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After a retrospective look at the nature of correlations in the case of the helium A transition, we 
consider long range correlations and their information content for critical phenomena in general. 
Separation of the statistical from the geometric information leads to the resolution of a long-standing 
dilemma concerning the dimensionality dependence of the hyper-scaling relations. The hyper-scaling 
inequalities are the result of the significant correlations suffering a re-arrangement when a regular 
contribution dominates the singular part of the free energy. The inequalities can each be replaced 
by a pair of equalities. This resolution has a bearing on the special place of four dimensions as 
the origin for the e-expansion technique of the renormalization group approach. 

1. Introduction 

A requirement of any 'good' theory is not so much that it is 'right' but that it leads 
to experimentally testable consequences. This truism is exemplified nowhere more 
perhaps than in the field of phase transitions and critical phenomena. Amongst the 
well-known good theories concerning the nature of phase transitions which preceded 
recent developments are those which carry the names of Van der Waals (1873), 
Ornstein and Zernike (1914), Ehrenfest (1933), Landau (1937) and Onsager (1944). 
It is remarkable that, of these, only the latter is 'right', and it involved the solution 
of a well-defined mathematical problem, the Ising model in two dimensions, and so 
was a calculation rather than a 'theory'. Its great significance as a conceptual advance 
lay in the nature of the results it revealed rather than in the calculation itself, brilliant 
and universally admired as that was. 

The other theories are not right in any general sense, although each can be correct 
under certain circumstances. The Ehrenfest (1933) classification of phase transitions 
into first order, second order etc., was never satisfactory except for the first order; 
the more interesting critical transitions are quite outside the scope of the classification 
scheme and it is to these that each of the other theories mentioned is relevant. The 
Landau (1937) theory embodies elements of both the Ornstein-Zernike (OZ) (1914) 
theory of the correlation function and the Van der Waals (1873) theory of the critical 
transition. The latter two can each be correct, but only under certain special circum
stances and it is significant that in general these circumstances are mutually incon-

* Dedicated to the memory of Professor S. T. Butler who died on 15 May 1982. 
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sistent. Furthermore, each is inconsistent also with the exact results discovered by 
Onsager (1944) for the Ising model in two dimensions. 

In the present paper it is not our purpose to recall particularly the case of two 
dimensions, but rather to examine the role of dimensionality itself and its relation to 
statistical correlations and to critical phenomena. We briefly review some aspects of 
equilibrium correlations, particularly in superfluid and critical systems, and look 
back at the theory of limited range momentum correlations put forward in the 
mid-1950s by Stuart Butler and his colleagues at the University of Sydney (Butler 
and Blatt 1955; Butler et al. 1956). This theory shares with those of Van der Waals, 
Landau and OZ, the essential property of a good theory, in that it made experimentally 
testable predictions and stimulated significant advance; like those earlier theories 
also, however, its predictions failed when put to the test. 

We pay particular attention to the nature of the information carried by two quite 
different kinds of long range correlation and are led to express the correlation of 
fluctuations in terms of size rather than distance dependence. This enables us to 
write the hyper-scaling relations for the critical exponents in what might be called a 
'value-free' form, independent of dimensionality. We can then effect a resolution of 
a long-standing dilemma concerning the status of the hyper-scaling equations. 
Under certain circumstances the usual homogeneity properties break down, but there 
emerge in their place two distinct hyper-scaling equalities, which together embody 
the well-established hyper-scaling inequalities. For ordinary critical transitions this 
occurs at the unique special circumstance which restores consistency between the 
Van der Waals and OZ theories. This is at dimensionality d = 4, which marks the 
coalescence of the renormalization group non-trivial fixed point with the trivial 
gaussian fixed point and the interchange of their stability. This resolution between 
Van der Waals and OZ is necessary for the Landau theory to be 'right'. It is also 
essential for the validity of one of the first triumphs of the renormalization group 
approach, the a-expansion technique, since deviations from both the Van der Waals 
thermodynamic exponent values and the OZ correlation exponents must both vanish 
together as a -t O. 

2. Order in Superftuids 

After interruption by the Second World War, developments in the understanding 
of cooperative phenomena resumed, stimulated particularly by a growing awareness 
of the dramatic but little understood properties displayed by superconductors and 
liquid helium. There was as yet no microscopic theory, but powerful and elegant 
phenomenological theories of these new low-temperature phases of matter had been 
developed and embodied in the two volume masterpiece 'Superfluids' by London 
(1950, 1954). London's theory emphasized that the superfluid phases were macro
scopic quantum states and involved long range order in momentum space, rather than 
in ordinary coordinate space as in more familiar ordered phases. He also underlined 
the connection with the condensation phenomenon occurring in the ideal Bose
Einstein gas. A basic implication of the London theory was that at low speeds the 
superfluid motion is irrotational, i.e. curl Ps = 0, where Ps is the momentum field of 
the superfluid. This gives the well-known irrotational hydrodynamics of superfluid 
helium and the famous London equation in the case of superconductors. 
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For a system in thermodynamic equilibrium to behave in this way is highly singular. 
In fact, whether or not it is a solid, a system in equilibrium with a container slowly 
rotating with angular velocity n can be shown (see Landau and Lifshitz 1958) to 
possess 'solid body' rbtation; that is, a velocity field v = n x r such that curl v = 2n, 
which is by no means irrotational. The proof of this result actually depends on the 
tacit assumption of the absence of long range momentum correlations. It is just such 
correlation, extending indeed over long range, that forms the basis of London's 
theory. The singular nature of the equilibrium response function of a system with 
such properties is best seen in terms of the Fourier transforms (see Schafroth 1951; 
Schafroth and Blatt 1956). Thus, if Mk is the equilibrium diamagnetic magnetization 
produced by the kth Fourier component Bk of an imposed magnetic field B(r), the 
linear response coefficient Xk is just the ratio Mk/Bk• For London's equation this 
susceptibility ratio at long wavelengths diverges as k- 2 • In contrast the diamagnetic 
susceptibility of, for example, a normal metal would correspond to a coefficient 
which approaches a small constant as k -4 O. Furthermore, in classical mechanics 
the equipartition theorem shows that momentum correlations vanish in equilibrium 
and that the diamagnetic coefficient, far from diverging, is not even a finite constant; 
it is identically zero. 

