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An effective Hamiltonian for electrons in in homogeneously deformed crystals is derived by expanding 
the wavefunction in terms of Wannier functions of the homogeneously deformed crystal. The 
physical interpretation of the modulating functions which determine the amplitude of each Wannier 
function in the expansion, and which are governed by the effective Hamiltonian, is investigated. 
This leads to strain-dependent expressions for the probability density and current, averaged over 
the fluctuations within each unit cell. The operators which represent, in the Hilbert space of the . 
modulating functions, similarly averaged physical observables are introduced and explicit strain
dependent expressions for the velocity and momentum operators are obtained. Applications of the 
theory are foreshadowed and its relationship to previous deformation-potential theories is examined. 

1. Introduction 

Effective Hamiltonian (EH) methods such as those developed by Peckar (1946), 
Slater (1949) and Luttinger and Kohn (1955), and reviewed by Weinreich (1965) and 
Slater (1967), simplify the study of electron motion in crystals subjected to slowly 
varying potential fields arising from external sources or from certain crystal defects. 
The simplification is achieved by focussing attention on a slowly varying envelope 
function which modulates the amplitude of a fine-structured cellular component of 
the total wavefunction. In this way the details of the lattice potential, and of the 
wavefunction fluctuations within each unit cell, are effectively removed from the 
problem, and enter only through the. band-structure parameters (effective masses) 
that appear in the EH, which determines the modulating function (MF). 

Bardeen and Shockley (1950) and Harrison (1958) extended the EH method to 
describe electrons in statically deformed crystals. Its principal applications have 
been to the study of electron scattering by static crystal defects, notably dislocations 
(see Hunter and Nabarro 1953, and references therein) and, via the adiabatic principle, 
to the study of electron-phonon interactions (Bardeen and Shockley 1950; Sham 
and Ziman 1963). The book by Ziman (1960) discusses much of this work, including 
the associated screening effects in metals. These early papers and related work by 
Blount (1959), Whitfield (1961) and others will be discussed in Section 5. 

The present paper considers the physical interpretation of the modulating function 
M which is defined by equation (3) and satisfies the effective mass equation (13) (see 
Section 2). Although one could conceivably regard M purely as a mathematical aid 
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to constructing the total wavefunction 'I', and therefore not bother too much about 
its physical meaning, practically the whole point of the EH method would be lost 
if this view was taken. The reduction in complexity, both conceptual and mathemati
cal, which is promised by the EH formalism, can only be realized in practice if the 
boundary conditions applying to (13) and the physical interpretation of its solutions 
can be expressed directly in terms of the MFs. For example, in applications to 
transport problems the relationship between the group velocity (averaged over the 
fluctuations within each unit cell) of a wavepacket and the MF which represents 
that wavepacket must be understood. This matter is not trivial since the relationship 
in question [see equation (38); also (24) and (31)] differs from the conventional one. 
This and related differences have their origin in the forms (14) and (30) of the EH, 
which differ from the familiar form V - h2V 2 12m (hereafter called the 'standard form') 
of complete Hamiltonians. The situation is similar to the well-known modifications 
to the current expression etc., which accompany the introduction of a magnetic 
vector potential into the Hamiltonian (Landau and Lifshitz 1965, Sections 19 and 114). 

In Section 2 we begin by deriving an EH for inhomogeneously deformed crystals, 
using a representation based on Wannier functions which are defined for the homo
geneously strained crystal. This may be regarded as an extension of the method 
developed by Slater (1949) for undeformed crystals. It improves on the approach due 
to Teichler (1981), who employed the Wannier functions of the undeformed crystal, 
and on those due to Gutzwiller and Wells (1966), Kawamura (1978) and Brown (1979), 
who used atomic orbitals. Our approach is more or less equivalent to the Bloch 
representation adopted by Bardeen and Shockley (1950) but has certain advantages, 
as discussed in Section 5. 

The physical interpretation of the MFs is considered in Section 3 and operators 
representing spatially averaged dynamical variables are introduced. In particular, 
strain-dependent velocity and current operators, suitable for the study of transport 
properties in deformed crystals, are obtained. The formulae of Section 3 are shown 
to reduce to familiar results for the case of uniform strain. Their application to 
inhomogeneous deformations is then illustrated for the case of a screw dislocation. 

Following Teichler (1981) we consider in Section 4 the role of gauge transformations. 
We show that, except for special cases, it is impossible to reduce the EH to the standard 
form and hence to remove the strain dependence from the expressions for the spatially 
averaged current etc. 

The relationship of the present work to previous theories is discussed in Section 5. 
Our results are summarized and possible applications of the theory, and its extension 
to include time-dependent deformations, are briefly discussed in Section 6. 

2. Effective-mass Equation for Deformed Crystals 

Let bn(k, r, e) be a Bloch function of band nand wavevector k in a crystal which is 
obtained by homogeneously straining (with strain tensor e = eij) the original stress
free crystal of N unit cells. We define the Wannier functions 

an(r-R,e) = N-t I exp(-ik.R)bnCk,r,e) , (1) 
k 

where the sum is over the allowed wavevectors in the first Brillouin zone of the 
homogeneously strained crystal. The functions an' defined for each lattice point R 
of the homogeneously strained crystal, are mutually orthogonal and are normalized 
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to unity if this is so for the bn' The an form a complete set suitable for the expansion 
of an arbitrary single-electron wavefunction of the crystal for which they are defined. 
Each Wannier function is more or less localized near the point r = R, the degree of 
localization depending on the choice of phases of the Bloch functions. The above 
properties are discussed by Weinreich (1965) and Callaway (1974). 

