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Abstract 

We present a simple and elegant generalization of the Kasner model in Brans-Dicke (BD) theory 
by solving the BD field equations corresponding to the Bianchi type I metric. 

1. Introduction 

In this paper we obtain vacuum solutions of the Brans-Dicke (1961) field equation 
corresponding to the spatially homogeneous and anisotropic Bianchi type I metric. 
It is shown in Section 3 that our solution is a generalization of the well-known 
Kasner (1921) model in BD theory. Some of the properties of model are given in 
Section 4. 

2. BD Field Equations 

We consider the Bianchi type I metric 

ds2 = dt 2 _A2dx2 _B2dy2 -C2dz2 , (1) 

where A, Band C are functions of time only. The BD field equations for vacuum 
space (Tij = 0) are 

(2) 

(3) 

where the symbols have their usual meaning. The BD field equations corresponding 
to the metric (1) are 

A44 B44 A4 B4 
A+B+ AB = 

OJcf>~ C4 cf>4 
- 2cf>2 +-C;P' (4a) 

B44 C44 B4 C4 OJcf>l A4 cf>4 
(4b) -+-+--= - 2cf>2 + ---X¢' B C BC 

C44 A44 C4A4 
C+A+ CA = 

OJcf>~ B4 cf>4 
- 2cf>2 + Bcf> ' (4c) 
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A4 B4 B4 C4 C4 A4 w<P~ (ABC)4 <P4 
AB + BC + CA = 2<pz - ABC <P ' 

(4d) 

<P44 + (ABC)4 <P4 = ° 
<P ABC<p . 

(4e) 

3. The Solution 

Equations (4a)-(4c) yield 

(5) 

where 

S = ABC. (6) 

Equations (4e) and (5) give the solution 

(7a, b) 

where a, b, So and P1 are arbitrary constants. 
Now equations (4a)-(4c) along with equations (7) ultimately give the solution 

C = Co(at+bY., (8a,b,c) 

where the arbitrary constants PZ,P3,P4 and Ao, Bo, Co satisfy 

4 

PZ+P3+P4 = 1-P1 or L Pi = 1, (9a) 
i= 1 

(9b) 

One more restriction on the Pi may be imposed with the help of equation (4d), which 
along with (9a), gives 

(w + I )PI + P~ + P~ + P~ = 1. 

Thus, we get the following metric for an anisotropic empty BD universe: 

ds z = dt Z -AMat+b)ZP2 dxZ -B5(at+b)ZP3 dyZ -CMat+b)ZP4 dzz . 

(10) 

This metric can be transformed through a proper choice of coordinates to the form 

(11) 

with the scalar field <P = <Po T1 ~ Pl, <Po being constant. 

4. Some Physical Properties 

(1) The metric (11) is the generalization of the well-known Kasner (1921) metric 
in BD theory. This can be seen in the following way. As we know that BD theory 
goes over to relativistic theory as w -t 00, equation (10) shows us immediately that 
in this limit 

P1 = 0, 



-------------------_._. 
Counterpart of Kasner Model 

which gives cP = CPo, and then the constants Pi satisfy 
4 4 

L Pi = 1 
i=2 

and L pl = 1. 
i=2 

Thus, in the limit w -+ 00, metric (11) is converted into the Kasner metric. 
(2) The volume element in the BD model is 

which shows the expansion of the universe with time. 
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(3) The expansion is anisotropic, occurring at the rates P2/t, P3/t and P4/t along 
the x, y and z axes respectively. 
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