Thus London's theory for both superconductors and. superfluid helium requires, 
as a purely quantum effect, a correlation of the momentum of particles over arbitrarily 
long range. Casimir (1955) put the matter very clearly: ' ... if London's explanation 
of persisting currents is valid, we have to consider such stable wave functions extending 
over a mile or so of dirty lead wire. This idea of macroscopic quantum states has 
also been considered in connection with liquid helium. If London's equation on the 
other hand would only hold in cells of the order of for instance 10-4 cm, then we 
would still find [the diamagnetic properties] with sufficient accuracy, but the existence 
of persisting currents would remain unexplained.' 

3. Limited Range Order 

A theory, based on the idea of a large but finite correlation length for momentum 
correlations, was advanced by Butler et al. (1956). It suggested that the diamagnetic 
response of superconductors should be characterized by a function {k(k+ Jl)} -1, 

a form less singular than the London k- 2 and containing a constant Jl = A-l, 
determined by the finite correlation length A. London's theory would be regained 
if the correlation length were taken as infinite. Schafroth (1954) had shown earlier 
that the ideal Bose-Einstein gas of charged (but non-Coulomb interacting) particles 
effectively obeys the London equation, so that in 1955 the cases of known behaviour 
of the equilibrium diamagnetic response function Xk in the k -4 0 limit were the 
following: In classical mechanics, Xk vanishes; in 'normal' quantum mechanics, 
Xk approaches a small constant; in the unphysical ideal Bose-Einstein gas Xk -4 k- 2• 

The finite correlation length theory assumed the intermediate behaviour Xk -+ k-1• 
In the case of liquid helium the angular momentum response to equilibrium in a 

rotating container plays the role of the diamagnetic response in superconductors, 
with similar consequences. As Casimir (1955) implied in the statement quoted above, 
persistent currents and superfluid flow must in this theory be metastable not equilibrium 
properties, and this aspect was emphasized in the work 'Nonequilibrium Nature of 
the Superfluid State' by Butler and Blatt (1955). Of course the equilibrium properties 
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were also implied by the theory. Their evaluation, however, required extensive 
computation and had to await completion of the SILLIAC computer.* 

4. Helium A Transition 

The results of the computations on the A transition in liquid helium by Butler 
et al. (1956) presented the specific heat and superfluid density as functions of temper
ature. Calculated essentially from first principles but incorporating the assumption 
of a finite correlation length A ,...., 10- 5 cm, the results involved calculations for 
clusters of up to 107 or more atoms. The agreement with the then existing experimental 
results was excellent and far better than that obtained by any previous theoretical 
approximation. 

Because of the limited correlation length, a singularity in the thermodynamic 
properties and thus a true transition was not predicted by the theory; instead, a 
smoothed out 'quasi-transition' resulted. In this the value of the specific heat, 
although a continuous and differentiable function of temperature, nevertheless does 
change extremely suddenly, falling from a maximum value by a factor of two within 
a millidegree at the A point; and this occurs after the value has risen steadily, for 
two thousand times that temperature interval, as the quasi-transition is approached 
from below. These conclusions were soon to be SUbjected to experimental test. t 

The first experimental report, which described a specific heat singularity sharp 
to nearly a micro degree, was presented in April 1957 (Fairbank et al. 1957). This 
made it quite clear that the quasi-transition concept and the finite correlation length 
theory were untenable. This unequivocal conclusion from the preliminary findings 
was confirmed in more detail as measurements were further refined in the next few 
years (Fairbank et al. 1958; Buckingham and Fairbank 1961; Fairbank and Kellers 
1966). The results were consistent with the specific heat diverging as the logarithm 
of the temperature interval AT, where AT = T - T;., with the same coefficient above 
and below the transition temperature T;., but with a constant subtracted on the 
high temperature side. (This constant difference accounts for the asymmetry of 
the cusp-shaped curve, making it look somewhat like the Greek letter A, for which 
the transition is named.) In fact, although it was this transition that Ehrenfest (1933) 
had in mind when devising his classification, it is not the step but the logarithmic 
divergence which dominates the asymptotic nature of the singUlarity. Ehrenfest's 
second order type of transition would have been able to describe a step and his first 

* It is interesting to recall now that this machine, the first fully engineered electronic computer to be 
built in Australia, was the Sydney version of the ILLIAC machine at the University of Illinois. 
When commissioned, SILLIAC was one of the fastest machines in the world and could carry out, 
on twelve decimal digits, half a million operations per minute! To do so it used 2800 electronic valves 
and, for its fast access memory, 40 cathode ray tubes. It consumed 35 kW and, of course, had to 
be programmed in machine lan'guage. The first scientific calculation carried out on SILLIAC, on 
5 July 1956, was in fact that for the equilibrium properties of liquid helium. 

t It happened that I was visiting the Sydney department at just this time, on leave from Duke 
University, where I had been doing theoretical research in close collaboration with the experimental 
group led by W. M. Fairbank. Immediately on my return to North Carolina in late September, 
Fairbank and I decided to measure the specific heat near the A point with high resolution and to try 
and obtain the qualitative result by the end of the year. Butler was at Princeton for the last part of 
1956 and visited the laboratory at Duke. Soon after, he became one of the first to know that our 
initial results, obtained in 1956, showed that the transition was in fact very sharp and that the 
quasi-transition theory could not be correct. 
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order a b function, but a logarithm or a diverging power I LlTI-~ cannot be described 
at all. 

