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We show how the usual results of formal scattering theory should be modifted when the two particle 
potential is energy dependent. 

1. Introduction 

The use of energy-dependent potentials (which are often also complex) in scattering 
theory has a long history in atomic, nuclear and particle physics. The best known 
examples are the 'optical potentials' which arise when many channel problems are 
reduced to equivalent one channel problems (see e.g. Goldberger and Watson 1964 
or Mott and Massey 1965). Other examples are the nucleon-nucleon potentials 
which are now regarded as energy dependent (Epstein and McKellar 1972, 1974; 
Cottingham et al. 1973). It is therefore surprising that, as far as we are aware, the 
formal theory of scattering by such energy-dependent potentials has not been 
developed. We rectify this deficiency in this paper. 

Of course this is not to suggest that these potentials have not been correctly used 
to derive scattering observables. In general they have in that, when phase shifts are 
obtained by solution of the Schrodinger equation for an energy-dependent potential 
and the results are inserted in the standard formulae, the correct results are obtained. 
However, some applications, particularly those which use either the formula 
Sfi = <lJI}-) I lJI!+» or the two potential formula (Mott and Massey 1933, p. 258), 
are formally in error and need to be reformulated. We plan to discuss some examples 
in subsequent papers. 

The major difficulties which arise in constructing the formal scattering theory 
for energy-dependent potentials VeE) are 

(1) the eigenstates lJIk±) of H(Ek ) = T+ V(Ek ) do not form an orthonormal set; 
(2) the action of H(E) on arbitrary states in the Hilbert space is not defined. 
These circumstances are not unrelated. The first can be avoided by introducing 

the states p~/) which are biorthogonal to lJIk±) in the sense that 

(1) 

* Dedicated to the memory of Professor S. T. Butler who died on 15 May 1982. 
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and, if {P~±)} is a complete set*, 

I dk I p~±»d/~±) 1 = I dk 1 p~±»<P~±) 1 = 1. (2) 

The second difficulty is then surmounted by introducing the generalized Hamiltonian 
operator 

(3) 

which is energy independent, has the eigenstates p~±) with eigenvalues Ek , and may 
be regarded as an extension of H(E) to the whole Hilbert space. The operator Yf 
is not Hermitian, even if VeE) is real, and the eigenstates of Yf+ are p~±). 

We can state our results in terms of p~±), and Yf, and do so immediately for the 
convenience of the reader. 

S Matrix 

The S matrix elements are given by 

S < rT/( - ) 1 m( + » 
k',k = T k' T k • (4) 

The usual formula is modified by the introduction of <P~-;-) 1 in place of <P~-;-) I. 
This modification is typical of our results. 

T Matrix 

The T matrix elements are given by 

(prior form) , (5) 

(post form) . (6) 

On the energy shell the prior and post forms become equal. The prior form remains 
unaltered, but the post form of the T matrix is changed. 

Full Green Function 

This is given by 
1 

G(z) = --, 
z-Yf 

(7) 

which is the expected form, but with the generalized Hamiltonian Yf replacing the 
naive form H (E). 

Two Potential Formula 

We suppose that VeE) = V1(E) + V2(E), thatYf l is the generalized Hamiltonian 
associated with V1(E), and that T~~!k and $~-) are the related T matrix elements 

* We assume that there are no bound states, for convenience. As long as V(E) is well defined for 
negative E the extension of our results to include the case of bound states presents no additional 
problems. 
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and biorthogonal states. Then the T matrix elements Tk',k of the complete potential 
VeE) are given by 

(8) 

The two potential formula is modified in such a way that the distorted wave term is 
changed by the introduction of the biorthogonal states ¢~-;) and by the replacement 
of V2 by the difference of generalized Hamiltonians £ -£1' 

Unitarity 

In spite of the non-Hermitian nature of the generalized Hamiltonian £, we find 
that the S matrix is unitary unless the potential VeE) has a nonzero imaginary part. 
If however VeE) does have a nonzero imaginary part, we are able to derive relation
ships for T matrix elements which resemble the usual optical theorem, but which 
relate T matrix elements of £ to those of £+. 

We devote the next section to an outline of the derivation of our results and to 
some discussion of their significance. 

