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Abstract 

Analogies to hydrodynamics led recently to the derivation of a nonlinear Schrodinger equation 
for the elastic scattering of heavy ions (Delion et al. 1978). In the present paper, the numerical 
solution of this equation is shown to yield realistic values for the nuclear compressibility modulus 
K = 9C, with very small uncertainties. 

1. Introduction 

Recently, analogies to hydrodynamics have been shown to yield a nonlinear 
SchrOdinger equation (NOSE) describing the elastic scattering between heavy ions 
(Deli on et al. 1978). In preliminary applications the nonlinearity has been successfully 
approximated by phenomenological repulsive potentials (Delion et al. 1978; Gridnev 
et al. 1978). In another study (Deli on et al. 1980) the compression of nuclear matter 
in the region of contact between the colliding ions has been discussed with the aid 
of simplified trapezoidal form factors for the nuclear charge densities involved. 

In each of these studies, the compressibility modulus of (finite) nuclear matter 
K = 9C was the only adjustable parameter (apart from the rather a priori choices 
for the phenomenological form factors of the matter/potential distributions and for 
the repulsive potentials used so far). The values for K arrived at range from 170 to 
230 MeV, i.e. they are fully in line with results in the literature based on more con­
ventional approaches (cf. e.g. Blaizot et al. 1976; Bohigas et al. 1979). The point 
to note is that, within the model used (see Sections 2 and 3), there is very little if any 
freedom in the determination of this fundamental quantity. 

The aim of this paper is to present the first results obtained upon solving the NOSE 
numerically, In doing so, attention is drawn to the unexpected feature that, even with 
an incomplete knowledge of the required experimental data (i.e. the angular dis­
tributions for the differential cross sections da/dQ of elastically scattered heavy ions), 
it is possible to determine K·= 9C with surprisingly small uncertainties. 

In Sections 2 and 3 we present the basic philosophy and the relevant formulae, 
respectively, associated with the derivation of the NOSE. Sections 4 and 5 give a 
description of the numerical procedure and a discussion of the results for a single 
test case. A short summary follows in Section 6. 
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2. General Philosophy 

The physical picture giving rise to the NOSE is a rather simple one. Previous 
studies of quasi-molecular states and of anomalous large angle scattering of a particles 
by light and intermediate (a-cluster) nuclei showed (see e.g. Darwisch et al. 1977, 
and references therein) that the rise in the elastic differential cross section dujdQ 
for backward angles, together with the measured resonances Ex of the di-nuclear 
systems and their decay widths r x, may be described by (the same parameters of) a 
crude 'effective surface potential' VESP, arrived at by supplementing the optical model 
interaction VOM by a repulsive (hard or soft) core potential Vr: 

(1) 

(This potential has sometimes been chosen to be I-dependent.) Here VOM facilitates 
the correct evaluation of dujdQ for forward angles, while Vr gives the additional 
potential contribution which allows for an appropriate description of the measured 
Ex and r x, together with the backward rise in dujdQ observed for a scattering angle 
8em > 90°. Quasi-molecular features similar to those seen in these a-scattering 
experiments have also been observed in elastic collisions between heavy ions (cf. 
e.g. Cindro 1978; Barrette and Kahana 1980). 

By knowing that semi-classical and in particular hydrodynamical approaches 
work nicely when applied to heavy-ion physics, it seems appropriate to model the 
elastic scattering of two heavy ions in terms of colliding liquid drops with diffuse 
surfaces: By assuming that the 'membranes' or surfaces of the two drops remain 
impenetrable, one thus obtains automatically a compression of the densities in the 
surface regions of the two touching drops. The physical motivation for this boundary 
condition is then that this compression, giving rise to a repUlsive spring-like force 
proportional to Vr, vanishes for separations 

(2) 

between the two ions or drops, i.e. Vr ~ 0 for r > roo Here Ri and ai denote the 
radius and diffuseness ofthe ith ion (i = 1,2). Thus the dynamical interaction between 
the two nuclei is characterized by their unperturbed or uncompressed asymptotic 
densities POi(Ri, ai) (for r > ro), corresponding to the measured (charge) densities, 
and by the perturbed or compressed densities Pier; Rb ai) (for r < ro). 

3. Nonlinear Schrodinger Equation 

The central feature emerging from the considerations of Section 2, together 
with the use of the Euler equation and some algebra in connection with the neglect 
of higher order derivatives, is the NOSE (Delion et al. 1978): 

-(h2j2m)\l2p+ VP-C(l -pjpo)P = EP; P = I P1 2 , Po = POl +P02; (3a, b,c) 

where we use the conventional notation with C = tK for the nuclear compressibility. 
Here P and Po denote the perturbed and unperturbed densities respectively. To 
disentangle the different contributions to P, we write it as the product of the total 
unperturbed internal (bound-state) wavefunction (fJ and the 'modulating' (continuous) 
wavefunction X, with 