The theory which follows uses the basis functions (1) defined for different homo
geneous strains. In order that the Wannier functions vary continuously with strain, 
and hence that the wavefunction (see equation 3) varies continuously with position, 
it is necessary that the phases of the Bloch functions appearing in (1) should vary 
continuously with strain. This can be ensured by following the procedure of 
Weinreich (1965, Section 8.6), which specifies the phases by reference to the unit 
cell of the reciprocal lattice, the morphology of which changes continuously with 
strain. We can therefore complete the definition (1) and at the same time ensure an 
optimum degree oflocalization by choosing the Bloch phases according to Weinreich's 
equation (8.47). The remaining additive constant in the phase can be disposed of 
by requiring, say, that bn(O, 0, 0) be real and positive. We thereby obtain functions 
bno and hence an> which are uniquely* defined functions of the coordinates Xi and Xi 

of rand R respectively once the directions of the coordinate axes are specified, 
provided that we also specify that only pure strain, i.e. zero (rigid) rotation, is involved 
in passing from the unstrained state to that of uniform strain. In all that follows 
the coordinate axes are regarded as fixed in space; for definiteness we may imagine 
them chosen to lie along those directions of the unstrained crystal which are con
ventionally used to define the elastic moduli. 

The rigorous completeness of the functions (1) allows an arbitrary wavefunction 
of the homogeneously strained crystal to be expanded as 

ph(r, t) = Q8 I Mnh(R, t) an(r- R, e), (2) 
nR 

where the sum is over all bands and lattice points of the homogeneously strained 
crystal and we have introduced the unit-cell volume Qo of the un strained crystal. 
The localization of the Wannier functions implies that only those terms for which 
I r - R I is less than some finite radius Ro need be retained in the sum. This suggests 
that locally satisfactory basis functions for the inhomogeneously deformed crystal 
can be obtained by using the functions (1), but defined for the homogeneous strain e 
equal to the local strain e(r), and expressed as functions of coordinates obtained 
from those of r - R by rotating the crystal such that the orientation of its unit cell 
at r is brought into coincidence with that of the homogeneously deformed crystal 
discussed above. Denoting this latter operation which ensures the correct orientation 
of the basis functions by the subscript 'rot', we therefore expand an arbitrary wave
function of the arbitrarily deformed crystal as 

P(r, t) = Q8 I MiR, t)an{(r-R)rot,e(r)} , (3) 
nR 

where th~, sum is now over the atomic sites of the inhomogeneously deformed crystal. 
The expansion of P in terms of tightly bound atomic s orbitals (Gutzwiller and Wells 

* We assume that any ambiguities due to degeneracies can be removed along with the degeneracies 
by applying an infinitesimal perturbation. 



324 R. A. Brown 

1966; Kawamura 1978; Brown 1979) is a special case of (3) for which the orientation 
operation is not necessary. 

The basis functions employed in (3) are intuitively the best choice available for 
the present application. They presumably depart from strict completeness due to the 
nonzero gradients of strain and rotation, but if these are sufficiently small we can 
adopt (3) with confidence.t Using this wavefunction in the Schrodinger equation 

HlJ' = ih8lJ'/8t, (4) 

where H is the one-electron Hamiltonian of the deformed crystal, we obtain 

ih L -1 mn(R',R)8Mn(R,t)/8t = L Hmn(R',R)MnCR,t), (5) 
nR IlR 

where 

(6) 

(7) 

The integrals are over the volume V of the deformed crystal. The orthonormality 
of the Wannier functions for homogeneous strains implies that (6) differs from 
bmn b R'R only by terms which are negligible, provided that the relative change in 
deformation over the distance Ro is small. Further, since the Wannier functions are 
localized near their respective atomic sites, we may neglect those Hmn for which 
I R - R' I exceeds some fixed radius Ro ~ Ro, and then for slowly varying strains we 
can replace e(r) by e(R') in (7). Finally, if we neglect corrections proportional to 
the gradients of the strains and rotations, we observe that not only must the lattice 
potential at points r in the neighbourhood of R' be identical to that in the homo
geneously strained lattice of strain e(R'), but also that the orientation of the Wannier 
functions (as specified by the 'rot' operation) near r = R' is also that appropriate 
to the homogeneously strained lattice. It follows that the integral (7) is simply the 
Wannier matrix element bmll ~~ {R' - R, e(R)} of the Hamiltonian of the homogeneously 
strained lattice and (5) becomes 

ih8Mm(R',t)/8t = L ~~{R,e(R')}Mm(R'-R,t), (8) 
IRI<R& 

where the sum is over the lattice vectors of the homogeneously strained lattice of 
strain e(R'). We note that the band diagonalization was not assumed but arose 
naturally, for slowly varying strains, from the properties of the Wannier matrix 
elements (Callaway 1974, equation 5.1.36). 

