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Abstract 

A realistic analytical central potential with two adjustable parameters is used to generate wave
functions for the ground and excited states of doubly ionized boron. Generalized oscillator strengths 
and integrated cross sections from threshold up to 5 keY are calculated in the Born approximation 
for 2s-ns, 2s-np and 2s-nd excitations. Convenient analytic formulae for the cross sections are 
presented. 

1. Introduction 

Atomic excitation cross sections are useful in probing the details of atomic structure. 
It is important for the atomic theorist to be able to make accurate calculations of 
atomic excitation cross sections. When accurate experimental data exist, the calcu
lations serve as a test of atomic theories and methods of calculation. 

Electron impact excitation of positive ions plays an important role in many astro
physical phenomena (Seaton 1975) and in the analysis of impurities in controlled 
thermonuclear devices (McDowell and Ferendeci 1980). Direct measurement of the 
cross sections is extremely difficult, and theory must be relied upon to provide the 
vast majority of required data. In this study we calculate generalized oscillator 
strengths (GOS) and integrated cross sections for the electron impact excitation of 
B III in the Born approximation. We consider transitions involving the promotion 
of the valence electron into various s, p, d excited states. 

The potential for the valence electron in B III is assumed to have the form 

VCr) = -(2/r)[2{H(erld -1)+I}-1+3], (1) 

where r is the electron-nucleus distance, and d and H are adjustable parameters. 
This potential is inserted into the radial SchrOdinger eq uation 

( d2 l(l + 1) ) 
dr2 - -,Z- - VCr) +Enl PntCr) = 0, (2) 

which is solved numerically by a Noumerov method to obtain the energy eigenvalues 
Enl and waveful1ctions Pnl(r)/r of the active electron. In a previous article (Ganas 
1979) it was shown that if the potential parameters are chosen to be d = 0·1885 and 

* Dedicated to the memory of Professor S. T. Butler who died on 15 May 1982. 
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H = 0'5819, then the potential given by equation (1) reproduces the observed energy 
levels of B III very accurately, and gives optical oscillator strengths (OOS) which are in 
good agreement with experiment and other methods of calculation. The OOS are repro
duced in Table 1. The importance of obtaining good agreement with experiment 
for the OOS lies in the fact that the accuracy of the cross sections is determined 
mainly by the accuracy of the OOS. This is discussed in Section 3. 

Table 1. OOS values for the transitions Is22s(2S) -> Is2np(2P) 
in BIll 

2s Ganas Other Experiment 
to (1979) calculations 

2p O' 3663 O' 366A 

0·3664B 

O' 3630E 

3p 0·1535 0'151 A 

0'1509B 

4p 0·0498 0'0486A 

5p 0·0225 0·0241 A 

A Martin and Wiese (1976). B Weiss (1963). 
c Bromander (1971). D Andersen et al. (1969). 
E Onello et al. (1974). 

2. Generalized Oscillator Strengths 

0'43c 
0'342D 

We give a brief description of the general formulae used in this work. Derivations 
may be found in a previous article (Kazaks et al. 1972). We consider the transition 
of an atom from its ground state with momentum transfer K. We define x = K2a~, 
where ao is the Bohr radius; X t = W/ R, where W is the transition energy and R the 
Rydberg energy; and ~ = x/Xt. We suppose that the atom is initially in a state 
characterized by quantum numbers Lb Si' Ji , Mi' After the active electron has been 
promoted from an no 10 orbital to an nl orbital, the atom is in a final state which has 
quantum numbers L f , Sf, J f, M f • Only transitions with Sf = Sj are considered. 

By using the first Born approximation and assuming LS coupling for the initial 
and final states, it can be shown that the GOS is given by 

L)2 
o sf, (3) 

where 

(4) 

(5) 

The array in the large parentheses in equation (3) is a 3j symbol, and the arrays in 
the braces in equation (5) are 6j symbols. The quantities Pnolo(r )/r and Pnl(r )/r are 
the radial wavefunctions for the single-particle excitations, and jL(Kr) is a spherical 
Bessel function. The quantity No in equation (5) is the number of electrons in the 
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active subshell, and F is the coefficient of fractional parentage for constructing the 
initial state (no loto Si Li from the core state (no loto -1 Sc Lc and an no 10 electron. 

We are interested in the total GOS for a given single-particle excitation: 

(6) 

The final expression for the total GOS is 

(
to 

f(~) = N oP2 I(21+1)(2L+l) 
L 0 

L)2 S,£. 
o 0 

(7) 

Using equation (7) we have computed the GOS for various excitations from the 
2s ground state. The results are typical of those obtained in similar studies (Ganas 
1981), and are not shown here. Essentially, as ~ --+ 0, we have 

the GOS --+ the OOS for 2s-np 

--+ 0 for 2s-ns and 2s-nd. 

(8a) 

(8b) 

As ~ increases from zero, the GOS pass through the usual series of minima. To 
facilitate use of the GOS in applications, we have parametrized all the GOS with 
simple analytical forms which are accurate in the region in which the GOS is signifi
cantly large. For the optically allowed transitions 2s-np, we use the form 

and for the optically forbidden transitions 2s-ns and 2s-nd, we use 

.f(~) = ~A(e-«~+p~e-Y~)2. 

