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The velocities of propagation of elastic waves in caesium thiocyanate have been measured along 
the three orthorhombic axes and normal to the (110), (011) and (101) planes using a double-transducer 
technique at 10 MHz. The velocities are found to be consistent with the orthorhombic crystal 
symmetry, and in favourable agreement with a recently published rigid-ion model calculation. 
The calculated elastic stiffness constants have values C11 = 18'9±0'7, C22 = 20·6±1·0, 
C33 = 28·1±1·6, C44 = 1'96±0'05, Css = 7·30±0·2, C66 = 3·04±0·07, C12 = 7'8±4'3, 
Cl3 = 14·8±4 and e23 = 6·3±4GPa. The calculated values for the adiabatic bulk modulus 
and the low temperature limiting value of the Debye temperature are 13·2 ± 3·5 GPa and 132 K 
respectively. 

1. Introduction 

The alkali metal thiocyanates have crystal structures consisting of spherical 
cations and rod-shaped anions. These substances are of interest because of order­
disorder type phase transitions involving the orientation of the anions which occur 
just below their melting points. 

Potassium thiocyanate' has been extensively studied by X-ray diffraction (Klug 
1933; Yamada and Watanabe 1963; Akers et al. 1968), thermal expansion 
(Sakiyama et al. 1963), heat capacity (Vanderzee and Westrum 1970; Kinsho et al. 
1979), differential thermal analysis (Sakiyama et al. 1963; Braghetti et al. 1969) 
and spectroscopic investigations (Jones 1958; Iqbal et al. 1972; Dao and Wilkinson 
1973; Ti et al. 1976; Owens 1979). 

By comparison caesium thiocyanate has received little attention, as only the 
crystal structure for the room temperature phase (Manolatos et al. 1973) and a 
differenti!ll thermal analysis investigation of the transition under pressure (Klement 
1976) have been reported. 

Recently, lattice dynamical calculations based upon a rigid-ion model have been 
made for both potassium and caesium thiocyanate (Ti et al. 1978; Ti and Ra 1980a, 
1980b)., The model potential parameters were determined from lattice stability and 
static equilibrium conditions. The calculated zone centre energies for the optic 
modes agreed favourably with the available Raman data (Ti et al. 1977). 

In the present paper measurements of the elastic constants for caesium thio­
cyanate using ultrasonic techniques are reported. These are the initial results in a 
more extensive study to determine the dispersion relations for this crystal using 
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inelastic neutron scattering. The results so far compare favourably with the initial 
slopes of the dispersion curves derived from the model calculations of Ti and Ra. 

2. Experiment 
The room temperature phase of caesium thiocyanate is orthorhombic with space 

group P nma. Plate-like single crystals were grown from water solution by evaporation. 
Growth was predominantly in the plane normal to [001]. The crystals were aligned 
from Laue back-reflection X-ray photographs with a maximum error in orientation 
of one degree. Faces on opposite sides of the crystals, normal to the required 
propagation directions, were ground and polished using grinding papers down to 
1200 grade and then 6 .um diamond grit. The final samples had thicknesses between 
5 and 10 mm. 

Ultrasonic velocities were measured using a double-transducer technique as 
described by Papadakis (1967). One transducer was excited by a 50-100 V peak-to-peak 
10 MHz r.f. pulse train, and the resulting echo train was detected by a similar trans­
ducer bonded to the opposite face. The received signal was displayed on an oscillo­
scope which was triggered by an external oscillator with a period comparable with 
the round-trip travel time of the pulse in the crystal. Additional electronics made it 
possible to intensity-modulate the display and to trigger the transmitter coherently. 
The frequency of the external oscillator was then adjusted to overlap the r.f. cycles 
of two successive echoes displayed on the oscilloscope, and from the measured 
frequency the round-trip travel time was determined. 

There is not one unique overlap condition, but several displaced from each other 
by whole r.f. cycles. The choice of the correct overlap corresponding to the true 
round-trip travel time was determined using McSkimin's criterion (Papadakis 1967) . 
. We believe that the cyclic mismatch of these results could be up to one r.f. cycle, 
because of the small acoustic impedance of the crystal and unknown bond thicknesses, 
which could introduce large phase delays on reflection from the transducer interface. 