2. Derivation of Results 

Construction of Biorthogonal States 

The key step in the derivation of the formal scattering theory of energy-dependent 
potentials is the construction of the set of tJI~±), which are biorthogonal to the eigen
states 'P~±) of the Hamiltonian Jl(E). 

We will assume that the eigenstates 'P~±) of Jl(E) form a complete set of states 
in the Hilbert space. It is useful to characterize this property of the eigenstates by 
two lemmas, which are 'proved' in the Appendix. 

Lemma 1: A set of states {'Pk} in a Hilbert space is complete if and only if the 
operator P = f dk I 'P k)< 'P k I has an inverse P -1. 

Lemma 2: A set of states {'P d in a Hilbert space is complete if and only if the 
operator D, whose matrix elements we <k'i D I k) = <'Pk, I 'Pk), has an inverse D- 1 • 

Either P -lor D -1, whose existence follows from our hypothesis of completeness 
of the eigenstates, may be used to construct the biorthogonal states tJI k through 

(9) 

tJIk = J dk' 'Pk,<k' I D- 1 1 k). (10) 

It is readily shown that (9) and (10) are equivalent. For example, act on (10) with 
the operator P to show that PtJlk = 'Pk , whence (9) follows. Equally, it is readily 
demonstrated that the definitions (9) and (10) give a set of states tJI k which satisfy 
the desired biorthogonality relations 

<tJIk, I 'Pk) = b(k'-k), 

J dk I 'Pk)<tJIk I = 1. 

(11) 

(12) 
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It seems to us that equation (10) leads to the most straightforward practical 
method for the construction of the biorthogonal states ljIk' We introduce in place 
of (k' I D I k) the deviation d(k', k) of these matrix elements from a delta function, i.e. 

(k'IDlk) = fJ(k'-k)-d(k',k). (13) 

If the energy dependence of VeE) is weak we may expect d(k', k) to be small. The 
definition of D-l, substituted into (13), leads to the integral equation 

(k' I D-1 1 k) = fJ(k' ~k) + f dkH (k' I D-1 1 kH)d(kH,k) (14) 

for the matrix elements of D-1 • Using equation (14) in (10) we obtain a Fredholm 
integral equation of the second kind for ljI k: 

ljIk = If'k + f dk' ljIk,d(k',k). (15) 

This integral equation may be solved in a number of ways. If the energy dependence 
of VeE) is sufficiently weak we would expect the Neumann series to converge rapidly, 
giving ljI k perturbatively in terms of If' k' 

Time-dependent Approach to Scattering by Complex Energy-dependent Potentials 

In the usual scattering theory in the time-dependent framework (Goldberger and 
Watson 1964) the time evolution operator U(t, t') or exp{ -iH(t- t')} is the basic 
element. To construct such an operator in the case of energy-dependent potentials 
we must extend H(E), whose action is defined only on its eigenstates, to the full 
Hilbert space. Using the decomposition of the unit operator provided by (12) we see 
that the natural extension of H(E) is the generalized Hamiltonian operator 

Yl' = f dk Ek I If' k)( ljI k I . (16) 

This operator has the property of being energy independent, but it has the same 
eigenvalues and eigenstates as H(E). The energy independence of Yl' allows us to 
use it in much the same way as the normal Hamiltonian of scattering theory, as long 
as care is taken to allow for the fact that Yl' is not Hermitian, although its eigenvalues 
are real. The adjoint Yl'+ has the same eigenvalues Ek• but its eigenstates are ljIk' 

In particular, we may write U(t, t') formally as exp{ -iYl'(t-t')} and take the 
Fourier transform in the usual way to obtain 

(+) (_. 'I' ±i'1 
If'k- == U 0, +OO)Xk = 1m E Yl' . Xk, 

'1-+0+ k - ±1'1 
(17) 

~( ) + . =+= i'1 
If'k+ ==U (±OO,O)Xk= hm E Yl'+ . Xk' 

'1-+0+ k- +1'1 
(18) 

In fact the state ljI}.-) is none other than ljI}.-). To see this, equations (17) and (18) 
can be manipulated as in Goldberger and Watson (1964, p. 190) to show that 

(19) 
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whence PP},-) = lJf~-) and, as P -1 is uniquely defined by Lemma 1, 

IT/(-) _ IT/(-) 
Tk - Tk . 

