
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Appendix 

So far the electron energies e(z) and e'(z) are parametrically dependent on z. To 
compare with the usual scalar and vector equations [see Huxley and Crompton 
(1974), equations (6.36) and (6.37)] it is necessary to make z and e independent 
variables. Because the swarm is made up of two different energy groups the obvious 
generalization of equation (7) in Part I is 

go(z,e) = h(z,e)c5(e-e(z)) +h'(z,e)c5(e-e'(z»), (Ala) 
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with 

n(z) = 2n(2/m)3/21'.(Z)th(z, I'.(z») , n'(z) = 2n(2/m)3/21'.'(z)th'(z, I'.'(z». (Alb,c) 

SimilarJy equation (5) Part I is replaced by 

I'.gl(Z,I'.) = 'l'Aiz,I'.)c5(I'.-I'.(z» +'l'AI(Z,I'.)c5(I'.-I'.'(z», (A2a) 

with 

Using these expressions for go and I'.gl the time independent scalar equation [see 
equation (3a) in Part I] becomes 

and the vector equation [see (3b) in Part I] becomes 

ogo(z,l'.) .Eogo(z,l'.) gl(Z,I'.) -.,,--- + e + --
OZ 01'. 1(1'.) 

= .(Oh(Z, I'.) Eoh(z,l'.) 'l' Ac(Z, 1'.»);":( _ ( » 
oz +e 01'. + d(l'.) U I'. I'. Z 

Equations (A3) are derived using the identity 

oc5(I'.'-I'.(z» E oc5(I'.-I'.(z» - 0 
~ +e ~ -. vZ vI'. 

To advance further we need to postulate explicit expressions for 'l' A.(Z, 1'.) and 
'l'AI(Z,I'.). There is a degree of non-uniqueness when decoupling z from I'.(z) so that 
a trial and error approach is required, using as guides equations (Alb), (Alc), (A2b) 
and (A2c), the definition 

h(z,l'.(z» = f h(z,I'.)c5(I'.-I'.(z» dB 

etc. and equations (18), (23) and (24). It is postulated that 

f ql(I'.' -1'.1) , 
'l'Aiz,l'.) = iBIXA(I'.) h(z, 1'.) +31'. IXA(I'.) N IXA(B') dB 

fL - d 

X z h(z',I'.')c5(I'.'-I'.(z'»dz', (A4a) 
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Note that YA;{Z, e) is actually independent of e. The RHS of equation (A3a) can now 
be calculated. The result is considerably simplified by collecting terms of the same 
form as those within the large parentheses in equation (A3b). Both these terms in 
parentheses are zero as is easily proved from equations (20) and (22). The scalar 
equation reduces to 

X q;(e' -e;) h{z, e')b{e' -e{z» de' . (AS) 

It is easily seen that cxA{e) and cxA{e') actually disappear from the RHS because the 
only nonzero contribution is for e = e'. As required, our scalar equation can be 
formulated independent of the boundary condition. Equation (AS) can be rewritten 
as 

oegl{z,e) + eEoeg1{z, e) = 3Nf {b(e-e'{z»-b{e-e{z»} 
oz oe 

X q;(e' -e;)e'h{z, e')b{e' -e(z» de' . (A6) 
We can write 

h{z,e')b{e-e(z»b(e' -e(z» = {h(z,e)b{e-e{z»} b(e' -e), 

and hence 

h{z, e') b{e-e{z»b{e' -e{z» = go{z, e)b{e' -e). (A7a) 

Defining el = e+e; and noting that b{e-e'{z» = b{el -e{z», we find 

h{z, e') b{e-e'{z»b{e' -e{z» = go{z, el)b{e' -el)' (A7b) 

These results reduce equation (A6) to 

Equation (6.36) of Huxley and Crompton (1974) can be written as 

ogo(r,e, t) 1 ° ( ) 
ot +te'Vr ·g1{r,e,t) + 4ne2 oe nO'E(r,e,t) -nO'coll{r,e,t) = 0, (A9a) 

where 

O'cou{r, e, t) = O'ce{r, e, t)+O'c;{r, e, t). 

(A9b) 

(A9c) 
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Here (Jce and (Jei are elastic and inelastic collision cross sections defined for electron 
fluxes across c, c+dc in velocity space. We only need the steady state case neglecting 
elastic collisions; (J coli is then approximated by 

(AlO) 

where Cj is the electron speed at the threshold energy and Cl = (c2 + cDt. Transform
ing equations (A9a) and (AlO) to the variable e we find that 

(All) 

which is equivalent to equation (A8). Our technique of introducing inelastic collision 
effects on the electron flux and number density through generalized electron source 
strengths and 'electrode' absorption coefficients Il(A(Z) and Il(B(Z) is equivalent to solving 
the scalar equation. 

The appropriate steady state vector equation is (Huxley and Crompton, equation 
6.37) 

(AI2) 

where qlj(e-ej) is only nonzero through anisotropy of the inelastic collision cross 
section (see Huxley and Crompton, equation 6.6). Equation (A3b) omits the two 
terms in the second line of equation (A12), but otherwise agrees. This discrepancy 
corresponds to the contribution of inelastic collisions to the momentum transfer; 
however, for atomic gases where the inelastic cross section is generally much smaller 
than the elastic cross section this is not a serious omission. It is worth noting that 
isotropic inelastic collisions can be treated exactly by our method by simply redefining 
lee) everywhere to incorporate the first term in the second line of (AI2) in the mean 
free path. Our method of solving the electron flux problem taking into account 
inelastic collisions is equivalent to the assumption that the major effect is through 
the distribution of energies .ro. Because of the very large energy losses ej this is an 
excellent approximation for atomic gases. 

Very little of the theory is changed if more than one inelastic threshold is introduced, 
provided that any given electron is restricted to no more than one inelastic collision. 
The go and eg 1 given by equations (Ala) and (A2a) only req~ire the introduction of 
more terms to take into account more energy classes. Each energy class satisfies 
equations of the form of (20) and (22). Equations (23) and (24) only need to replace 
p(z) by the sum Li p;(z) and equation (18) is essentially unchanged except that 
r Ai(Z) is associated with its own Pi(Z) and absorption parameters Il(~) and Il(~). 
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