(9) 

(10) 

In equations (9) and (10), the quantities A, IX, p, yare adjustable parameters. For 
2s-np we set A equal to the OOS values, which were found in previous work (Ganas 
1979) and which are reproduced in Table 1, and vary the three parameters IX, p, Y so 
as to obtain the best fit to the numerical GOS. For 2s-ns and 2s-nd, all four param
eters A, IX, p, yare varied. The final values of these parameters are given in Table 2. 

Table 2. Values of A, ex, p, l' in equations (9) and (10) 

2s to A ex P l' 

2p 0·3663 0·2551 0·0681 0·1777 
3p 0·1535 2·2701 -0·7838 0·7720 
4p 0·0498 0·4822 -1·9601 0·8483 
5p 0·0225 0·3712 -1,9238 0·7780 
3s 0·3515 1·1361 1·1816 10'11 
4s 0·0664 1·2547 1· 3135 2·4269 
3d 0·9829 1·3793 0·1559 0·8549 
4d 0·1387 0'8681 1·1088 2·6286 

3. Cross Sections 

The integrated cross section is defined by 

(J' = !l.!LJ~u f(~) d~ 
WE ~I ~ , 

(11) 
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Fig. 1. Integrated cross sections for 2s-ns, 2s-np and 2s-nd excitations in 
B III. The points are representative analytic fits using equation (15) with 
the parameter values of Table 3. 

where" W is the transition energy in eV, E is the incident electron energy in eV, 
qo = 6·514x 1O-14 cm2 eV2,and 

eu,l = (2E/W){1 ±(l - W/E)t - W/2E}. (12) 

Equations (9) and (10) correspond, respectively, to the first three terms and the first 
four terms of the general form 

00 

fee) = L f.esexp( -tlse). (13) 
.=0 

On substituting equation (13) into (11), the integrated cross section is obtained in 
closed form: 

o{E) = ~~(fo{E1(tloel)-E1(tlO~U)} 

+ J1 :;{Y(S,tls~u)-Y(S'tl'~I)})' (14) 

Here E1 is the first exponential integral function and y(s,y) is the incomplete gamma 
function. The computed integrated cross sections for various excitations of the valence 
electron, for incident electron energies ranging from threshold to 5 keY, are displayed 
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in Fig. 1. We see that the 2s-2p transition is a resonance. No experimental cross 
sections are available, so that a direct comparison of the present results with experi
ment is not possible. However, the accuracy of the present cross sections for the 
allowed transitions may be inferred from the accuracy of the OOS, since the Born 
cross section is proportional to the OOS (Inokuti 1971; Kim and Bagus 1973; 
Heddle 1979). Since the present values of the OOS for these transitions are within 7 % 
of experimental and theoretical data (see Table 1), this suggests that the present cross 
sections have an accuracy of 7 % or better at those energies at which the plane-wave 
Born approximation is valid. 

For problems such as electron-energy deposition in plasmas, atomic excitation 
cross sections are needed as input data. For this purpose it is useful to have analytic 
representations of the cross sections. For all the transitions we find that the cross 
sections at different energies can be represented by the formula (Peterson et al. 1973) 

(15) 

where qQ, Wand E have their usual meaning (see equation 11) and the quantities 
c,j; s, t are adjustable parameters. We set f equal to A as given in Table 2. After 
some experimentation it was found that we could set s = O· 847 and t = 0·5 for the 
transitions 2s-np, and s = 1 and t = 0·528 for the transitions 2s-ns and 2s-nd. We 
then have only the one parameter c to vary. The final values of all the parameters 
are given in Table 3. Some representative fits are shown in Fig. 1. 

4. Conclusions 

Table 3. Values of c,fand W in equation (15) 

For the transitions 2s-np: s = 0,847, t = 0·5. 
For the transitions 2s-ns and 2s-nd: s = 1, t = O' 528 

2s to 

2p 
3p 
4p 
5p 
3s 
4s 
3d 
4d 

c 

3 ·1235 
1· 0398 
3·3655 
3·6436 
0·4583 
0·6264 
0·4339 
0·7825 

f 

0·3663 
0'1535 
0·0498 
0'0225 
0'3515 
0'0664 
0·9829 
0·1387 

W(eV) 

6·0 
23·92 
30·11 
32·95 
22·34 
29·47 
24·31 
30·27 

The purpose of this work has been to generate electron impact excitation cross 
sections for B III which may be useful for practical applications of atomic theory. 
Using a semiempirical analytic central potential and the Born approximation, we 
have calculated cross sections for 2s-ns, 2s-np and 2s-nd excitations. 

The present approach is directed towards practical applications of atomic theory. 
By adjusting the two potential parameters to reproduce the experimental energy 
levels, it is assured that the present model provides a realistic representation of the 
BIll ion. 



664 P. S. Ganas et al. 

In this work we have obtained a number of useful phenomenological relationships. 
Equation (15) is a formula for all the cross sections which may be useful for providing 
input data for electron-energy deposition problems, and for other problems of applied 
physics. 
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