The transducers used were fine-ground X- and Y-cut quartz, O· 125 in (3' 17 mm) 
in diameter and coaxially gold plated. The nominal resonance frequency of each 
transducer was 10 MHz. The bonding materials used were a commercially available 
epoxy-resin glue, '5 minute Araldite', and 'Apiezon' vacuum grease. It was found 
that in the case of the transverse vibrating Y-cut transducers only the solid bond 
obtained with Araldite provided enough mechanical coupling to generate a pulse 
of sufficient amplitude for the velocity to be measured. However, in the case of the 
longitudinal vibrating X-cut transducers, the Apiezon grease could be used. 

The alignment of the transducers for the transverse measurements was done by 
eye relative to the appropriate crystallographic directions. Consequently, the 
polarization for the transverse measurements could have been in error by up to 50 
from the desired direction. Such an error should only affect the amplitude of the 
echo signal and should not alter the measured velocity. Furthermore, this type of 
misalignment should result in the appearance of an echo train corresponding to the 
transverse mode at right angles to that being measured. This was not observed and 
so it was assumed that any misalignment was not significant. For all modes measured, 
echo trains consisting of two or more echoes were observed. 

In an orthorhombic system there are nine nonzero elastic constants (Nye 1967). 
The six diagonal terms cij can most easily be measured along the principal crystallo­
graphic directions while the off-diagonal terms can only be measured along non-
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Table 1. Ultrasonic velocities and associated elastic stiffness constants for CsSCN at 293 K 

p is the density; I, m and n are the direction cosines for the appropriate direction; (av.) denotes 
that the average velocity was used in determining CI) 

V (kms- l ) 

Vxx 2·S2±O·04 

V" 2·63±O·O6 
V,z 3·07±O·O8 

VYZ O·81±O·01 
V,y O·81±O·Ol 
Vx, 1·S6±O·02 
Vzx 1·S7±O·02 

VXY l·00±O·Ol 
VyX 1·02±O·Ol 

f(llO)1 2·40±O·O4 

f(UO)t 1·39±O·02 

f(OU)1 2·38±O·O6 

V(Oll)t 1·70±O·O3 

V(101)1 2·96±O·O9 

V(101)t 1·14±O·O2 

Elastic constant (GPa) 

Cu = 18·9±O·7 = pV2 

C22 = 20·6±1·0 
C33 = 28·1±1·6 

C44 = 1·96±O·OS 

C55 = 7·30±O·21 (av.) 

C66 = 3·04±O·07 (av.) 

Cl2 = 7·9±4·1 
= [(PCu + m2C66 - p V2)(PC66 + m2c22 - p V 2)/Pm2]1/2 - C66 

Cl2 = 7·6±3·S 
= [(/ 2c11 +m2c66 - pV2)(/2c66+m2c22 - p V2)/12m2]1/2-c66 

C23 = 6·4±4·8 
= [(m2c22 +n2c44 - pV2)(m2c44+ n2c33 - pV2)/n2m2]1/2-c44 

C23 = 6·1±2·7 
= [(m2c22 +n2c44- p V2)(m2c44+n2c33 - p V 2)/n2m 2]1/2 -C44 

Cl3 = 14·3±7·3 

= [(PCu + n2CS5 - p V2)(PCS5 + n2C33 - p V 2)/1 2n2]1/2 - css 
Cl3 = lS·2±3·9 

= [(PCu + n2css - p V2)(Pcss + n2c33 - p V 2)/Pn2]1/2 - c" 

principal directions. The velocities of a longitudinal and two transverse modes were 
measured along each of the orthorhombic axes. These are denoted by Vij where i 
and .i indicate the directions of propagation and displacement vectors respectively 
(Manolatos et al. 1973). The velocities and the six directly derivable stiffness constants 
(McSkimin 1964) are listed in Table 1. 