As far as the precise form of the singularity is concerned, it was subjected during 
the 1970s to intense experimental probing, principally by Ahlers and his co-workers. 
[This work has been reviewed by Ahlers (1980) and here we will only recall some 
results.] By accurate measurements, not only at the vapour pressure but also under 
higher pressure and with admixtures of the isotope 3He, Ahlers could convincingly 
demonstrate that singular terms additional to the dominant ones were numerically 
important in practice. By allowing for confluent singularities in the form predicted 
theoretically (Wegner 1972), the conclusion reached was that the value of the specific 
heat exponent for the helium A transition is actually less than zero, the final result 
being IX = -0·026±0·004, with the ratio of the amplitude for the high and low 
temperature branches given by A/A' = 1·1l2±0·022. For comparison, the most 
accurate calculation, using the renormalization group approach, is by Le Guillou 
and Zinn-Justin (1980) who very effectively employed Borel transformation methods 
to obtain the result IX = -0·007±0·006. One striking result from Ahler's work 
is the empirical confirmation of the hyper-scaling equation dv = 2 - IX to one part 
in 103 • 

5. Statistical Order and Broken Symmetry 

The fact that the A transition of liquid helium is neither an Ehrenfest nor a quasi
transition means that it is a 'mainstream' cooperative transition; it is like other 
critical phenomena such as those that arise in a ferromagnetic or gas-liquid system. 

In general, a thermodynamic system undergoes a transition when, as its temperature 
is reduced or some other general property changes, it cannot both remain stable and 
retain its symmetry. It must abandon the latter and stability is then preserved at the 
expense of a broken symmetry, which is manifest in a long range ordering of the 
property whose stability was threatened. Thus, in the case of a ferromagnet in a 
zero magnetic field, the total magnetization is zero by symmetry, but the homogeneous 
locally mean-zero state existing at high temperature becomes unstable for temperatures 
below the Curie temperature Te. Then each macroscopic region has a spontaneous 
magnetization, in which the total can be cancelled if necessary by an opposite magnetiz
ation in another such region. These macroscopic regions may be of arbitrarily large 
size. They thus reflect the long range of the order as well as the broken symmetry; 
maintenance of the zero total, meanwhile, becomes only a question of determining 
the fraction of each phase present in a two (or more) phase state. 

In the case of liquid helium, as elsewhere, the long range ordering is a purely 
statistical effect. It is merely what can become ordered that depends on the specifics 
of the mechanics, not the phenomenon of ordering itself. In the quantum mechanics 
of a system that remains a fluid, it is the macroscopic occupancy of a particular 
quantum state that can be the analogue of the magnetization; then a complex 
wavefunction is the order parameter, its phase being coherent and long range ordered, 
if necessary over 'a mile of dirty lead wire'. The gradient of the scalar phase function 
gives the momentum field, which is therefore irrotational, just as foreseen by London 
(1950, 1954). 

6. Critical Dimensions and Universality 

The order parameter in the case of the superfluids can be written as P = I PI exp(i X), 
a complex function with phase angle x. The free energy depends only on the magnitude 
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1 tp I, which is a function of temperature and equivalent to the magnitude of the 
spontaneous magnetization. The symmetry broken in the transition is a gauge 
symmetry reflected iil the phase. A particular value for X can be regarded as defining 
a direction in the complex plane, or as a vector to the surface of a unit-radius hyper
sphere in an abstract n-dimensional vector space, with n = 2. A mathematical model 
of a magnetic system in which each atomic magnet is confined to a plane, say the 
xy plane, has given its name to the 'XY' or 'planar model'. Here also the order 
parameter can be represented, like that of the superfluids, as a vector in a certain 
n = 2 dimensional space. On the other -hand the Ising model, solved by On sager 
(1944) for the case of geometrical space dimension d = 2, represents atomic magnets 
with only two possible orientations, somewhat similar to a spin!. Thus the possible 
values for the order parameter in this case are those of an n = 1 dimensional unit 
vector, namely only the two values ± 1, instead of the continuous infinity of values 
for n = 2 or for larger values of n. Although these last examples are only theoretical 
models, real physical systems do have an identifiable order parameter dimension n 
and a spatial dimensionality d, which of course is usually d = 3. 

The pair of dimensionality numbers nand d are the fundamental symmetry 
characters for a phase transition and determine the universality class of the transition. 
Thus, the two-dimensional Ising model is class n = 1, d = 2. A given system can 
display more than one class; for example, liquid helium has its A transition in 
universality class n = 2, d = 3, while its critical transition is in class n = 1, d = 3 
like that of any other fluid. 

The idea of a universal aspect to critical phenomena is a long-standing one (Landau 
and Lifshitz 1958) that became clarified on the basis of scaling (Griffiths 1970; 
Kadanoff 1971) and was at last given full theoretical support by the renormalization 
group theory (Wilson 1971). The assertion of the concept of universality is that the 
specific form of a thermodynamic singularity is determined solely by the universality 
class to which it belongs. 

An example of universality is provided by the ideal Bose-Einstein gas which has 
a long history as a valuable and suggestive, although unphysical, model for the 
superfluid transition. It can be looked at from the point of view of a critical transition 
(Gunton and Buckingham 1968b) and its order parameter can be expressed as a 
'wavefunction' tpBE(r), but because of the absence of interaction between the atoms 
tpBE is, in effect, merely a temperature dependent coefficient multiplying a particular 
function of spatial position, namely the normalized single particle ground state 
wavefunction '" o(r). It is thus qualitatively quite different from the superfluid order 
parameter tp(r) discussed at the beginning of this section. The'" o(r) can be taken 
as a real function of position determined by the boundary conditions. This order 
parameter is therefore a 'vector' in an infinite-dimensional function space, and so 
n = 00. Thus, the d-dimensional ideal Bose-Einstein gas at constant density is in 
universality class n = 00, d. This is the same class as that shown by Stanley (1968, 
1971) to represent the spherical model of ferromagnetism, first introduced by Berlin 
and Kac (1952). The concept of universality therefore implies that the critical 
exponents are the same for the spherical model and the ideal Bose gas at constant 
density, and indeed this is known to be the case (Gunton and Buckingham 1968b). 