t Following previous work (see e.g. Bardeen and Shockley 1950; Hunter and Nabarro 1953), 
we will subsequently neglect terms involving the gradients of both strains and rotations which con
tribute to the EH (14) arising from (3). This approximation is valid provided that the relative changes 
in strain and rotation over a distance of one wavelength of the MF are small compared with unity. 
This condition will normally be more critical than the possible incompleteness 'of the basis functions, 
for which the characteristic length over which the change in deformation must be small is of the 
order of the localization radius Ro. 
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Further reduction of (8) follows if we suppose that the fractional change of M 
over a distance of one lattice constant is small. Then M can be regarded as a function 
of a continuous variable and (Slater 1967, equation AI-19) 

exp(-R. VR.)M(R',t) == M(R'-R,t), (9) 

so that (8) becomes the differential equation 

ihiJMm(r,t)/iJt = E!{ -iV,e(r)} Mm(r,t), (10) 

where we have written (Callaway 1974, equation 5.1.38) 

L ,~{R,e(R')}exp( -ik.R) = E~{k,e(R')}, 
IRI<Rd 

(11) 

the dispersion relation for the crystal of homogeneous strain e(R'). Note that by 
incorporating the elastic rotations into the arguments of the Wannier functions of 
(3) we arrive at MFs which, by equation (10), depend only on the (symmetric) strain 
tensor. 

Equation (10) which governs the evolution of the MFs is the main result of this 
section. To see its implications we consider an unstrained crystal of cubic symmetry 
and write (Hunter and Nabarro 1953) for a given band 

where the parameters E1 and m~ depend on the band structure, and energy is measured 
from the band minimum, assumed to be at k = O. Here, and elsewhere unless 
otherwise stated, summation over the values 1,2,3 of repeated indices is implied 
and e = e ii is the dilatation. On using equation (12) in (10) we get 

i h oM(r, t)/iJt = He M (r, t), (13) 

where 

(14) 

is the EH and 

(15) 

The parentheses around the subscript indices in (15) indicate that summation is not 
implied. Since strain gradients have been largely ignored in our derivation the order 
of the various factors in the terms of (12) and hence in (14) is not important. However, 
in the next section it will be convenient to order them so as to make He hermitian. 
We observe that the form (14), with the Kij being linear functions of the strains, is 
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not restricted to cubic symmetry but arises generally by expanding Eh(k, e) for small 
k and e and using the inversion symmetry of the homogeneously strained lattice. 

The EH (14) is identical to that derived by Bardeen and Shockley (1959) using a 
Bloch representation. It reduces to the tight-binding result of Gutzwiller and Wells 
(1966), Kawamura (1978) and Brown (1979) in the special case 

(16) 

3. Physical Interpretation 

The probability of finding the electron in the volume element AV, assumed to 
contain many atomic sites of the deformed crystal, is 

Pl>.v=J Itp(r,t)1 2 d3 r. 
l>.V 

(17) 

Because of the absence of interband mixing implied by (8) it is sufficient to consider 
only those wavefunctions tp which are made up of states (1) arising from a single 
band. Then substituting (3) in equation (17) yields 

P l>.V = Qo L IM(R, t) 12 , (18) 
l>.V 

where the sum is over those atomic sites of the deformed crystal which are contained 
in A V. In arriving at (18) the approximate orthonormality of the Wannier functions, 
for slowly varying deformations, has been used, and it is assumed that the linear 
dimensions of AV considerably exceed the 'range' Ro of the Wannier functions, 
introduced following equation (2). 

Since the number of atoms in A V is A V/Qo(1 + e) we obtain from (18) an average 
probability density 

p(r,t) == (1/AV)Pl>.v = 1 M(r, t) 12D(r) , (19) 

where 

D(r) == {I + e(r)} -1. (20) 

Hence the normalization to be imposed on the solutions of (13) is 

fvIM(r,t)12D(r)d3r = 1, (21) 

where we emphasize that the integral is over the volume V of the deformed crystal. 
Although minor simplifications of (21) and subsequent formulae of this section accrue 
by introducing the function N == Dt M, we will continue to work with the MF defined 
by (3), taking the view that the appearance of the quantity D in the formulae, some 
of which would otherwise take on 'conventional' forms, is a useful reminder that the 
MFs are not (total) wavefunctions. 

In correspondence to (19) a similarly averaged probability flux density j could 
be obtained, at least in principle, by integrating the flux 

j(r, t) == (h/2i m)(tp*'Vtp - tp'Vtp*) (22) 

over the surface of the volume A V. This approach turns out to be intractable, 
principally because the Wannier functions do not vary slowly with position and so 
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cannot usefully be expanded (nor a fortiori can their gradients) in terms of elastic 
strains. However, the continuity requirement 

apfat +div j = 0 (23) 

implies, together with (13) and (14), that 

jp = (hI2iml)DKpiM*M,q-MM,~), (24) 

provided we continue to ignore terms in the strain gradients. The subscript commas 
in (24) denote differentiation with respect to xq• Since only the divergence of the 
current enters (23) this equation would still be satisfied if the curl of an arbitrary 
vector field were added to (24). Such terms, which can only involve the elastic dis
placement or rotation fields, can be ruled out by considering the special cases of pure 
translation and rigid rotation. The completeness of (24) is verified by the observation 
that the coordinate transformation r ~ r+u(r), which in the special case (16) trans
forms \/2 to the differential form in the EH (14), also transforms the standard expres
sion (22) for the current to the form (24). Here u(r) is the elastic displacement 

(25) 

For further discussion of the role of coordinate and gauge transformations see 
Section 4. 

