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Abstract

We present a simple and elegant generalization of the Kasner model in Brans-Dicke (BD) theory
by solving the BD field equations corresponding to the Bianchi type I metric.

1. Introduction

In this paper we obtain vacuum solutions of the Brans-Dicke (1961) field equation
corresponding to the spatially homogeneous and anisotropic Bianchi type I metric.
It is shown in Section 3 that our solution is a generalization of the well-known
Kasner (1921) model in BD theory. Some of the properties of model are given in
Section 4.

2. BD Field Equations

We consider the Bianchi type I metric
ds? = dt? —A%dx? —B%*dy? —C?dz?, ¢))

where 4, B and C are functions of time only. The BD field equations for vacuum.
space (T;; = 0) are :

Gij = —(w/¢2)(¢i¢j —%gij¢k¢k)—¢_l(¢ij —9ij ¢k;k)9 @)
¢ . =0, 3

where the symbols have their usual meaning. The BD field equations corresponding
to the metric (1) are '
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3. The Solution
Equations (4a)—(4c) yield
Sas |, Pa :
—_—t — = . 5
S4 ¢ ©)
where .
s = ABC. 6)
Equations (4e) and (5) give the solution
¢ = (at+b)*, s = so(at+b)t 7, (7a,b)

where a, b, s, and p; are arbitrary constants.
Now equations (4a)—(4c) along with equations (7) ultimately give the solution

A = Ag(at+b)*, B = By(at+b)»*, C = Colat+b)™, (8a,b,c)

where the arbitrary constants p,, p5,p, and A,, By, C, satisfy

4
p2+ps+ps=1-p, or '21 p=1, (%a)
AO BO CO = SO . ‘ (9b)

One more restriction on the p; may be imposed with the help of equation (4d), which
along with (9a), gives

(0+Dpi+p3+p3+pi = 1. (10)
Thus, we get the following metric for an anisotropic empty BD universe:
ds? = dt? — A3(at+b)*P> dx? — Bi(at+b)*** dy? — C3(at+b)*P*dz>.
This metric can be transformed through a proper choice of coordinates to the form
ds? = dT? —T?P2dx? —T?P2dy? —T?P4dz?, (11)

with the scalar field ¢ = ¢, T' P, ¢, being constant.

4. Some Physical Properties

(1) The metric (11) is the generalization of the well-known Kasner (1921) metric
in BD theory. This can be seen in the following way. As we know that BD theory
goes over to relativistic theory as @ — oo, equation (10) shows us immediately that
in this limit

p=0,
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which gives ¢ = ¢,, and then the constants p; satisfy

4 4
Y pp=1 and Y p?=1.
i=2 i=2

Thus, in the limit w — oo, metric (11) is converted into the Kasner metric.
(2) The volume element in the BD model is

(—g)i— =T s

which shows the expansion of the universe with time.

(3) The expansion is anisotropic, occurring at the rates p,/t, p;/t and p,/t along
the x, y and z axes respectively.
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