7. Long Range Information 

The long range correlations so far discussed are associated with a symmetry-broken 
two (or more) phase state. While the associated ordering is only fully developed at 
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absolute zero temperature, its character is already established at the transition, when 
the symmetry is only just broken. In a gas-liquid system at its critical density for 
example, the system is homogeneous at temperatures T greater than the critical 
temperature Te. This symmetry is lost for T < Te, in that some regions are at the 
liquid density PI' while the remainder are at the gas density Pg• As T -+ Te -, when 
PI -+ Pg, the density distribution still has a long range ordered structure, so that 
every macroscopic region is decidedly either liquid or gas. The long range order 
carries precisely the information for this decision. In some volume element the deviation 
of the actual density from PI or Pg corresponds to the equilibrium fluctuation. In 
ordinary two phase states such fluctuations can be described by narrow gaussian 
distribution functions with the fluctuations of different volume elements occurring 
at random, just as they do in ordinary one phase states. 

There is another quite different type of correlation effect that can also become 
long ranged. It is again a purely statistical effect and is associated with the onset 
of symmetry breaking at the critical transition. Near this transition the fluctuations 
from the local mean no longer occur independently at random in different volume 
elements. Their distribution is not narrow, nor gaussian, nor indeed uncorrelated--even 
at long range. This new structure of the fluctuations and their long range correlations 
now contain information which implies the precise asymptotic nature of the critical 
singularity. This is in contrast to the two phase long range order discussed above, 
in which the information carried over long range concerns merely the broken symmetry 
itself. 

The correlation function C (r) can be introduced to describe the correlation of 
the fluctuations of the order parameter in two volume elements, separated by a 
distance r. In general C (r) decays exponentially to zero with a correlation length 
Re, where the value of Re depends on the thermodynamic state. In ordinary one or 
two phase states Re is only a few times the interparticle spacing. Near the critical 
point, however, it ceases to be the case that Re is microscopic; it must become 
infinite in such a way that, as the temperature approaches Te, it diverges as (T - Te)-V, 
where v is the critical exponent for the correlation length. The space integral of C (r) 
is just the compressibility and, while this is ordinarily finite, it becomes infinite at 
the critical point, so that the integral and hence Re also become infinite. Since the 
magnitude of C (r) is bounded, the integral can only diverge because of the contri
butions from greater and greater distances as the critical point is approached. At 
the critical point itself C (r) decreases, say as r- m, where m is the critical point 
correlation function exponent. An alternative to m is the conventional exponent 1] 

which is defined by 1] = m - d + 2. The information carried in the structure of the 
fluctuations and determining the critical singularity is summarized in the two exponents 
v and m (or v and 1]). If Rc is the only length characterizing all fluctuations, not only 
of the order parameter, the system will satisfy the scaling conditions and then the 
exponents v and m are all that is needed to specify completely the critical singularity. 
In Section 11 we will find it useful to transform this information into a form not 
dependent on the geometry of space. 

8. Critical Exponents 

Without attempting to review the details of critical phenomena here, we merely 
recall the four principal thermodynamic exponents IX, 13, l' and 6. [We refer the reader 
for background to the comprehensive volumes by Domb and Green (1972-7), to the 
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review by Fisher (1967) for an excellent account of the theoretical situation prior to 
the impact of the renormalization group method, to Fisher (1974a) for an account 
of that impact and, for a discussion of its wider implications, to the book by Pfeuty 
and Toulouse (1977).] 

At the critical density Pc, the specific heat of a fluid diverges as I T - Tc I-a, while 
the inverse compressibility vanishes as I T - Tc IY; the latter vanishes on the critical 
isotherm T = Tc as I P - Pc 10 -\ as the density P approaches Pc' In the two phase 
state the density difference Pl-' Pg , which is the order parameter for the present case, 
vanishes as (Tc - T)P, as T ~ T;. Thermodynamic stability demands certain 
inequalities, such as f3( (5 + 1) ;::, 2 - rL, between the exponents but, within the universality 
classes we mainly wish to consider, the scaling relations apply so that only two 
exponents are independent; then 

2-rL = f3({5+1) = 2f3+y. (1) 

9. Van der Waals and Classical Critical Points 

The remarkable equation of state put forward by Van der Waals (1873) began the 
theoretical description of the gas-liquid critical phenomenon discovered by Andrews 
(1869). The germ of universality came already in 1880 with the Van der Waals 
'law of corresponding states'. This played a major role at the turn of the century 
in searches for means to liquefy gases and the emergence particularly in the Nether
lands, of low-temperature physics. The Weiss theory of magnetism and eventually 
the Bragg-Williams theory of order-disorder transformations in binary alloys 
share with the Van der Waals theory the same simplification and crucial weakness; 
they all describe the critical singularity in terms of thermodynamic functions which 
possess Taylor expansions at the critical point. These are examples also of a type of 
universality, all having 'classical' critical points, and are characterized by the set 
of classical exponents 

rL = 0, 13 -.1 - 2, y = 1, {5 = 3. (2) 

10. Ornstein-Zernike, Landau and Classical Correlations 

The Ornstein-Zernike (OZ) (1914) theory (see Fisher 1964, 1967) involves the 
simple and appealing idea of representing the correlation function by an integral 
equation in terms of a supposedly simpler 'direct' correlation function. The theory 
recognizes that the influence at some point caused by a fluctuation at the origin, 
a distance r away, can be seen as the sum of a direct contribution from the origin 
plus the integral over all space of an indirect one from other regions, which themselves 
are affected by the fluctuation at the origin. The space integral of the direct correlation 
function converges, even at the critical point, and the OZ theory effectively assumes 
that its Fourier transform, in terms of wavenumber k, is analytic and possesses a 
Taylor expansion in k 2 at the long wavelength limit (k ~ 0). This leads to the result 
that the correlation exponents m and v take the OZ values 

m = d-2, v = !y. (3) 

The results of light scattering and other experiments have long ago shown (see 
Heller 1967) that the value of m at the critical point of fluids is very close to unity, 
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just the value given by the OZ theory for dimension d = 3. Because of this success 
and no doubt because the theory was advanced as long ago as 1914, the OZ theory 
became referred to as the classical theory of the correlation function. In fact, although 
we will make use of the exponent m to describe the decrease with distance of the 
correlation function at the critical point, the conventional exponent is 17 (see Section 
7 above), defined as the departure from the 'classical' value, i.e. 1] = m-(d-2). 
This choice however, was not a very happy one: It effectively incorporates, merely 
because of the choice of a convention, an apparent dimensionality dependence into 
what is a statistical and not a geometric concept. On the other hand, when the 
relationship between statistical mechanics and quantum field theory is under dis
cussion, the geometry of space must enter and then 1] does indeed become an appro
priate parameter as a measure of field interaction effects; for non-interacting fields, 
17 = o. 