611 

(20) 

Our result (4) then follows from the identification of the S operator with 
U(oo, - (0): 

Sk',k = <Xk' I U(oo, -oo)IXk) = <Xk' I U(oo,O)U(O, -oo)IXk), (21) 

that is, equation (4). 
We might have expected the result (4) on the basis of the following simple heuristic 

argument: Sk' k may be regarded as the probability amplitude for finding the state 
lJf~-;-) in the sta'te lJf~+). We may use the decomposition of the identity (2) to write 

I lJf~+» = f dk' Itp~-;-»<P~-;-)I lJf~+», 
and the result (4) follows. 

Lippmann-Schwinger Equations and Prior Form of the T Matrix Elements 

Equation (17) may be rewritten as 

(±) 1 q 

P k = Xk + E Yf +. (Yf-Ek)Xk· 
k- _11] 

(22) 

(23) 

Here we may replace Yf - Ek by Yf - T but, as this operator does not act on an 
eigenstate of Yf, we cannot make the further replacement of Yf - T by V(Ek) to 
obtain the usual form of the equation for p~±) in terms of Xk. The identity 

--(Yf-T) = -(Yf-T) 1 + --(Yf-·T) 1 1 (1 ) 
z-Yf z-T z-Yf 

(24) 

may be used to convert (23) into an integral equation for tp~±) which is 

tp(±) = X + 1 (Yf - T)P(±) . 
k k E T +. k k- _11] 

(25) 

Now (Yf-T)P~±) = {H(Ek)-T}lJf},±) = V(Ek)lJf},±) and we may write (25) in the 
canonical form for the Lippmann-Schwinger equation: 

tp(±) = X + 1 VeE )p(±) . 
k k E T+· k k k - _11] 

If we write (26) in a momentum space representation we get 

We see that the on-shell T matrix element is given by 

T£,-;,1 = <Xk' I V(Ek) I lJf},+» 

(26) 

(cf. Dirac 1958, Section 50). Thus the prior form of the T matrix elements has the 
usual structure, as promised. 



612 B. H. J. McKellar and C. M. McKay 

Post Form o/the T Matrix Elements 

We can write down the analogue of equation (25) which is satisfied by tjI~±), 
namely 

tjI(±) = X + 1 (£+ - T)tjI(±) 
k k E T +. k , 

k - _111 
(28) 

and substitute it into the expression (4) for the S matrix to obtain the prior form of 
the T matrix elements on the energy shell (Ek = Ek,): 

(29) 

This time however we cannot reduce (29) to the usual form in which V(Ek ,) appears 
as the operator, because tjI~:-) is an eigenstate of £+, but not an eigenstate of 
T+ V + (Ek ,). 

Green Function 

From equation (23) it is obvious that the full Green function at z = E ± i 11 is 
(see equation 7) G(z) = (z- £)-1 and that this then applies by analytic continuation 
to all z in the cut plane. 

Two Potential Formula 

Let us first review the two potential formula in the theory of scattering by real 
energy-independent potentials (Mott and Massey 1933, 1965; Goldberger and 
Watson 1964). If V = VI + V2 , and the scattering states for scattering by VI alone 
are «p~±), then the T matrix for scattering by V can be written as 

(30) 

The first term will be recognized as the matrix element for scattering by VI alone, 
and the second term is the familiar distorted wave scattering matrix. 

To obtain the equivalent two potential formula for energy-dependent (and possibly 
complex) potentials, we introduce the biorthogonal states cP~±) and the effective 
Hamiltonian £1 associated with the potential V1(Ek ). We may repeat the standard 
manipulations to obtain 

p(±) = «p(±) + . 1 . (£ - £ )p(±) 
k k E -UP +' 1 k , 

k-,ff,1_ 1 11 
(31) 

or equivalently 

pi±)=«Pi±)+E ~+. (£-£I)«pi±)· 
k - _111 

(32) 

The biorthogonal functions tP~±) satisfy similar equations in terms of cP~±), but with 
£ and £1 replaced by their adjoints £+ and £t. 

We may then follow the method of Goldberger and Watson (1964, pp. 202ff) to 
obtain as the analogue of (30) (see equation 8) 
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The first term is again just TltJ,k, but the distorted wave term is modified from its 
usual form. 

