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Abstract 

The dynamics of high speed streams of solar plasma emanating from a coronal hole is investigated 
by use of a two-fluid model with polytropic equations of state. Steady outflow is considered along a 
flow tube which has a radial orientation with respect to the Sun, and a cross-sectional area propor
tional to r' where r is the heliocentric radius and s is a divergence parameter (~2). All the flow 
variables are assumed to be functions of r only. The equations of continuity, momentum and state 
may be used to obtain a single, nonlinear, ordinary differential equation for the outflow velocity, 
and the problem reduces to the numerical solution of three pairs of simultaneous algebraic equations. 
It is found that the velocity profiles are generally highly dependent on the divergence parameter s, 
as well as the polytropic indices. Numerical results are given for a variety of cases most relevant 
to the solar corona. As s increases from 2, the value appropriate to purely spherically symmetric 
expansion, the outflow velocity increases throughout the range from the coronal base out to infinity, 
over a certain parameter range. Although the terminal outflow speed for s > 2 may be far in excess 
of the purely spherically symmetric value, we find that high speed streams emanating from coronal 
holes cannot be accounted for by geometrical effects alone. The results may have important applica
tions in the general theory of stellar winds. 

1. Introduction 

A coronal hole is a region of the solar corona in which the density and temperature 
are abnormally low, and is characterized by diverging magnetic field lines of single 
polarity. Coronal holes were first recognized by Burton (1968) and Tousey et al. (1968), 
and are now generally considered to be the source of high speed streams in the solar 
wind and possibly the major source of solar wind plasma (Munro and Withbroe 1972; 
Kopp and Holzer 1976; Hundhausen 1977; Zirker 1977; Munro and Jackson 1977). 
Coronal hole models have been devised with varying degrees of sophistication (see 
Pneuman 1980, and references therein). In common with most previous authors, we 
shall assume an idealized, hypothetical magnetic field configuration, and examine 
coronal expansion in a specified non-radial flow tube. We shall extend the well known 
model of Parker (1963) to obtain the new result that, as the divergence of a flow tube 
increases, the expansion velocity of the fluid increases throughout the flow, under 
certain parameter restrictions. The application of this model to coronal holes is new. 
Although the model predicts that high speed streams emanating from coronal holes 
cannot be accounted for by purely geometric effects, the results may have important 
implications in stellar wind theory. 
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2. Assumptions 

(1) The coronal gas is a fully ionized, electrically neutral hydrogen plasma, i.e. an 
electron:-proton gas in which the electron number density is equal to the proton 
number density. 

(2) The electron and proton gases behave as fluids, each with a bulk radial 
streaming speed u, and respective macroscopic temperatures Te and Tp. 

(3) The electron and proton gases are ideal, and are described by polytropic 
equations of state in which the respective polytropic indices are OCe and ocp 

(1 ::::;; OCe ::::;; ocp ::::;; t)· 
(4) Coronal outflow is steady and takes place in flow tubes oriented radially to the 

Sun, but with a cross-sectional area proportional to r S , where r is the 
heliocentric radius and s (~2) is a parameter which measures the divergence 
of the flow tube; purely spherically symmetric flow corresponds to s = 2. 

(5) All dependent variables are functions of r only. 

(6) The effects of solar rotation are negligible. 

3. Equations of Model. 

For the equations of the model we have: the equation of continuity 

purS = Po uo ro ; 
the equation of motion 

the ideal gas laws 

Pe = (kB p/2m)Te, 

PeO = (kBPo/2m)Teo , 

and the polytropic equations of state 

Pe = PeO(P/ Po)"", 

Pp = (kBP/2m)Tp, 

Ppo = (kBPo/2m)Tpo ; 

(1) 

(2) 

(3a, b) 

(3c, d) 

(4a, b) 

In equation (1) ro is the coronal base radius. Throughout this paper the zero 
subscript is used to denote a quantity evaluated at r = roo The remaining quantities 
in equations (1)-(4) that have not been defined hitherto are as follows: P is the total 
mass density of the gas; P e and P p 'are the respective electron and proton gas pressures; 
m is the mean particle mass; kB is the Boltzmann constant; M is the solar mass; 
and G is the constant of gravitation. 

If we adopt the nondimensional variables 

IjJ = mu2/2kB Teo, ~ = r/ro, 

then from equations (1)-(4) we may derive the equation 

(5) 
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where we have introduced the nondimensional constants 

f3 = mGM/kB Teo ro , 

Since all the flow variables in the model are expressible in terms of ljJ only, we have 
thus reduced the problem to the solution of the nonlinear ordinary differential 
equation (5) for ljJ. 

We may note that by setting lXe = IXp = IX and y = 1 we obtain Te = Tp , and 
equation (5) then describes a one-fluid model (Parker 1963). 