The most succinct version of the classical theory of critical phenomena is the 
Landau theory (Landau 1937; Landau and Lifshitz 1958). This phenomenological 
theory involves an expansion of the free energy in powers of a mean order-Plilrameter 
field, augmented in the Ginzburg form (Ginzburg and Landau 1950) by a term 
proportional to the square of the field gradient, to give a type of hydrodynamic 
approximation. This gradient contribution invokes a geometrical element which 
provides a new assumed link between the thermodynamics and the correlations. 
In effect the OZ result is enforced, since an expansion in powers of the square of the 
gradient is essentially the same as an expansion, tacitly assumed to be convergent, 
of the Fourier transform in powers of k 2 for long wavelengths. Thus the Landau 
theory results in the full set of exponents given by equations (2) and (3) together. 
However, the thermodynamic properties themselves determine, independently of the 
geometry, the important structure of the correlations. Thus, as the renormalization 
group approach reveals clearly (Wilson 1974) from another point of view, it cannot 
in general be self-consistent to impose an additional assumption which effectively 
also determines the structure of the correlations. 

11. Thermodynamics and Geometry 

Amongst the features which determine the actual thermodynamic properties of a 
particular system, its dimensionality d is, of course, one of the most crucial. Even 
the monatomic perfect gas in d dimensions, for example, has its specific heat at 
constant volume given by Cv/ R = td per mole, where R is the gas constant. Also 
crucial, at least near a critical point, is the other dimensionality number n, discussed 
in Section 6. 

As opposed to the actual properties possessed by particular systems however, the 
structure of thermodynamics itself is indifferent to the geometry of space or the tensor 
character of any parameter. So too are the relations of statistical n;:techanics, including 
the general expressions for thermodynamic coefficients in terms of equilibrium 
fluctuations. It is nevertheless customary for these fluctuations to be described in 
terms of a function of distance, or displacement, namely the correlation function 
C(r). Now the integral of C(r) over all d-dimensional space gives the relevant 
coefficient just as described in Section 7. In this, aspects of geometry necessarily 
enter the discussion and, seemingly, the results, even though the general conclusions 
must be expressible without such reference, in particular to the dimensionality d. 
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It is a simple task to transform the fluctuation theorems into a size rather than 
distance dependent form and thus ensure their integrity. As a familiar and elementary 
example, let us write (I1E2)N for the mean square deviation from the mean of the 
energy of a system with fixed boundaries at a temperature T and containing N parts 
or moles or just 'units'; we use N here as an effective measure of 'size', but we could 
use any extensive variable, such as volume. The value of (I1E2)N equals the total 
heat capacity times kB T2, where kB is Boltzmann's constant. This relation, which 
can be written as 

(4) 

is exact for a system of finite N, where (Cb)N stands for the heat capacity per 'unit' 
for that particular finite system with its own particular boundary conditions, indicated 
by the subscript b. In the limit N ~ 00, (Cb)N becomes independent of N and equals 
the true thermodynamic specific heat coefficient, no longer dependent on finite size 
effects or on details of boundary conditions, other than the overall thermodynamic 
constraints (such as, say, constant volume for the specific heat Cy of a fluid). 

Another example, involving order parameter instead of energy fluctuations, is 
provided by a fluid whose isothermal compressibility X (times kB T) is V-I times the 
mean square deviation from the mean of the volume V occupied by a fixed number N 
of atoms subject to a fixed pressure. We write this, again in the form used in (4), as 

(5) 

The fluctuations described in equations such as (4) and (5) can also easily be 
expressed, again exactly if we are careful, in terms of sums of correlations. Thus, if 
we write E as If= I E; and Vas If= I Vi (i.e. as sums over suitably defined contributions 
from each of N parts), we have 

(6a) 

(6b) 

Here the SUbscripts Nand b are to remind us that the average is for the ith and jth 
parts embedded together in a possibly correlated system of total size N, with its 
boundary conditions b (still of course imposed at the boundaries of the total system). 
Expressions identical in appearance to (4)-(6), but different in precise value, will also 
represent the fluctuations in a part of size N, well inside a much larger (even, in the 
limit, an infinite) system. This would merely require a suitable meaning for the sub
script b, which we continue to use to indicate any fully specified conditions of equi
librium. We note now that, except in the critical state, if the parts are large enough 
correlations between the different parts will vanish, so that for example 
(I1Ei I1Ej ) = (I1Ef)bij. Then the double sum in (6a) reduces to the single Ii (I1Er) 
and, if the parts are effectively the same as each other, this sum is N(I1E2)1' where 
the subscript I means the fluctuations are those appropriate for a system of unit size. 
Under these conditions the denominators N on the left in (4) and (5) cancel and we 
are left with a fluctuation expression, similar to (4), but now for the smaller size of 
only one part or unit and valid as long as this size is large enough compared with the 
size of the correlations. 
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This simplification enables us to identify the condition necessary to achieve the 
N independence for expressions such as the right-hand sides of (4) and (5) and 
mentioned earlier in this section in connection with the thermodynamic specific heat 
coefficient. This condition is just that the size is large compared with a 'correlation 
size' Nc (or volume VJ, itself determined by the spread of the correlations and 
depending on the thermodynamic state. (For a system in d-dimensional space with 
correlation length Rc ' this size would be proportional to R~.) It is this dependence 
that embodies information determining critical exponent values, but we postpone 
such a discussion until Section 14. In a state near, but not at, the critical point the 
correlation sums in (6) could only be reduced to a 'unit' size of order N c' before the 
N dependence would cause (4) and (5) to depart from their limiting thermodynamic 
values which, while finite, are possibly very large. When condition N > Nc does not 
apply, there is a dependence on N which will be taken to be a power law, at least for 
N ~ N c • This case must include the critical state itself, for which Nc is infinite. 