The off-diagonal constants were derived from quasi-longitudinal and quasi­
transverse modes along crystal directions chosen for ease of alignment and for the 
partial diagonalization of the secular equation (Neighbours and Schacher 1967). 
These directions were normal to the crystal planes (110), (011) and (101). The 
velocities are labelled by these planes and a suffix, either 1 (longitudinal) or t (trans­
verse), to indicate the nature of the transducer employed. The polarization of the trans­
verse measurements was aligned parallelto the [110], [011] and [101] crystal directions 
respectively. Two of the modes along any off-diagonal direction are not pure, in 
that the displacements are neither parallel nor perpendicular to the propagation 
direction. These are denoted as being 'quasi-longitudinal' or 'quasi-transverse' 
because the deviation from pure mode behaviour was subsequently calculated to be 
small. The remaining mode is pure transverse with displacements perpendicular to 
the plane of interest. It was not measured because the velocity is only dependent 
on previously measured diagonal constants. The off-diagonal velocities and their 
functional dependence on the elastic constants (McSkimin 1964) are listed in Table 1. 

To calculate the elastic constants the density of the material was measured to be 
2·98±0·01 g cm- 3 at 293 K by the displacement method using chloroform. This 
may be compared with the X-ray value of 3· 025 g cm - 3 calculated from the lattice 
parameters (Manolatos et al. 1973). 
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3. Results 

The ultrasonic velocities and associated elastic constants at 293 K are summarized 
in Table 1. The errors in the velocities are predominantly due to the one r.f. cycle 
uncertainty in the correct overlap condition. More velocities than needed for 
determining the elastic constants were measured to check the consistency of the 
velocity measurements. The transverse velocities Vij and Vji must be identical by 
symmetry and experimentally are equal within the quoted errors. The quasi­
longitudinal and quasi-transverse velocities for the off-diagonal measurements 
represent the two roots of the quadratic secular equation. The off-diagonal elastic 
constants derived from the measurement of both roots agree, which again indicates 
the consistency of the data. 

The quoted errors in the off-diagonal elastic constants are large, firstly because 
of the dependence of these constants on other moduli, and secondly on account of a 
significant uncertainty in the alignment of the propagation direction. It should be 
noted that the quoted error represents the worst possible error, and the concordance 
of the longitudinal and transverse off-diagonal measurements indicates a greater 
accuracy than shown by the quoted errors. 

~ ............ Vz:v 
... _,... I I I 

o 0·2 0·4 0·6 0·8 1 o 0·2 0·40·60·8 1 o 0·2 0·4 0·6 0·8 

kz / k max 

. Fig. 1. Dispersion curves for the acoustic modes of CsSCN calculated by Ti and Ra (1980a). 
The broken line indicates the initial slopes as determined from the measured velocities. 

For comparison, the ultrasonic velocities along the orthorhombic axes, together with 
the dispersion curves by Ti and Ra (1980a) for the acoustic modes, are presented in 
Fig. 1. The labelling, Lm, of the curves follows the notation adopted by. Ti and Ra. 

The elastic constants fully describe the elastic behaviour of the crystal. The 
eigenvalue problem for propagating an elastic wave can be solved using the measured 
constants for any arbitrary direction. Figs 2a-c show the dependence of the calculated 
velocities of the three modes of propagation for directions in the xz, xy and yz planes 
respectively. The measured velocities are also shown. These plots readily illustrate 
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Fig. 2. Calculated velocities of propagation for acoustic modes in the xz, xy and yz planes 
(a-c); projections of the unit cell on the respective planes with atomic radii not drawn to 
scale (d-f). The actual measured velocities are shown by the open circles and the sense of e 
in each plane is indicated. 
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the anisotropy of the elastic behaviour. The velocity for the longitudinal mode, 
which is relatively isotropic, has a maximum value along the [001] direction. The 
minimum longitudinal and the maximum transverse velocity both occur close to 
the [011] direction. 

Only for propagation along the principal crystallographic directions do all three 
elastic waves have pure modes of vibration. In any arbitrary direction within a 
principal plane, only the transverse wave, with polarization out of the plane, is a 
mode of pure vibration. The velocity for this wave is denoted by a broken curve 
in Figs 2a-c. The other two modes may be excited to be predominantly longitudinal 
or transverse in character, but the displacement vectors for such quasi-longitudinal 
and quasi-transverse modes will be directed at angles of ¢ and 90° + ¢ to the 
propagation direction respectively. 