We now derive some further results pertaining to MFs and to operators defined 
on their Hilbert space, thereby enabling a dynamical theory based only on the 
spatially averaged values of physical observables to be established. 

The identity (again neglecting strain gradients) 

div{DKij(M: Mp,j -.MpM:' j)} == DKij(M: Mp,ij -MpM:,i) , (26) 

for any two MFs Ma and M p, follows from the symmetry of (15). Using it, we readily 
find that two nondegenerate normalizeable eigenstates of the EH (14) are orthogonal, 
i.e. if 

(27a, b) 

then 

Iv M:(r,t)Mp(r,t)D(r)d 3r = bap , (27c) 

provided Ea =f Ep. As usual, linear combinations of degenerate eigenstates can be 
found such that equations (27) apply to them also. For continuously distributed 
eigenvalues, bap must be replaced by b(Ea - Ep). In proving the result (27) it is con
venient to require either that the MFs vanish at the surface of the deformed crystal 
or to impose periodic boundary conditions across the volume V, which should then 
be chosen to be of suitable shape. As is the case with the total wavefunction, the precise 
form of the boundary conditions need not concern us, so long as our interest is 
directed at bulk properties. 

Following (27c) and (21) we define the inner product of two MFs as 

<MaIMp) == Iv M:(r,t)Mp(r,t)D(r)d 3 r. (28) 
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Any linear operator A in the Hilbert space of the MFs, which represents the value 
of a (spatially averaged) physical quantity, must have real expectation values 
<M I AM) for all MFs. This implies (Messiah 1961, Section 5.3) that for any Ma 
and Mp 

(29) 

The hermiticity property (29) is readily verified for the EH upon integrating by 
parts, after writing 

h2 _.1. a a t 
He = El e - --D 2-Kij-D . 

2ml aXi aXj 
(30) 

This symmetric form differs from (14) only by terms involving strain gradients and 
terms of second and higher order in the strains. The hermiticity of (30) is exact 
and it is tempting to speculate that it correctly includes the deformation gradient 
and higher order terms which were previously omitted from (14) and which cannot 
easily be included in the analysis. The corresponding probability flux, which exactly 
satisfies the continuity condition (23) when (30) is used, is 

h(i* a i .) jp = -.- D2M Kpq-;::-(D2M) -complex conjugate . 
21 m 1 aXq 

(31) 

On changing to the Heisenberg picture (Schiff 1968, p. 170) we find that the 
operators vary with time according to 

dAjdt = aAjat + (ijh)(He A -AHe). (32) 

Upon using (30) in (32) we find that the operator which represents the velocity 0 f 
the modulating envelope is 

(33) 

whose (exact) hermiticity may be readily verified. Its expectation value is related to 
the spatially averaged probability flux by 

<MlxpIM) = fvjpd3r, (34) 

as expected. 
On introducing the operator 

(35) 

we can write equation (30) as 

He = El e +D-t Pi(Kijj2ml)Pj Dt, (36) 

and then (32) yields 

Xi = aHejapi , (37a, b) 

so that Pi represents the (spatially averaged) conjugate momentum. The relationship 
between kinetic and conjugate momenta is, from (33) and (35), 

(38) 
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When the MF takes the form of a wavepacket which, at a given time, is large 
only in the neighbourhood of some point r, only this region will contribute to the 
expectation values of the above operators. They can then be taken to represent the 
local values of velocity, conjugate momentum, energy etc., averaged over the unit 
cell at r. This interpretation is useful in studying the semiclassical trajectories of 
electrons in deformed crystals. 

When applied to homogeneously strained crystals the above formulae reduce to 
familiar results. One readily verifies that in these cases the stationary solutions of 
(13) normalized according to (21) are 

(39) 

where Vo is the volume of the undeformed crystal. Using (39) in (3) and carrying out 
a trivial inversion of (1) shows that the total wavefunction P corresponding to (39) 
is simply the Bloch function of wavevector k of the homogeneously strained crystal. 
If some arbitrary degree of rigid rotation is included in the 'deformation', the solution 
(39) leads to a Bloch function whose wavevector k' is obtained from k by the same 
rigid rotation. The expectation value of (spatially averaged) velocity appropriate 
to (39) may be calculated using (33): 

(40) 

as expected. The spatially averaged probability current density corresponding to 
(39) is given by (24) or (31) as 

(41) 

where V = Vo(1 + 0). It may readily be verified that the strain-dependent terms of 
(15) are required on the right of (41) to ensure that (34) reduces to (40). 