12. Correlation Exponents 

At a critical point, a finite limit as N ---> 00 may not exist for <Cb)N in (4) or for 
its temperature (or other) derivatives and certainly none exists for the order parameter 
'susceptibility' coefficient <Xb)N' In this circumstance there is no size for which we 
could invoke a vanishing of the correlations, but we can nevertheless still extract what 
we need from the information in the correlation of the fluctuations by examining 
their size dependence. We therefore define a pair of correlation exponents gl and g2 
by taking the N dependence in (4) and (5) to be given in the critical state, as N ---> 00, by 

< Cb)N '" N°' , 

<Xb)N '" N02, 

(7) 

(8) 

where both exponents must lie between 0 and 1. We can find expressions relating 
the values of gl and g2 to those of a and <5 introduced in Section 8 by evaluating the 
fluctuations on the left in equations (4) and (5) applied to the critical state itself. 
In the following section g 1 is extended to negative values. 

A characteristic of any critical state, relevant to the incipient instability, is the 
fact that the free energy change, associated with a slight change of the order parameter 
from its critical value, is anomalously small. Instead of being, as in a normal state, 
quadratic in this change, it is proportional to the (1 + <5)th power (by definition of 
the exponent <5). The condition of being quadratic (i.e. <5 = 1), however, is what is 
necessary for the distribution function of the fluctuations to be a normal gaussian 
distribution and for the width of the distribution to be proportional to N -to For 
the (1 + <5)th power the distribution width is easily seen to be proportional instead to 
N- 1/(1 H). Thus, referring to equation (5) divided by V, we see that the square of the 
distribution width <IlV2)N/V2 is just N- 2/(1+o). From (5) this must be the same as 
<Xb)N/N, which in turn is N02-1 from the definition (8) of g2' Thus, we must have 

g2 = (<5-1)/(<5+1). (9) 

We observe that no geometry has entered the definition of g2 nor the calculation 
of the important result (9). We obtain a known result for a system in d dimensions 
with correlation function exponent m, which would in fact have 

g2 = 1 -m/d, (10) 
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since a correlation function C(r) decreasing like r -m at large r would have an integral 
over a d-dimensional volume Vd proportional to vi -mid; the result (10) then follows 
from (8), as found for example by Fisher (1971, 1974b). It is also easy to see the result 
if we apply the argument leading to (9) to a non-critical state, for which the free 
energy of the fluctuations would be quadratic, so that c5 would be unity andg 2 identically 
zero. In (5), XN would then be independent of N (for N large enough) and would 
correspond to the normal and finite thermodynamic coefficient. 

We now turn from the order parameter to the energy. The fluctuations of the latter 
in the critical state determine the N dependence of < Cv) N defined by equation (7). 
By analogy with the argument leading to the expression for g 2 and using the exact 
equation (4), we would have in this case, instead of (9), the exponent (a-l)/(a+ 1), 
where 1 + a is the power (not quadratic in general, and analogous to 1 + c5 for the 
order parameter) characterizing the free energy change associated with small energy 
changes. In terms of the conventional exponent a it is easily shown that when a > 0, 
1 + a = (2 -a)/(1 -a). Thus at the critical point the N dependence indicated III 

equation (4) is actually given by equation (7) with gl = (a-l)/(a+ 1) or 

gl = al(2-a). (II) 

This size dependence for the Cv coefficient from equations (7) and (11) will be 
shared by other constant-volume or adiabatic coefficients, such as the adiabatic 
compressibility; this is because the same power 1 + a characterizes the free energy 
change for a fluctuation of any extensive variable, or any linear combination, excepting 
only the order parameter itself which has the power 1 +c5 (see Buckingham 1972). 
This in turn reflects the fact that the same long range correlation of fluctuations 
causes anomalies in all these coefficients. 

13. Non-dominant Exponents 

The argument used to determine gl only applies when a > 1 (i.e. a > 0), so that 
gl is positive. This is the case in which the singular part of the free energy change 
dominates any regular contribution near the critical point. When this does not 
apply, Cv remains finite and the relationship between a and a changes; two distinct a 
exponents can then be distinguished, the larger ao 'sticking' at the value zero and 
describing the dominant regular contribution, the other as becoming negative and 
describing the singular part which contributes the higher derivatives of Cv that do 
become infinite. Thus the lth derivative with respect to T diverges with the 1+ O:s 
power of lilT 1- 1. (The lowest derivative to diverge is the smallest integer I for which 
I + as > 0; if Cv itself diverges then I = 0 and as is not distinct from ao or a, now 
positive.) Without going into further details here, we note that when the dominance 
passes to a regular contribution in the free energy, the other exponents also bifurcate. 
One branch continues and identifies the exponents for the singular part and the other 
'sticks' at the values for a dominant regular part (with integer values for a and c5; 
for the present case of the simple critical point a = 1, () = 3, while for a tricritical point 
a = 2, c5 = 5). 

The significance of 'dominance' can be quite subtle, particularly for the correlation 
function. Whereas the dominant exponents ao and c50 and both the correlation expo
nents g 1,0 and g 2,0 are never less than the corresponding singular exponents as etc., 
the opposite is the case for the exponents v and lJ. Thus Vs ~ Vo and the range of the 
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correlations, while becoming infinite for both, is greater for the 'singular' than the 
'dominant' and increasingly so as the critical point is more closely approached. 
The 'singular' not the 'dominant' part is what actually determines the longest distance 
correlations. These are then modulated strongly at shorter distance by the 'dominant' 
term which, for this reason, numerically determines the correlation integral. For 
sufficiently high moments of the integral, however, the singular part would in fact 
dominate, as it does for sufficiently high derivatives of the thermodynamic coefficients. 

