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Abstract 

Solutions of the Hasegawa-Bloch equations for the electron spin resonance of local moments in 
metals are obtained which take account of the discrete nature of the lattice. The most notable 
result derived is that the resonance linewidth is proportional to T - () for any degree of bottlenecking, 
where () is the paramagnetic Curie temperature calculated with lattice discreteness. An alternative 
derivation of the appropriate Hasegawa-Bloch equations is also given. 

1. Introduction 

The coupled phenomenological mean field equations of Hasegawa (1959) and their 
various improvements and extensions have proved to be of great value in gaining 
an understanding of the spin dynamics of local moments in metals (Orbach et al. 
1974; Taylor 1975; Barnes 1982). Recently, an accurate analytical approximate 
solution to Hasegawa's equations has been obtained (Stewart 1980) which allows 
the influence of the physical parameters in the equations on the resonance line position 
and width to be seen in a transparent manner. In particular, the solution showed 
that above the Curie temperature 0' the linewidth was proportional to T - 0' for 
any degree of bottlenecking. However, the equations to which the above solution 
was obtained did not take account of the discrete nature of the crystal lattice (Barnes 
1974; Stewart 1975). In Section 2 of the present paper we review the problem of 
the lattice discreteness and provide an alternative derivation of the appropriate 
Hasegawa-Bloch equations. In Section 3 we show that the solution of the equations 
which involve discreteness may be obtained very simply from the solutions of those 
which do not, and that the linewidth remains proportional to T - 0, where 0 is now 
the paramagnetic Curie temperature of the system with lattice discreteness taken into 
account. Once again the result holds for an arbitrary degree of bottlenecking. In 
Section 4 we discuss the experimental verification of the predictions of the theory. 

2. Destination Vectors 

The Hasegawa-Bloch equations we use have the form 

8Mdj 8t = - yMd X Hd - (bds + bdL)(Md - X~ Hd) + bsiMs - X? Hs) , (1) 

8M,j8t = - yM, x H, -(bsd +bsd(Ms - X? Hs) +bdsCMd - X~ Hd), (2) 
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where the destination vectors for the sand d magnetizations are X? Hs and X~ Hd 
respectively (see Barnes 1982 for a detailed discussion of the various relaxation 
parameters). It is the purpose of this section to determine expressions for these 
destination vectors. The physical system we consider is a metal of volume V con
sisting of N atoms with N* atoms carrying localized moments (the d system) lying 
on a Bravais lattice L. Other symbols used have been defined before by Stewart 
(1975, 1980); these papers should be consulted for further details. 

The driving fields Hd and Hs and the associated destination vectors are obtained 
from the instantaneous fields acting on the appropriate system (Stewart 1975). The 
first of these is 

(3) 

where we have arbitrarily added the term As Ms to simulate the effect of exchange 
enhancement of the conduction electrons. We shall see shortly that it is more profitable 
to absorb it into other parameters. 

The driving field Hi acting on local moment i is (Stewart 1975; equation 8) 

Hi = H +AMs + 2 2 L' J(q)exp(iq.Ri)<m(q» , 
gsgdJlp N q 

(4) 

where the prime on the wavevector sum indicates that the q = 0 term is excluded; 
this q = 0 term is explicitly written as AMs. The expression for A is (2 Vjgsgd Jl~ N)J(O). 
The key assumption in the derivation is that while the q = 0 component of the 
conduction electron s magnetization is retained as a variable in the theory, the q '# 0 
components are calculated on the basis that the local moment system is static. The 
validity of this approximation was discussed by Barnes (1974), who argued that the 
dynamic part of the indirect exchange interaction was carried by a process which, 
at finite temperature, had the character of a diffusive mode of the conduction electrons 
with a characteristic diffusion length d much longer than the lattice spacing. Viewing 
the situation in the extended zone scheme of reciprocal space, we see that modes 
with q ;;:. 2nd -1 will be propagated but that modes with q ~ 2nd -1 will not. Since, 
in a periodic lattice, only modes withq equal to a reciprocal lattice vector G will 
be excited, it appears that the different way of treating the modes with q = 0 and 
q '# 0 is plausible, since the modes with q ~ 2nd -1 lie in between q = 0 and the 
nearest reciprocal lattice vectors and are well separated from the latter. However, 
in systems in which the wavevector is not conserved, such as random alloys or 
amorphous metals, important modes could have q ~ 2nd- 1 and the above assump
tion may be questionable. 

Nonetheless, proceeding in this way, we can use the relation <m(q» = XO(q)H(q) 
for q '# 0, where XO(q) is the conduction electron susceptibility (Stewart 1975). The 
Fourier component H(q) of the effective field on the conduction electrons is 
(forq,# 0) 

H(q) = - ~J( -q)(exp( -iq . Ri)<Si) + L exp( -iq • Rn)<Sn») , (5) 
gsJlpN n*i 
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where we have explicitly separated the effect due to local moment i (the self-polariza
tion term) from the other terms. Equation (5) is then substituted into (4) to give 

x (<<S;)i<S») + I. exp{iq. (Ri - Rnn) , 
n*l 

(6) 

where we have assumed that all local moments have the same average spin <S). 
The sum over n gives N*()q,G-l, and omitting the self-polarization term (Stewart 
1978) and letting N* -+ 00, we obtain 

(7) 

where Hd = Hi is the same for each local moment and 

Since the first two terms in equation (8) are equal to ()/C, where () is the paramagnetic 
Curie temperature and C is the Curie constant of the local moments (Stewart 1975), 
we arrive at an expression equivalent to that given by Barnes (1974, 1982). 