4. Analysis 

Equation (5) may be integrated to give the following (Bernoulli) energy integrals: 

(6) 

= ljJo+-tY(~)-f3, 
IXp -1 

(7) 

(8) 

Since we expect the coronal gas to expand from the coronal base into the negligible 
pressure of interplanetary space via a subsonic-supersonic transition, then we shall 
require that the solution ljJ passes through a critical point (ljJe, 0 (itself a sonic point) 
of equation (5), and that the branch ljJ is chosen such that the pressure P ~ 0 as 
<! ~ 00. From equation (5) we find that 

Equations (9) and (lO) may be expressed in the form 

(
2S)s(ae-l) 

./A-{2s+ l-ae(2s-1)} _llX ./,-Hae-l) _ 
'l'e 4 ,,'1'0 f3 

(9) 

(10) 

(11) 

(12) 
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Moreover, the critical point (t/le, ~e) must be a saddle-point (or X-type singular point). 
The conditions that the point (t/le, ~J both lies on the integral curves (6)-(8) and is 
also a saddle-point lead to the further results: 

2s+1 
1 < lXe < IXp ~ --1' s ~ 2 2s-

2s+1 
or 1 < lXe = IXp <2s -1 ' s ~ 2 ; (13) 

= t/lo +1YCplX~ 1) - jJ, 
2s+1 

1 = lXe < IXp ~ --, s ~ 2; (14) 
2s-1 

1(1 +y) log{ t/l3(~r t/lt(2S-1)} - (2s -l)t/le 

= t/lo-jJ, lXe = IXp = 1, s ~ 2. (15) 

Thus, the problem is finally reduced to the solution of the three pairs of simultan
eous algebraic equations (12) and (13), (12) and (14), and (12) and (15). For the 
required critical solution corresponding to an appropriate solution pair (t/lo, t/le) of 
equations (12) and (13), the speed of the coronal gas increases monotonically to 
approach a terminal value Uoo given by 

_ mu oo _ 1 lXe 1 IXp 
2 () ( ) t/I 00 - 2kB Teo - t/I 0 +"2 lXe _ 1 +"2Y IXp -1 - jJ . (16) 

For similar critical solutions obtained from equations (12) and (14), and (12) and 
(15), the gas speed increases monotonically and without bound according to the 
asymptotic forms t/I = 1S log ~ + ... , and t/I = s log ~ + ... , as ~ ~ 00, in the respective 
cases. In the special case lXe = IXp = 1, equation (12) yields the solution t/lc = t(1 + Y), 
the corresponding value of t/I 0 then being given implicitly by equation (15). In general, 
the pairs of equations (12) and (13), and (12) and (14), do not possess explicit analytic 
solutions. However, in the special and important case s = s* = 2jJ/(lXe + YlXp), each 
pair of equations (12) and (13), (12) and (14), and (12) and (15) has the solution 
t/lo = t/le = t(lXe+YlXp), corresponding to ~e = 1 from equation (11). Physically, this 
solution corresponds to the limiting case when the outflow of coronal gas is super
sonic immediately upon leaving the coronal base. We shall make particular use of 
this solution in the following section to demonstrate how in the present model an 



Coronal Hole Dynamics 97 

increase in the flow divergence parameter s causes the critical (sonic) point in the 
flow to approach the coronal base, with a consequent increase in velocity throughout 
the flow and, in particular, at the orbit of the Earth. 

Table 1. Coronal expansion parameters derived from equations (6)-(8) and (11)-(16) 

The expansion velocities Uo at the coronal base, UE at the orbit of the Earth, and Uoo at infinity, 
are expressed in km s -1. The upper and lower values in each entry correspond to p = 5· 773 