A nontrivial illustration of the use of the present formalism is provided by the 
case of a screw dislocation of Burgers vector b parallel to the X3 axis of an elastically 
isotropic solid. In cylindrical polar coordinates the only nonvanishing (cartesian) 
strain components are (Nabarro 1967) 

e13 = e31 = - (b/4nr) sin e, e 23 = e32 = (b/4nr) cos e. 
Seeking the stationary solutions of (13) we write 

M(r,t)exp(iEt/h) == tjJ(r) == ~(r,e)exp(ik3x3)' 

(42a, b) 

(43) 

On substituting this together with (42) into (13) and using (30) for He, we get 

(44) 

where 

(45a, b) 

We have omitted all nonlinear and strain-gradient terms from (30), except for the 
term a2/r2 which was retained in (44) to reproduce the equation studied by Aharonov 
and Bohm (1959) in a well-known paper concerned with the effects on electrons of a 
magnetic vector potential A = -achG/er in a region with an excluded cylindrical 
core. The relevance of this problem to that of a dislocated crystal was pointed out 
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by Kawamura (1978) and has been further pursued in a number of papers (see 
Kawamura et al. 1982, and references therein). In view of the analogy with this 
magnetic problem we might expect the Xl and X 2 components of (24) to take the form 
(Landau and Lifshitz 1965, p. 486) 

]p = (h/2iml)(M*M.p-MM.~) +eAp I M 12/ml c, (46) 

where f3 = 1,2. This is readily verified to be the case. It should be emphasized that 
the close correspondence between dislocation and magnetic properties only applies 
to solutions of the type (43). 

Pursuing the above analogy further, one might perhaps expect the component 13 
to also take the form (46), with A3 = 0, but this is not the case. Further, it is natural 
to enquire whether the scattering amplitude calculated by Aharonov and Bohm 
(1959) might also describe the scattering of electrons by a screw dislocation. Certainly 
the proportionality of the Aharonov-Bohm scattering amplitude to sin tbk3 accurately 
reflects the scattering expected from the phase mismatch (Kawamura 1978, Section 1) 
due to the dislocation, both near k3 = 0 and k3 = nrc/b, but, as explained below, 
its angular dependence is not generally correct. 

Just as for conventional potential-scattering problems, it seems that the only 
practical means of obtaining scattering cross sections etc. for isolated crystal defects 
is to apply the first Born approximation to (14) or (36). It is therefore important 
to understand the apparent failure (Corinaldesi and Rafelli 1978) of the Born approxi
mation when applied to the Aharonov-Bohm problem. Similar difficulties have been 
encountered by Yosida and Kawamura (1979) and Kawamura et al. (1982). A rather 
lengthy analysis, the details of which will be published elsewhere, confirms that the 
trouble is due to two conflicting limiting processes. The Aharonov-Bohm equation 
(44) strictly applies only outside a core radius ro; it was obtained for all space only 
by considering the limiting case where ro ~ 0 and the enclosed magnetic flux (pro
portional to oc) was kept fixed. This is clearly at odds with the limit oc ~ 0 which is 
implied in applying the (first) Born approximation. Further, the Aharonov-Bohm 
boundary condition ~(O, 8) = 0 is at odds with the 'small' change in the wave
function assumed when arriving at the Born approximation. By studying the problem 
with ro and oc both nonzero one can identify two regimes, according to whether 
21 oc Iln(2/Kro) is ~ 1 or ~ 1. In the former regime the Aharonov-Bohm scattering 
amplitude is found to apply, while in the latter the Born amplitude applies. For 
dislocations, a natural core radius is provided by the lattice constant and, with oc 
given by (45a), it follows that for spherical Fermi surfaces the Born approximation 
applies everywhere outside two small caps centred on the poles (defined by the dis
location axis). Within these polar regions, which account for about 1 % of the total 
Fermi surface area, the Aharonov-Bohm result prevails. 

4. Role of Gauge Transformations 

The mapping 
r' ~ r = r'+U(r) (47) 

applied to the kinetic energy operator - (h'V')2/2ml and its plane-wave eigenfunctions 
constitutes a gauge transformation (Teichler 1981) which transforms the operator to 

h2 
( 2 82 2 ) Jlt'K = - - 'V +2Eij-;--:::- + ('V U). 'V . 

2ml UXiOXj 
(48) 
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We have dropped terms of second order in Ui,j and first order in Ui,jk and introduced 

(49) 

Since (48) is similar in form to the kinetic part of (14) it is natural to ask whether it 
may be possible to reduce the latter to standard form and obtain a corresponding 
simplification of the formulae of Section 3, simply by changing the independent 
variable. The question reduces to one of the existence of differentiable (and hence 
continuous) functions Ui(r) such that 

(50) 

The existence of such functions requires (Sokolnikoff 1956, Section 10) 

E11 ,23 = -E23 ,11 +E31 ,21 +E12 ,31' (51) 

On using (50) in (51) we find the condition 

(52) 

where the last equality follows from a compatibility equation, of the same form as 
(51), satisfied by the elastic strains eij' Substituting (52) into (50) yields the condition 

(53) 

Similar constraints follow from the remaining five compatibility requirements 
(Sokolnikoff 1956). These are all satisfied (trivially) for all strain fields in the special 
case of the dispersion law (16). In this case the choice U == u, the elastic displace
ment, in the transformation (47) produces a kinetic energy operator (48) which is 
identical to (14), and the same transformation* changes the current expression from 
the form (22) to (24). Hence the inverse transformation applied to (14) and (24) 
reduces these expressions to standard forms. But in general equation (53) and the 
other similar constraints severely restrict the strain fields for which (14) and a fortiori 
(30) can be reduced to standard form. For example, integration of (53) and the two 
equations obtained from it by cyclic permutation of indices shows that e must 
be of the formfl(x2, x 3) + f2(X3, Xl) + f3(x1, X2) for arbitrary functions/;. 