3. Solution of Discrete Lattice Equations 

We now need to find solutions to the Hasegawa-Bloch equations (1)-(3) and (7) 
which take account of the discrete nature of the lattice. First we note that the terms 
in (3) and (7) proportional to As and rl will have no effect on the torque terms because 
of the existence of the vector cross product. Further, by defining the exchange 
enhanced susceptibilities Xd = x~(1- rlX~) -1 and XS = X?(l - As X?) -1 (note that the 
symbols Xd and XS were defined differently by Stewart 1980), we obtain 

oMd/ot = -yMd X (H+},Ms) + ()sil -As X?){Ms-Xs(H+ AMd)} 

- «()ds + ()dL)(I- rlX~){ Md - XiH + AMs)} , 

oMs/at = -yMsx (H+AMd) +()ds(l-rlX~){Md-Xd(H+AMs)} 

-«()sL + ()sd)(l -AsX?){Ms-Xs(H+AMd)}' 

(9) 

(10) 

We note that exchange enhancement may also affect other parameters implicitly: 
XO(q) will become enhanced to X(q) = XO(q){1 -AsXO(q)} -1 where As is an interaction 
parameter [Xs = X(O)], the relaxation rates will become renormalized (Barnes 1982), 
and the dynamical range of the indirect exchange interaction will become shorter. 
We note also that if for rl = 0 and As = 0 the detailed balance condition 
X? /X~ = ()ds/()sd holds, then for rl and As nonzero the detailed balance relation 
XslXd = ()ds(l-rlX~)/()Sd(1 -As X?) is valid also. 

Since equations (9) and (10) have the same mathematical structure as those with 
rl = As = 0, the solutions to the former may be obtained from the solutions to the 



504 A. M. Stewart 

latter by making an appropriate redefinition of the parameters. In particular, the 
static susceptibility X = (Md + Ms)/ H is given by 

(11) 

where 

(12) 

It is convenient in equations (11) and (I2) to use the enhanced conduction electron 
susceptibility X., since this is what is measured in the non-magnetic host, whereas 
the bare local moment susceptibility would often be known a priori to follow a Curie 
law. Expressions for the g shift Ag and linewidth DH of the resonance of the dynamic 
susceptibility become (see Stewart 1980; equations 28 and 29) 

A _ B2 + L2Xsixd -2AXsBL A 
g - {I +B +2AXs +(l+L)xslxdY +D2 go, 

where Ago = gAXs, and 

DH = {L(l+B)+B}{l +B +2AXs +(1+L)Xs/Xd} +(B+L)D2/(1 +2AXs +Xs/Xd) 
{I +B +2AXs +(1 +L)Xs/l(d}2 +D2 

(13) 

(14) 

where Ko = (jds/yT is a constant independent of temperature, because the Korringa 
relaxation rate (jds is itself proportional to temperature, B = (jsL/(jsd' L = (jdL/(jds' 0 is 
given by equation (12), and D = YAXsH(1 +2AXs + Xs/Xd)/(jds(1 -8/T). We see that 
the solutions for nonzero rx and As are obtained from the solutions with these quantities 
zero simply by letting X? ~ Xs and X~ ~ Xd and taking 8 to be the paramagnetic 
Curie temperature with the discreteness of the lattice incorporated. One particular 
conclusion we can come to from equation (14) is that the line width is predicted to 
be proportional to T - 8, where 8 is the measured paramagnetic Curie temperature. 
We also note that for X'!Xd ~ 1 the lineshape will have the non-Lorentzian form 
given by equation (32) of Stewart (1980). 

4. Discussion 

Equations (1)-(3) and (7) were proposed by Cottet et al. (1968) who showed, in the 
unbottlenecked limit only, that they gave rise to a linewidth proportional to T - 8. 
However, Cottet et al. were not able to provide any microscopic basis for their 
equations and in particular were unable to give an explanation for the origin of the 
term in rx. Around the same time (Dupraz et al. 1970) it became apparent that the 
equations which did not take account of the discreteness of the lattice gave a linewidth 
proportional to T - Of in the bottlenecked limit, where 8f is the lattice average Curie 
temperature. Subsequently, Barnes (1974) showed that the term in rx arose from 
the discreteness of the lattice and that consequently the linewidth would be expected 
to be proportional to T - 8 in both the bottlenecked and unbottlenecked limits. 
Solutions to the equations which did not take account of the discreteness of the 
lattice (Stewart 1980) produced a linewidthproportional to T - Of for any degree 
of bottlenecking. In the present paper it has been shown that a linewidth proportional 
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to T - 0 is expected for any degree of bottlenecking when the discreteness of the 
lattice is taken into account. Of course, although the solutions obtained here follow 
rigorously from the Hasegawa-Bloch equations, these equations themselves have not 
yet been justified in a system with a large concentration of magnetic atoms. 

Experimentally, it has not yet been fully clarified whether the linewidth does have 
a T-O dependence. An investigation of this question by Thfm-Trong et al. (1981) 
on Gd1-xDy xAlz and Gd1-xSmxAlz showed that when the linear part of the linewidth 
is extrapolated back to the transition temperature (which is a function of x) a constant 
small positive intercept is obtained. From equation (14), which in the appropriate 
limit has the form 

(15) 

we might associate this intercept with bdL, although other causes may be important 
(Barnes 1982). However, the equations developed in the present paper cannot be 
directly applied to these two compounds since they contain the extra magnetic 
component Dy or Sm. A calculation by Chiu and Stewart (I982) showed that even 
in this case one would expect a linewidth proportional to T - 8'; however, this 
calculation did not take account of the discrete nature of the lattice. The question of 
the T - 8 variation of the linewidth therefore remains open and it would be valuable 
to carry out measurements on materials with negative 8, as in this case lal would 
be largest and any effect it had upon the resonance presumably most noticeable. 
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