(To = 2 x 106 K) and p = 7 ·697 (To = 1· 5 X 106 K) respectively 

1,1 

1·01,1'01 

1·1,1·1 

1,1'1 

1,1'2 

1,1' 3 

1,1'4 

1,1' 5 

1,1'6 

l,t 

1'1,1' 2 

21·3 
4·75 

20·02 
4·14 

9·6 
0·29 

16'0 
2·27 

11·1 
0·89 

7·18 
0·37 

4·86 
0·19 

3·45 
0·12 

2·61 
8·7x 10- 2 

2·21 
7·4x 10- 2 

4·08 
8·1 x 10-4 

753 2·89 
628 3·85 

714 2508 2·99 
589 2150 4·06 

421 588 4·69 
267 404 9·90 

610 
487 

539 
428 

508 
409 

493 
403 

488 
402 

486 
402 

486 
402 

302 
199 

424 
199 

3·44 
5·04 

4·11 
6·34 

4·78 
7·19 

5·26 
7·53 

5·53 
7·65 

5·66 
7·68 

5·71 
7·69 

5·118 
37·01 

5. Results and Discussion 

5·77 182 1354 
7·69 157 1341 

5·72 183 1229 2514 
7·62 158 1180 2155 

5·25 191 587 618 
6·99 165 425 437 

5·49 
7·33 

5·25 
6·99 

5·02 
6·69 

4·81 
6·41 

4·62 
6·16 

4·44 
5·92 

4·33 
5·77 

5·02 
6·69 

186 
161 

191 
165 

195 
169 

199 
172 

203 
176 

207 
179 

210 
182 

195 
169 

1017 
966 

915 
876 

861 
828 

822 
792 

790 
762 

763 
736 

747 
719 

443 
251 

467 
261 

Equations (6)-(8) and (11)-(15) were solved for a variety of conditions expected 
to prevail in the solar corona. The results are given in Table 1 in which the upper 
entries correspond to f3 = 5· 773 (To = 2 x 106 K) and the lower entries to f3 = 7·697 
(To = 1· 5 X 106 K). Values for the expansion velocity at the coronal base, the orbit 
of the Earth and infinity (uo, UE and Uro respectively) are given both in the purely 
spherically symmetric case (s = 2), and in the case in which the divergence parameter 
s takes on its special (maximum) value s = s* = 2f3/(rxe + yrxp). For each case of 
purely spherically symmetric flow the location of the critical (sonic) point is also 
given. It has been assumed that y = Tpo/Teo = 1, and that ro = Ro, the solar radius. 
The change in the divergence parameter from s = 2 to s = s* is designed to simulate 
a change from purely spherically symmetric coronal outflow to outflow from a 
coronal hole, and hence the results in Table 1 may be readily used to check the 
effectiveness of the present model. Observations reveal that the 'quiet' solar wind 
velocity UE at the orbit of the Earth is about 450 km s -1, corresponding to a coronal 
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base velocity Uo :::; 10 km S-l and temperature To :::; 2 X 106 K. High speed solar 
wind streams typically reach speeds greater than or equal to 600 km S-l and, while 
corresponding coronal base conditions are not completely known (Munro and 
Jackson 1977; Crifo-Magnant and Picat 1980; Kovalenko and Molodykh 1980), it 
is expected that coronal expansion speeds reach at least 100 km S-l within a distance 
of one solar radius of r = Ro, and that coronal base temperatures are lower than those 
in quiet regions. In all cases in Table 1 the values of uo, UE and UCfJ (u oo does not exist 
if exe = 1) for s = s* (> 2) exceed their corresponding values for s = 2. In particular, 
in all cases we find that [uo]s~s' ~ 157 km S-l. These two features support the argu
ment that the dynamical configuration in the present model reflects some of the gross 
characteristics of coronal hole dynamics. It is clear from the results that an increase 
in the divergence parameter from s = 2 can lead to a great increase in solar wind 
speed at the Earth, in some cases more than a 100 % increase while commonly more 
than 60 %. The 'best-fit' cases, namely those cases that typically might represent 
observed high speed streams, are included in the cases exe = 1 (isothermal electrons), 
and 1·1 :::; ex p :::; 1· 3. We observe that the two-fluid case with non-isothermal electrons 
ae = 1· 1, ap = 1·2 for s = 2 and f3 = 5· 773 produces a rather low value of UE 

(= 302 km s -1), and for s = s* = 5·02 does not produce a realistic high speed 
stream. Of the one-fluid cases (ae = ap) the case f3 = 5· 773, ae = ap = 1'1, s = s* = 
5·25 best simulates a high speed stream. Nevertheless, it is clear from the analysis 
in Section 4 and the results in Table 1 that it is not possible to account for high speed 
streams emanating from a coronal hole by an appropriate divergence of the flow 
tube. A more effective model of gas emanating from a coronal hole must incorporate 
a realistic energy equation, as opposed to the above polytropic equations of state. 
Unfortunately, at present neither theory nor observation is sufficiently advanced to 
permit a formulation of the appropriate energy equation. The results of the present 
paper may have important implications in stellar wind theory with regard to the 
calculation of the terminal velocity of a stellar wind. On the basis of the present 
calculations based on solar parameters, the terminal wind speed appropriate to a 
strongly diverging flow tube may be more than twice its value corresponding to 
purely spherically symmetric flow. Thus it is clear that the assumed flow-tube 
geometry in a general stellar wind model may be a crucial factor in the calculation 
of its terminal speed. 

We note that Adams and Sturrock (1975) incorporated in their coronal hole model 
a one-fluid version of the above flow tube with divergence parameter s, but in their 
model the asymptotic (terminal) flow speed decreases as s increases, contrary to 
observation. 
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