The post form of the two potential formula becomes 

(33) 

and again the first term is simply related to scattering by the first potential. It is 
just Tl,),k, the post form of the T matrix for scattering by Vj' 

Equations (8) and (33) have the simplest general form. There are two special 
cases in which we have been able to simplify the distorted wave term: 

(1) If VI is energy independent (but not necessarily real), the distorted wave 
term in the prior T matrix T( +) takes the almost familiar form < cPi-:-) I ViEk ,) IPi + ». 

(2) If VI + V2 is energy independent and Ek, = Ek = E (i.e. we are on the energy 
shell), the distorted wave terms may be written as <pi-:-) I V2(E) I <pi+». 

Unitarity Relations and the Optical Theorem 

Intuitively, since the S matrix conserves energy when acting on any state, we would 
not expect the energy dependence of the potential to influence the unitarity of S. 
That this is indeed the case may be seen by following the derivation of the optical 
theorem (and hence the unitarity of S) given by Mott and Massey (1965, pp. 51,52). 
The validity of the optical theorem, and the unitary nature of S, depend only on the 
reality of the phase shifts, and hence on the reality of the potential. These results 
remain valid for an energy-dependent potential, as long as it is real (McKay 1979). 

In the event that the potential is complex, the optical theorem, which we may 
write as 

i(T:k-Tkk) = 2n f dk' Tkt,Tk'k(jCk'2_k2), (34) 

is easily seen to be modified so that the left side exceeds the right if the potential is 
absorptive, i.e. the imaginary part of V is negative (see Mott and Massey 1965, 
pp. 184ff). 

Now let us introduce, as well as Sk'k = <pi-:-) IPi+», the 'conjugate'S matrix 
for the 'potential' JIf+ - T. Calling this the S matrix, we have 

(35) 

It is immediate that 

[SS +]k'k = [S + S]k'k = (j(k' -k). (36) 

The steps by which we derive the optical theorem (34) from the unitarity of S may 
now be applied to obtain 

i{Cn:J)* - Ti:'}} = 2n f dEk" (j(Ek" - Ek,) Tk'!} (Tk:!j/)* , (37) 

on the energy shell. This equation may also be readily obtained directly. 

3. Discussion 

We find it surprising that the inapplicability of the standard techniques of the 
scattering formalism to scattering by energy-dependent potentials is not more widely 
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appreciated. This problem can be appreciated by a moment's consideration of the 
most common energy-dependent potential-the optical potential, for which we use 
the Feshbach formalism (1958). The optical potential is that potential which, when 
used in a one channel problem, reproduces the ground state component of the wave
function of a many channel problem. The difficulties we have discussed which arise 
in applying the standard approach to the optical model potential simply reflect the 
existence of the additional channels. 

The many channel system is described in terms of a projectile p, with kinetic 
energy operator Tp, which interacts through a potential VpA with a target A, whose 
internal Hamiltonian is H A, with eigenstates cfJ i and eigenenergies Bi • (We assume 
that all the cfJ i are bound states and ignore the complications arising from breakup.) 
The ground state of the target has the wavefunction cfJo and energy Bo. 

The unperturbed Hamiltonian operator for the complete system is T = Tp + H A' 

and the complete Hamiltonian is H + T + VpA- The eigenstates of the projectile plus 
target system are solutions of the many channel Lippmann-Schwinger equation 

(±) _ • 1 V 'Y( ±) 
'Yik - XkcfJi + E--T +' pA ik , 

k - _1'1 
(38) 

which are generated by asymptotic states in which the projectile is incident in a plane 
wave state Xk on the target in the state cfJ i' 

The optical potential 1/ opt(E) is defined so that the scattering states l/J~ ±), which 
are solutions of the single channel Lippmann-Schwinger equation 

(39) 

are the projections of 'Y6~) onto the ground state channel, with the projection 
operator P = 1 cfJo><cfJo I, i.e. 

Feshbach (1958) has shown that 

(±) 1 
1/oPt(E) = PVpAP +PVpAQ E H . QVpAP, 

- ±1'1 

(40) 

(41) 

where Q = 1- P. The energy dependence and non-Hermitian nature of 1/i~(E) 
is immediately apparent. It is immediately obvious that the l/J~±) do not form an 
orthonormal set. Straightforward calculation gives 

(42) 

(43) 

The existence of the terms with i #- 0 on the right of (43) was earlier emphasized by 
one of us (McKellar 1970). In each of (42) and (43) the non-orthonormal nature of 
the optical model wavefunctions is directly linked with the presence of additional 
channels in the model, and it is just these additional channels which produce the 
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energy dependence and non-Hermiticity of "f/opt(E). The kernel d(k', k) of equation 
(13) which can be used to construct the biorthogonal states is readily identified in 
(42): 

d(k', k) = <lJIbt> 1 Q IIJIW), (44) 

again showing explicitly that the non-orthogonality of the optical model wavefunctions 
is a consequence of other channels. 