The lesser aim of removing only the mixed derivative terms from (14) can always 
be achieved by choosing U = (ml/2m3)U. However, in the important case of dislocated 
crystals, the elastic displacement u(r) is a multivalued function (Nabarro 1967) and 
it can further be shown that no single-valued function U(r) can achieve the desired 
reduction. Therefore a multivalued solution of the transformed equation must be 
sought in order that the final M(r, t) is single valued.'f Such a procedure may some
times be convenient (Kawamura et al. 1982), but usually it is simpler to seek single
valued solutions of the more complicated equation, especially for scattering solutions 
where the Born approximation may be used. 

* One must take account of the effect of the transformation on the dimensions and orientations of 
area elements. 

t Tassie and Peshkin (1961), Merzbacher (1962) and Kretzschmar (1965) have emphasized that even 
in multiply connected bodies the total wavefunction (and hence its MF) must be single valued if 
physically simple boundary conditions are to apply. 
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The relationship between these considerations and those of Teichler (1981) is 
explored in the next section. 

5. Comparison with Previous Theories 
No other authors appear to have considered the expression for the spatially 

averaged current in terms of the MFs, nor the forms of the linear operators which 
represent spatially averaged physical observables. The discussion in this section is 
therefore restricted to earlier derivations of EHs similar to (14) or (30). 

Early applications of the effective-mass method by Peckar (1946) who used a 
Bloch representation, and Slater (1949) who used Wannier functions, were aimed 
at the study of electron motion in slowly varying potentials (due, for example, to 
substitutional impurities) superposed on a periodic crystal potential. 

The extension of Slater's (1949) formulation to include deformed crystals is the 
subject of Section 2 of the present paper. The extension of Peckar's approach to 
the case of deformed crystals was made by Bardeen and Shockley (1950, referred to 
in this section as BS). Their treatment was designed to deal with electron-phonon 
interactions, and difficulties arise when one seeks to apply it to more general (slowly 
varying static) deformations. For example, it is clear from the appearance of the 
elastic displacement function as an argument in BS (equation A.4) that the wave
function depends, in general, on elastic rotations as well as strains. Yet rotation 
dependence is omitted from the basis functions introduced by BS (A.13). It is then 
clear that any basis function l/Ih of BS (A.13), which closely approximates the wave
function of the deformed crystal in some localized region, rapidly gets out of step 
with the lattice as one moves from such a region to a neighbouring one whose rotation 
angles are different. This leads to additional correction terms involving rotations in 
BS (A.14). Examination of these shows that for small rotations the conclusions of 
BS are unchanged, but large rotations (including rigid rotations, although these can 
be dealt with by a trivial reformulation of the theory) introduce large corrections which 
effectively invalidate the theory. On the other hand, the Wannier formulation of the 
present paper includes rotations of arbitrary magnitude, provided their spatial 
variation is sufficiently slow. It is also clear, either from the form of the correction 
terms in BS (A.14) or by considering the increasing mismatch between the Bloch 
functions and the lattice as one moves away from the origin of coordinates, that the 
BS formulation does not extend, for example, to the case of tensile strains which 
continue to increase with distance over many unit cells. Yet, in this case of large 
interatomic separations, the Wannier functions simply reduce to atomic orbitals 
and the theory of Section 2 still applies. 

If one tries to overcome these difficulties of the BS formulation by redefining the 
origin and orientation of each Bloch function for each unit cell, one encounters 
continuity problems of the type discussed by Harrison (1958, referred to as H). 
Although the H cellular method leads to an effective Hamiltonian (25) of H similar to 
our equation (30), the complete wavefunction (3) of H is defined only within ellipsoidal 
cells which do not exactly cover the crystal space. While the treatment of H may be 
acceptable for the estimation of energy eigenvalues, this incompleteness in the 
definition of the wavefunction, and the associated lack of continuity, would appear 
to rule out estimates of the particle current and velocity, even their averages over 
several unit cells. The localization of the Wannier basis functions, which enables the 
above problems to be avoided, constitutes a clear advantage. 
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A further advantage of the Wannier formulation of Section 2 is found in the 
diagonalization of (6) with respect to the band index, which emerges more simply 
and clearly from the properties of the Wannier functions than it does in the approaches 
of H or BS. Finally, we point out that both H andBS rely on a small wavevector 
expansion at an early stage in the development of their respective theories, whereas 
we adopt this approximation only after arriving at the general result (12), which may 
alternatively be expanded about k -# O. 