It is possible, for suitable combinations of direction cosines and elastic constants, 
that directions can occur for which ¢ = 0, resulting in 'accidental' pure modes. The 
dependence of ¢ on the propagation direction, described by e (see Fig. 2) in the 
principal planes is shown in Fig. 3, from which it is seen that 'accidental' pure modes 
occur in all three planes. However, whereas these pure modes occur close to the 
[011] and [110] directions for the xy and yz planes, the pure mode in the xz plane 
lies close to the z-axis. 

The adiabatic bulk modulus Bs was determined from the expression 

Bs = l/(Sl1 +S22+S33+2S13+2S23+2S12), 

where sij are the elastic compliances which were determined by inverting the cij 

matrix. An estimate of the worst error in Bs was determined by inverting all per­
mutations of the various extreme values of Cij' obtained by adding or subtracting 
the error from the value. The calculated value is 13·2 ± 3 . 5 GPa. 

Finally, an estimate for the value of the elastic Debye temperature e~l was 
determined from the elastic constants by integrating over 5868 directions in one­
quarter of the unit sphere. The result is 132 K. 

4. Discussion 
From Fig. 1, it can be seen that there is generally good agreement between the 

initial slopes of the calculated dispersion curves and the experimental velocities. 
These measurements represent the first experimental test of the wave-vector dependence 
of the calculated acoustic phonon dispersion curves for caesium thiocyanate. While 
the agreement lends support to the rigid-ion model and the stability criteria adopted, 
the acoustic modes close to the zone centre do not provide a severe test of the model. 
For such modes the relative changes in the positions of the atoms within the unit 
cell are small and therefore the effects of electronic polarization, which are not catered 
for in the model, will not be significant. A more rigorous test of the model requires a 
wider exploration of both the acoustic and optic mode branches away from the zone 
centre. 

Major discrepancies do occur for those modes corresponding to the velocities 
Vxx and Vzy. In the latter case the calculated mode has negative energies. In view 
of the relatively low energies for this mode, the failure of the model may be due to 
numerical rounding errors in the eigenvalue problem for that particular symmetry 
group and propagation direction or, alternatively, the residual forces acting on the 
atoms may not be small enough to produce a valid prediction for this mode. 
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We note also that the mode denoted by LZ8 corresponding to Vyz has a pronounced 
dip at k = 0·5 kmax • Since the elastic constant appropriate to this mode is identical 
to the mode for which the model gave negative energies, it is probable that the dip 
merely reflects the numerical limitations of the model. However, it is interesting to 
speculate that such a softening of the LZ8 mode may be responsible for the phase 
transition which occurs at 197°C. This transition in the related potassium compound 
is associated with the librational fluctuation of the NCS - anion (Owens 1979). 
The calculated librational component for the LZ8 mode at k = 0·5 k max is only 3 % 
for caesium thiocyanate at room temperature. However, it is possible that this may 
increase as the temperature increases. 

The values for the bulk modulus and Debye temperature fall within the range 
of values for the same parameters for other caesium ionic crystals, i.e. the caesium 
halides have bulk moduli which range from 14 to 26 GPa and elastic Debye temper­
atures from 130 to 175 K. Specific heat data for CsSCN have not been reported, 
however, measurements have been made by Vanderzee and Westrum (1970) for 
KSCN and NH4SCN. Their values for eg are 2lO and 238 K respectively where 
these correspond to Avogadro's number of molecular units per mole. As the value 
of e~1 corresponds to Avogadro's number of atoms it is necessary to divide the values 
of eg by the cube root of 4 and 8 respectively for comparison with e~'. This gives 
values of 132 K (KSCN) and 119 K (NH4SCN) which are close to the elastic value 
for CsseN. 

While there is marked anisotropy in the stiffness of the crystal for the propagation 
of transverse vibrations, the similarity of the elastic behaviour for the xy and yz 
planes is striking. Ultimately, the anisotropy of the elastic properties of the crystal 
must be related to the symmetry of the bonding within the crystal. Projections of the 
unit cell onto the three principal planes are shown in Figs 2d-f From these, the 
planar-like stacking of the atoms along the [OlO] direction and the similarity of the 
xy and yz planes are clearly seen. A detailed theoretical description of the connection 
between the crystal structure and the elastic properties is currently being investigated. 
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