The optical potential "f/~:{(E) is constructed so that the T matrix elements in the 
ground state channel are given by <Xk' 1 "f/~;{(Ek) 1 "'1+» on the energy shell. Thus 
we have 

Sk',k = SOk',Ok 

(45) 

It is clear that we may write 

S <ITI(-) 1 m(+» <,/A-) 1 ,/,(+» . <IJI(-) 1 Q Ilu(+» k',k = TOk' TOk = 'l'k' 'l'k -t- TOk' TOk, (46) 

where "'t-;), defined (see equation 40) as PlJlbl), is the solution of the Lippmann
Schwinger equation for "f/~;/(E) with the boundary condition of incoming spherical 
waves. As "f/~;/(E) =1= "f/~;/(E) (in fact "f/~;t)(E) = ["f/~;t)(E)]+), "'1-;) is not the 
(-) type of solution for the usual optical potential. In any case, from (46) even 
<"'1-;) 1 "'1+» is not the S matrix, showing that Tp+"f/~;t)(E) cannot be identified 
as the restriction of £+ to its eigenstates. 

We have been unable to continue the analysis of the general optical model further, 
but the separable potential case discussed by McKellar (1975) has been shown to 
provide a model in which the validity of our general results can be illustrated by 
explicit calculation. We will report the details of these results elsewhere. 

Finally it is appropriate to remark that our work, while formal, does have practical 
implications. Applications of the two potential formalism in the case of energy
dependent complex potentials, such as the theory of stripping reactions (Butler 1950, 
1951, 1952), requires some reformulation. So do more sophisticated applications 
of scattering theory; for example, to two step processes. It is not yet clear how 
much practical results will be altered. 

More ambitiously we note that a consistent three body (or many body) theory 
involving energy-dependent interactions has not yet been achieved. We would hope 
that our achievement of such a formulation of the two body problem will encourage 
attempts to resolve the more difficult many body problem. 
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Appendix 

We outline heuristic proofs of Lemmas I and 2 introduced in Section 2. 

Lemma 1. A set of states {P d in a Hilbert space is complete if and only if the 
operator P = f dk I P k)< P k I has an inverse P -1. 

Proof: If P -1 exists, then if rfJ is any state in the Hilbert space we have PrfJ #- O. 
In other words, f dk I Pk)<Pk I rfJ) #- 0, so for k in some set of finite measure, 
<Pk I rfJ) #- O. Thus any rfJ has a nonzero projection onto the space spanned by the 
{Pd, which is therefore a complete set. 

The steps in this proof may be reversed to obtain the 'only if' part of the lemma. 

Lemma 2. A set of states {Pd in a Hilbert space is complete if and only if the 
operator D, whose matrix elements are <k' I D I k) = <Pk, I Pk), has an inverse D- 1• 

Proof: 
(1) Necessity of the condition D -1 exists: Suppose {P d is not complete, then 

by Lemma I P -1 does not exist, and there is a nonzero state rfJ for which PrfJ = 0, i.e. 

J dk'<PkIPk.)<Pk,lrfJ) = 0 forallk, or 

J dk' <k I D I k')<k' I P) = 0 for all k, 

where <k' I P) = < P k' I rfJ). Thus DP = 0, where P = f dk' I k')<k' I P) is nonzero, 
and D -1 does not exist. 

(2) Sufficiency of the condition D- 1 exists: Suppose the contrary, that D- 1 

does not exist. Then there is a state rfJ such that DrfJ = 0 or, for any k, 

o = J dk' <k I D I k')<k' I rfJ) = J dk' <Pk I Pk.)<k' I rfJ). 

Thus, for any k, <Pk I P) = 0 where I P) = f dk' I Pk,)<k' I rfJ) #- O. Therefore 
{P d is not a complete set in the Hilbert space. 
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