The special case of screw-dislocated crystals was examined by Gutzwiller and 
Wells (1966) using a tight-binding representation. Their EH may be obtained as a 
special case of (14) by adopting the effective masses (16). Their results were redis
covered and extended by Kawamura (1978, 1980), still within the tight-binding 
approximation. This work was recently extended further by Teichler (1981, referred 
to as T) who employed the Wannier functions of the undeformed crystal as basis 
functions. If we follow T and introduce the vectors Ty from the atom at R to its 
neighbours in the deformed crystal, then on writing the matrix element H (R, R + Ty) 
of (7) as H'(R, Ty) we can use (9) to write (8) as 

i oM(R, t)/ot = L H'(R, Ty)exp(i Ty.p)M(R, t), (54) 
y 

where for simplicity we have dropped the band index. Following T, we have set 
p = - i \l R and have changed to units in which h = 1. If the vector Ty = Ty(R) 
maps into T~ in the undeformed crystal then for slowly varying strains we have 
T~ = Ty• {l-P(R)}, where the distortion tensor P has elements Pij = Uj,j' One 
readily shows that Ty • p = T~ .n, where 

n =p+a; a = {l-P(R)}-l.p(R).p. (55a, b) 

Then (54) can be rewritten as 

i oM (R, t)/ot = Yf(R, n) M (R, t), (56) 

where 

Yf(R,n) = L H'(R, Ty)exp(i T~ .n). (57) 
y 

Equations (56) and (57) are identical to (5) and (6) of T respectively, except that our 
matrix elements are those of the Wannier functions defined for the homogeneously 
strained crystal of strain e(R); we observe that the band diagonalization of (7) 
employed in arriving at (56) holds rigorously (to the neglect of the gradients Uj,jk of 
the distortion tensor) for these basis functions, but not if those of the undeformed 
crystal are used. * 

In T it is emphasized that (56) is invariant under the gauge transformation 

M(R, t) --'> M'(R, t) = exp{i U(R) .p} M(R, t), 

n --'> n' = n - {l-P(R)} -l.E(R).p, 

(58a) 

(58b) 

(58c) 

* Although, for the sufficiently localized tight-binding functions implicit in Teichler's (1981) paper, 
band diagonalization applies trivially. 
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so that the distortion term in (55) can be eliminated by the transformation (58) with 
U == u. However, this merely reduces (57) to 

£,(R,p) = L H'(R, Ty)exp(i T~ .p), (59) 
y 

where H' still depends on the strain, both through strain-dependent corrections to 
the potential energy and through the dependence of the Wannier functions (1) on 
the strain. The strain dependence persists, even if the Wannier functions of the 
undeformed crystal are used, due both to the strain corrections in the potential 
energy and to the strain dependence of the vectors Ty(R). We conclude that only 
in the special case where the H'(R, Ty) do not depend on the deformation, as assumed 
by Gutzwiller and Wells (1966), Kawamura (1978) and Brown (1979), can the strain 
dependence of the EH (59) be removed by a coordinate transformation. This case, 
which for small wavevectors is equivalent to the dispersion law (12) with the effective 
masses (16), was discussed in Section 4. 

Taking another point of view we can use the small strain expansion (12) of T to 
write (59) in the form 

(60) 

Changing from p to 1t using the transformation (58) adds several terms to the first 
term on the right of (60) which are linear in the Eij , and which we may suppose 
are of the same order as the strains eij • The remaining terms on the right of (60) 
are unchanged, to this order. The elimination of strains from £' therefore rests on 
choosing U(R) such that the terms generated from £'0 are equal and opposite to 
eij P ij . The impossibility of this, in general, was demonstrated in Section 4. 

The approach of Hunter and Nabarro (1953, referred to as HN) is quite different 
from that of the present paper and those already discussed. These authors adopted 
a trial solution for the complete time-independent wavefunction of the form 

tfJ(r) = exp{i W(r)} U {VW,r-u,ct(r)}, (61) 

where u is the elastic displacement and ct is the distortion tensor previously denoted 
pin (55). The functions Wand U satisfy (21) and (23) of HN respectively. The latter 
equation, although it contains an operator superficially similar to (14), differs from 
it in several ways, not least of which is the absence of effective-mass parameters. 
Nevertheless, HN finally emerged with a scattering amplitude, based on their equation 
(25), which is identical to that obtained from our (14). However, their analysis is 
unsatisfactory for dislocated crystals since, if (as is implied) a single-valued solution 
U (k, r', ct) of their (23) is sought, then setting r' = r - u will generate the multi valued 
solution (61). Actually their (slowly varying) solution (22) for W, which applies 
for a screw dislocation, is also multi valued but cannot compensate for the multi
valuedness of U since this is a much more complicated function which varies signif
icantly throughout a single unit cell. The complicated nature of U also rules out, 
at least from a practical point of view, the possibility of seeking an appropriately 
multivalued solution of (23) of HN in order that U in (61) should become single 
valued. We conclude that the approach of HN cannot be applied to dislocated 
crystals without substantial modification. Similar remarks apply to the dislocation 
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studies of Dubrovsky et al. (1969) who used methods similar to those developed 
by Blount (1959) and Whitfield (1961) for the electron-phonon problem. None of 
these are effective-mass methods. All employed a transformation of the type (47) 
and can only be used to advantage if the displacement function is single valued. 