Po ~ POl + P02 = I (fJ 12 . (4a, b) 
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The modulating wavefunction contains the entire dynamics of the system. Equations 
(4) after some algebra [and the neglect of a term proportional to (V'4»(V'X)/4>] allow 
us to reduce equation (3a) to the simpler form 

(5a) 

where the quantities Vx and Ex are introduced to absorb the additional terms which 
arise. If we bear in mind that fluxes such as that transferred from the elastic to the 
inelastic channels (due to inelastic collisions) have so far been ignored, it is quite 
obvious that realistic results can only be expected if we replace the linear parts of the 
interaction in equation (3a), i.e. the Vx of equation (5a), by an effective (phenomeno­
logical and complex) potential. Hence, we obtain for equation (5a) 

(5b) 

where the optical model interaction VOM is to contain as usual the Coulomb Vel 
and nuclear V +i W + Vso interactions. For C = 0 the quantity X is simply the optical 
model wavefunction. 

4. Numerical Procedure 

The numerical solution of the NOSE follows the traditional procedure of 
decomposing X in terms of the Legendre polynomials P1(cos 8): 

um(r) u:(r) 
CI X 12 = C L: 2 P m(cos 8) Pn(cos 8) 

m,n r 

(6) 

leading to a system of coupled (radial nonlinear) equations (that allow us at least 
in principle to also take into account intermediate virtual quasi-molecular states). 
At present however we neglect the contributions containing the cross terms to arrive 
at, for the lth partial wave, 

CIXl1 2 = C(21+1) L: 1:,,~12 (Cfo~lOc~g,mO)2/(2L+l) 
L,rn 

(7) 

for the nonlinearity of equations (5). (Further details and technicalities are to be 
discussed in a forthcoming paper.) The CtO~iO and Urn in equation (7) denote the 
Clebsch-Gordan coefficients and radial wavefunctions respectively. Equation (5b) 
together with the interaction (7) is now solved by the following iterative procedure. 

First we use C = 0 to solve the usual optical model equation (with the wave­
functions normalized for large r to their Coulomb solutions) and obtain iO). This 
result is then inserted into the nonlinear term of the equation 

-(h2/2m)V'2in) +VOMX(n) +Clx(n-l)1 2in) = EX(n); n = 1,2, ... , (8) 

to evaluate XC!), i.e. for n = 1. The procedure is repeated up to those X(n-i) and 
in) for which the differences in the phase shifts and hence also the differences in the 
cross sections are negligible. The convergence turns out to be rapid, so that there 
are no problems as far as the numerical aspects are concerned. 
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5. Discussion of Numerical Results 

In the discussion of our results we examine the elastic scattering of 9Be on 160 
(at EBe = 27 MeV). Here we take exactly the same optical model parameters as 
used before in a phenomenological discussion of V" so that the only possible difference 
in the results would arise from the more exact treatment of the nonlinearity. Similarly, 
as in all previous (phenomenological) calculations of this type, the optical model 
parameters (with no adjustments) give a suitable description of dO"/dQ for forward 
angles. The nonlinear term provides the repulsion needed to account for the anomalous 
rise in dO"/dQ observed for large angles (and hopefully also for the resonances, a 
point we are not as yet able to pursue further). The only adjustable parameter we 
are left with is the compressibility modulus K = 9C. 
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Fig. 1. Experimental and theoretical differential cross sections for elastic scattering of 9Be ions 
(E = 27 MeV) incident on 160. In (a) the experimental points are as measured at the Kurchatov 
Institute, the calculated curves corresponding to K = 0 and 270 MeV. The lower part of (b) shows 
the steady increase of dajdQ for Bern ;;; 1500 as K increases from 0 to 270 MeV. The upper part 
illustrates the abrupt changes in dajdQ for K> 270 MeV. The optical model parameters used 
are V = 26 MeV, W = 18 MeV, Rv = Rw = Rc = 1·2 fm and av = aw = 0·7 fm (Gridnev et al. 
1978). 

Following the procedure of Section 4 we evaluate x<0) = XOM' corresponding 
to the angular distribution in Fig. 1 (dashed curve) for K = O. Ifwe increase K 
from 0 to 270 MeV, the magnitude of dO"/dQ for eem ~ 1500 rises steadily. The 
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accompanying changes in the shape of dO'jdQ are smaller but by no means negligible. 
As may be verified by the curves given in the lower part of Fig. lb, the changes in 
dO'jdQ go in the desired direction and improve the agreement between theory and 
experiment for large angles (see Fig. la). However, as shown in the upper part of 
Fig. lb, a further increase in K from 270 to 300 MeV is seen to lead to a sudden 
reduction in dO'(8em ~ 1500 )jdQ! But the angular distribution based on the still 
larger value of K = 350 MeV displays again a rise in dO'jdQ compared with the cases 
for K = 270 and 300 MeV. In such a way the monotonic rise of dO'(~ 1500 )jdQ 
as a function of K changes to an oscillatory or iterative regime for K greater than the 
critical value Ker = 270 MeV. 