When dominance passes to a regular contribution and the exponents bifurcate, 
a case particularly relevant for systems with dimensionality d > 4, our notation 
requires some generalization. Thus (7) is inadequate since < Cb ) may remain finite. 
We must generalize the definition of gl to include negative values, and therefore write 

(7') 

as equivalent to (7) when gl > 0 and <Cb)oo is infinite, but capable of describing 
the asymptotic N dependence when g 1 < 0 and < Cb ) 00 is finite. With this generalization 
it is not hard to show that, if (J(s is the generalized specific heat exponent defined 
above, equation (11) still applies, but with (J(s for (J( and g 1 ,s for g l' Thus in all cases, 
positive or negative, 

( II') 

Another circumstance arises when (J( and gl vanish. Without going into details, 
it is easy to see that logarithms can replace the power laws in this case. Although 
we have not needed to identify it, in the equation analogous to (10) for gl instead of 
gz there is an exponent equivalent to m and it equals d when gl = 0; in this case the 
integral of the correlations over a volume of size Vd would still diverge, not as the 
usual power V~I but as log Vd' This case, in fact, applies to the two-dimensional 
Ising model, for which gl = 0, gz = i and, as Onsager (1944) showed, the specific 
heat for the finite system diverges logarithmically. This situation is quite different 
from that in the non-critical 'normal' state, mentioned briefly following equation 
(10), with gz 'identically' zero. In that state gl also is 'identically' zero, and the 
integral of C (r) and all its moments converge so that no analogue of m really exists. 

14. Statistical Exponents 

The information in the correlation of the fluctuations in the critical state has 
enabled us to define exponents gl and g2 and hence (J( and 15. We now briefly extend 
these considerations to the neighbourhood of the critical state to identify other 
exponents. 

Away from the critical point, say at a temperature different by I1T, the coefficients 
Cv and X are proportional to I1T -a and I1T -Y, and using (7) and (8) we can equate 
these to N~I and N~2 respectively. Thus we must have both I1T -ylg2 and I1T -algI 

representing the divergence of what is taken to be the same size Nc • Equating these 
exponents and using (11) we obtain 

(12) 

(13) 



696 M. J. Buckingham 

Using (9) and (11), equation (13), in more familiar terms, is y = (2-c.:)(15- 1)/(15+ 1). 
Recalling that the exponents gl and g2 are determined by the properties of the fluc
tuation only of the energy and of the order parameter respectively, we note that the 
relation (13) for y involves both. While further relations for these and other exponents, 
such as that for the divergence at T = Tc of Cv as a function of P - Pc, could readily 
be obtained, we note that the information for the coexistence exponent f3 is not 
contained directly in the correlations of the fluctuations but, as discussed in Section 7, 
is an aspect of the long range ordered state. This exponent is not specifically con
cerned with the fluctuations but with the order itself. Of course, if scaling is invoked, 
we can write f3 as we could any exponent in terms only of gl and g2, thus we set 
f3 = (l-g2)/(1 +gl)' The other results obtained above can for convenience be 
collected and re-arranged in the form 

These relations illustrate the way the properties of the correlations in the critical 
state, distilled into the fluctuation-size dependence exponents gl and g2, contain all 
the information necessary to describe the asymptotic character of the thermodynamic 
singularity. 

In the development so far we have not included any information other than the 
statistical; the relations (14) are valid regardless, for example, of the dimensionality 
of the systems concerned. To invoke this dimensionality and the conventional 
exponents v and 1'/, we need to recall equation (10) and from Section 11 the fact that 
in d dimensions the critical size Nc is proportional to R~ and to IlT- dv • 

15. Weak-scaling and Hyper-scaling 

Once we specify the dimensionality d, we can equate dv to the exponent com
binations in equation (12) and write 

dv = 2/(1 +gl) = 2-c.:. (15) 

Invoking the relation g2 = 1 -mid from equation (10) and the definition of 1'/, we 
obtain 

mid = 1 -(2-11)ld = l-gz = 2/(15+1). (16) 

After they were first derived the two relations (15) (Josephson 1967) and (16) 
(Gunton and Buckingham 1968a; Buckingham and Gunton 1969) became known 
as the 'hyper-scaling' relations. They were put forward in the form of inequalities, 
the left-hand side having been shown in each case to be greater than or equal to the 
term farthest on the right. The non-equality is by no means a mere academic 
possibility; it can arise and indeed does so. This is in spite of the fact that the 
statistical exponent relations from the previous sections, used to derive (15) and (16), 
can be claimed to stand as equalities in all cases, that is, in all cases in the present 
context of thermodynamic Or 'weak' scaling, in which no difference is allowed for 
between the correlation sizes characterizing the energy and the order-parameter 
fluctuations. 

The hyper-scaling relations have always been something of an enigma. They are 
obeyed as equalities in some exactly known cases; for example, the ideal Bose-
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Einstein gas at constant density (for which d = 3, rx = - I, y = 5, t5 = 2, v = I and 
'1 = 0) and the two-dimensional Ising model (d = 2, rx = 0, t5 = 15, y = -;t-, v = 1 and 
'1 = t). The renormalization group requires the equalities, except under special 
conditions (Fisher 1973; Pfeuty and Toulouse 1977). Even the extreme case of 
first order transitions, which can be brought (Nienhuis and Nauenberg 1975) within 
the ambit of the renormalization group approach and scaling theory, provides 
another example, with a suitably generalized interpretation (Fisher and Berker 1982) 
of the exponents (any d, rx = 1, (j = 00, y = 1, v = lid and '1 = 2-d; m = 0 and 
gl = gz = 1). Nevertheless, the equalities can also fail; for example, in the limit 
of a large dimension d, where the mean-field theory applies, with the consequence 
that the exponents take the classical values given in equations (2) and (3) (d ~ 00, 

rx = 0, t5 = 3, y = 1, v = -t and '1 = 0). 
The hyper-scaling relations establish the important link between the thermodynamic 

and the correlation exponents but, because of failures of the equality and poor 
agreement with some early numerical estimates, their status has been much questioned 
and attempts have been made to find generalizations (Stell 1968, 1970a, 1970b, 1971; 
Domb 1968; Fisher 1973, 1974b). It is the explicit appearance of d that has provoked 
suspicion, rather than the linking relations themselves. Thus Fisher (1974b) has 
introduced the exponent w* (the 'anomalous dimension of the vacuum') to generalize 
(15), defining it by d-w* = (2--rx)/v, and it has been suggested that, for large d, 
w* = d - 4. That the relations (15) and (J 6) are not necessarily deficient is indicated 
by the result of eliminating d between them. Thus, subtracting (16) from unity and 
multiplying by (15) gives, with (J 3), a result that still links the thermodynamic and 
correlation exponents: 

(2-'1)v = y. (17) 

This relation originally due to Fisher (1964, 1969) is apparently obeyed in all cases 
when weak-scaling applies. 