6. Discussion 

The aim of this paper has been to establish a sound basis for the study of electron 
propagation in deformed crystals using EH methods. In Section 2 the EH (14), due 
originally to Bardeen and Shockley (1950), was rederived using a Wannier represen
tation. It governs the evolution of the MFs, which determine the contributions to 
the total crystal wavefunction of Wannier functions centred on each atomic site. 

The physical interpretation of the MFs and the operators defined on their Hilbert 
space was considered in Section 3. It was shown that these operators, which represent 
the values of physical observables averaged over the volume of a unit cell of the 
deformed crystal, take forms which differ from the conventional ones, but which 
reduce to the latter in cases of zero or uniform strain. In Section 4 it was demonstrated 
that the strain dependence of these 'deformation operators', including the EH itself, 
cannot generally be transformed away by a change of coordinates. Hence the formulae 
presented here provide the simplest formulation of the theory attainable. 

The results of the present theory can be applied to a wide range of problems of 
electron propagation in deformed crystals. In contemplating applications, the follow
ing points should be kept in mind: 

(1) If the strains are sufficiently localized the methods of atomic scattering 
theory may be applied to the EH and it will frequently be sufficient to use the first 
Born approximation. This extends to scattering by isolated dislocations provided 
the restrictions discussed at the end of Section 3 are observed. 

(2) For non-localized deformations, which may be due to a distribution of 
crystal defects or to externally applied macroscopic forces, the EH can provide the 
basis of a semiclassical discussion of electron trajectories. In this way it should 
be possible to extend to microscopic heterogeneities the study of current-distortion 
effects (see Chambers 1968, p. 319) previously carried out only for macroscopic 
imperfections, as reviewed by Fletcher (1982). We observe that electric and magnetic 
fields may readily be incorporated into the EH, leading to a theory of transport 
properties in deformed crystals (see also point 4 below). 

(3) In applying the theory to metals the problems posed by non-infinitesimal 
Fermi wavevectors are no more severe than those appearing in previous applications 
of 'deformation potential' theory (see e.g. Hunter and Nabarro 1953, and references 
therein). The study of Fermi surfaces more complicated than those allowed by (12) 
or (14) can be achieved by expanding the dispersion relation about points other than 
k = 0 (Luttinger and Kohn 1955). For example, Kawamura (1980) has studied 
regions of the Fermi surface near Brillouin zone boundaries. For the dispersion 
relation (12), the requirement of charge neutrality can be shown to lead to the 
condition 

(62) 

where '0 is the Fermi energy of the undeformed crystal. This result and the accom
panying one that c5, = 0, i.e. the absolute position of the Fermi level is not shifted 
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by an arbitrary strain, provided (12) applies, are in complete agreement with the 
(more general) considerations of Ziman (1960, Section 5.6). 

(4) It is readily demonstrated that those terms of the velocity operator (33) of 
first order in the strains may make important contributions to the transport coeffi
cients, contributions which are omitted if the conventional operator v = - (i hjm)'V 
is adopted. For scattering by crystal defects the additional effects are particularly 
important if the relaxation rate is dominated by processes, such as electron-phonon 
interactions, which are independent of the strain fields of the static defects. The 
additional terms then contribute significantly to the deviations from Matthiessen's 
rule. 

Detailed applications of the theory will be presented in subsequent publications. 
The extension of the method of Section 2 to deal with time-dependent deformations 

involves the addition of the term 

.dm(R') = ihQ3eij(R',t) I p;'Jn{R',R,e(R',t)}Mn(R,t) (63) 
nR 

to the left of (5), where 

p~n(R',R,e) = Jva!{(r-R')rot,e}oan{(r-R)rot,e}/oeijd3r. (64) 

We readily find that (64) implies 

p~n(R',R,e) = p~n(R'-R,O,e) == p~n(R'-R,e), (65) 

and, defining 

p~n(k,e) = IpmR,e)exp(-iR.k), (66) 
R 

equation (63) takes the form 

.d1ll(R') = ihQ3 ei/R', t) I p~n{ -i 'V R', e(R', t)} MnCR', t), (67) 
n 

where Mn is now regarded as a (slowly varying) function of a continuous variable R'. 
It follows from (66), (64) and (1) that 

P'!Jn(k,e) = J b!(k,r,e)Obn(k,r,e)/oeij d 3r 
crystal 

(68a) 

== NJ U!(k,r,e)oUn(k,r,e)/oeijd 3r, 
cell 

(68b) 

where the integrals (68a) and (68b) are over the entire crystal of uniform strain e 
and its unit cell respectively, and Un is the periodic part of the Bloch function. If 
(67) is required only to first order in the strains, the strain derivatives of (68) can be 
evaluated at e = 0 and the integrals evaluated over the undeformed crystal. A full 
investigation of the effects of time dependence requires evaluation of the parameters 
(68). This study, which promises to bridge the gap (Ziman 1960, Section 5.12) between 
the adiabatic and relaxation regimes, will be completed in a future publication. 
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