With a linear equation we would naturally expect a monotonic dependence of 
dO'jdQ on K, but the nonlinearity (coupling degrees of freedom related to the internal 
and relative motions with each other) leads to a drastic qualitative change in dO'(K)jdQ 
for different regions of the variable K = 9C. From' our experience with nonlinear 
equations, however, these 'jumps' are not unusual; for example, a change of sign 
in the nonlinearity of the one-dimensional analogue to equation (5b) (or a gradual 
transition of C from a positive to a negative value) modifies its stationary wave 
solutions from a sech form to a tanh form. Hence, the peculiar behaviour of dO'(K)jdQ 
obviously has to be interpreted in terms of the nonlinearity of the system; a rather 
general comment which, unfortunately, reflects the fact that we have not yet managed 
to develop a satisfactory understanding in terms of the underlying physics. (Suggestions 
would be appreciated.) 

As far as the extraction of the compressibility modulus is concerned, the rather 
unexpected implications of this extraordinary behaviour are that a distinct meaning 
has to be assigned to Ker. Even in the absence of any experimental data for backward 
angles and without any knowledge of the physics involved, one feels tempted to 
speculate that Ker should be approximately equal to the best-fit value Kbf. Indeed, 
in our test case we have Ker = Kbf and the improvement in the angular distribution 
is not just restricted to backward angles but holds also for the forward hemisphere. 
(Further preliminary results for other cases are at least consistent with Ker ~ Kbf.) 
However, as long as the peculiar behaviour of dO'(K)jdQ and the role of Ker are not 
yet fully understood, it is obviously Kbf which is the significant quantity. 

In our test case the present result of K(Be+O) = 270 MeV automatically removes 
the only real discrepancy noted in previous calculations, with phenomenological 
substitutes for the nonlinearity, which led to the value of K = 90 MeV (cf. Gridnev 
et al. 1978). Apparently the self-consistent treatment here eliminates some unphysical 
features involved in the ad hoc choice of the phenomenological repulsion previously 
used. 

The crux of the method is that K = Kbf is determined with rather small uncertain­
ties: at present the confidence limits for the error bars are + 10 % and - 15 % (to 
be discussed in more detail in a forthcoming paper containing a larger body of data). 
The primary source of error in Kbf is believed to be due to the use of phenomenological 
optical model parameters that have no fixed relationship with the measured (charge) 
densities of the nuclei involved, unlike the one established within the microscopic 
folding model. More accurate information on these potential parameters is expected 
to reduce the error bars by about 50 %. Yet, the uncertainties arising are already 
a lot smaller than those inherent in traditional approaches based on random phase 
approximation or Hartree-Fock calculations (with a rather ambiguous input in 
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terms of phenomenological effective nucleon-nucleon interactions) or in approaches 
relying on rather problematic background separations and interpretations of experi­
mentally measured excitation functions (understood as evidence for monopole 
resonances), as given for example by Blaizot et al. (1976), Bohigas et al. (1979) and 
Marty et al. (1979, and references therein). On the other hand, the study of the 
monopole resonance by forward angle inelastic IX scattering is by now a weB-established 
method for obtaining the nuclear compressibility, and one which yields reasonably 
well-defined error bars for the resulting compressibility modulus (cf. the more recent 
contributions by Youngblood et al. 1981, and references therein). 

6. Summary 

We have reviewed the physical picture leading to the derivation of a nonlinear 
Schrodinger equation as applied to the elastic interaction of heavy ions. By using 
phenomenological optical model parameters taken from the literature for the linear 
part of the potential, the compressibility modulus K = 9C remains the only adjustable 
parameter. 

It is observed that by increasing K steadily from zero, the magnitude of 
du(8em ;;:;: 1500 )/dQ rises monotonically until a critical value is reached (which 
in our test case has the value of 270 Me V); for K > Ker further increases in K induce 
oscillatory fluctuations of du(8em ;;:;: l500 )/dQ around its value for K er • Since K ~ Ker 

characterizes theoretical curves for du/dQ that display a nice (best-fit) correspondence 
to the experimental data over the whole angular range, we speculate that a definite 
meaning should be attributed to Kcr- Yet, in the absence of more convincing arguments 
for this idea, the value of Kbf is the significant quantity to be considered. 

The peculiar features of du/dQ as a function of K together with the experimental 
data impose severe restrictions on the possible values of the compressibility modulus 
arising from such an analysis. The accuracy of the resulting K (with estimated 
uncertainties of + 10% and - 15 %) could presumably be improved by using potentials 
that have a more direct relation to the measured (charge) distributions of the nuclei 
involved. But a final assessment of the value of this approach, its generality and its 
limitations will naturally have to await the results of more extensive calculations. 

Because of the simplicity of this approach (the unconventional nonlinearity may 
readily be implemented in existing optical model codes), the results presented here 
are expected to be of practical value for other groups interested in experimental and 
theoretical studies of anomalous large angle scattering and the associated quasi­
molecular structures. 
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