16. Dominance Dilemma 

The information determining all details of the thermodynamics of any equilibrium 
state of a system can be described, in the parameter space ('Gibbs space') of its 
extensive variables, in terms of the relationship of the entropy surface to its tangent 
plane at the point representing that state. In particular, the highly anomalous 
relationship at the critical state reflects the details of the singularity structure 
(Buckingham 1972). This information includes that determining the size dependence 
of fluctuations. Our relations (9) and (11) arise from the fact that the width of the 
distribution function is N -1/(1 +<1) and N -1/(1 +a) respectively, instead of the N--Ix 
dependence in a 'normal' non-critical state with a gaussian distribution. This 
compelling result is applied, with little more than appropriate definitions, to the case 
of d dimensions to yield the hyper-scaling relations (15) and (16). Yet the latter are 
apparently not always correct as equalities. 

This dilemma can be resolved if we take more care with the significance of 'domi
nance'. As in Section 13, when a regular part of the free energy changes dominates 
the singular part (in particular when rx < 0), we must identify two branches with 
distinct exponent sets. These we identified with subscript D or S to indicate their 
origin from the dominant, if distinct, or the singular term respectively. The 'dominant' 
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is never less than the 'singular' gl,D ~ gl,s, and similarly for gz, a and b etc. However, 
we saw that the opposite inequality applies for v and 11, i.e. Vs ?: VD' While this 
again arises merely from a particular definition, it does in fact reflect the functionally 
dominant quality as far as the correlation function is concerned. What has most 
significance, if more than .one finite range term is involved, is that term with the 
longer range, i.e. with the larger v. While this term may not, and indeed does not, 
yield the larger contribution to the convergent integral (since 11 is also larger) for 
the thermodynamic coefficient, it must do so for the higher moments of the integral. 
This reflects the fact that sufficiently high derivatives of the coefficients will be domin
ated (numerically) by the 'singular' rather than the 'dominant' contribution. 

Thus, if we were to revert to not identifying the origin of the exponents and to 
the usual notation, we must put v = Vs and 11 = 11s, but a = aD and b = bD etc. 
Then we have the originally proved hyper-scaling inequalities resulting now from 
the set of relations 

dv = dvs ~ dVD = 2-aD = 2-a, (18) 

d-2+11 = d-2+11s ~ d-2+11D = 2dj(bD +l) = 2dj(b+l). (19) 

It is more informative however to retain the precise relations which can be written 
in the combined form 

(20) 

where Q stands for S or D in each equation to give both pairs of equalities. 
It should be noted here that when the singular is distinct from the dominant term, 

the usual homogeneity property no longer applies. The free energy would be the 
sum of two terms, each by itself homogeneous but with its own set of exponents, 
the 'dominant' set with integer values of b and a = 1 j(l- a) representing a regular 
contribution to the free energy. Although homogeneity fails, the condition of weak
scaling still applies, at least in the version we have employed, namely that the corre
lation size is the same for energy as for order-parameter fluctuations. Thus, contrary 
to conventional wisdom, even within the validity of weak-scaling the usual homo
geneity property does not always hold, whereas appropriate hyper-scaling equalities do. 

17. Classical Consistency and Conclusions 

We have emphasized how the thermodynamic properties of the critical state and, 
in particular, the values of b and a determine, independently of dimensionality d, 
the correlation exponents gl and g2 (equations 9, 11 and II'). Except when a regular 
term intervenes to dominate the singular thermodynamic coefficients and to re-arrange 
the dominance of exponents, the conventional correlation exponents are then 
determined by the hyper-scaling equalities (15) and (16). A system possessing the 
classical exponents a = 0, y = 1 and b = 3 must have gl = 0 and gz = t and thus, 
unless dominated, v = 2jd and 11 = 2-td. Except for the special case d = 4, the 
latter are not consistent with the OZ values v = t and 11 = O. 

Even allowing for dominance it is impossible for both the Van der Waals and OZ 
theories to apply to any system in three dimensions, as pointed out by Gunton and 
Buckingham (1968a). The hyper-scaling inequalities (18) and (19) demand for a 
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Van der Waals system, with d = 3, that v ;::, i and 1/ ;::, 1, completely inconsistent 
with the OZ values; this inconsistency applies for any dimension less than four. 
In the one case d = 4 in which the hyper-scaling equalities can apply directly, we 
nevertheless expect logarithmic terms to arise, in the manner mentioned in Section 13. 
For d > 4, inconsistency can be avoided by invoking the inequalities, which as we 
have seen imply that a regular contribution dominates the singular part of the free 
energy. This indeed happens according to renormalization group analysis. For 
d> 4 the singularity is that of the trivial 'gaussian' fixed point, which has precisely 
the expected dominant and singular contributions necessary to satisfy the generalized 
hyperscaling equalities (20). With the notation employed there, we can write the 
full sets of exponents, for this case d > 4, as follows: 

Q(o = 0, Po = 1, Yo = 1, bo = 3, 

gl,o = 0, g2,0 = -!-, Vo = 2jd, 1/0 = --!-(d-4); 

Q(s = -1(d-4) , Ps = 1+t(d-4), Ys = I, bs = 3 -2(d-4)j(d-2) , 

gl,S = -(d-4)jd, g2,S = 2jd, Vs = 1, 1/s = O. 

In this form it is easy to see explicitly how this 'trivial' fixed point and therefore the 
renormalization solution for d > 4 obeys the dominance rules embodied in equations 
(18) and (19). As foreshadowed, the two sets of exponents bifurcate from their 
identical values at d = 4 in such a way that the first four exponents of the 'dominant' 
D set and the last two of the 'singular' S set are the ones which actually dominate 
behaviour. Together they comprise the full 'classical' set and so, because of the 
subtle interplay of 'dominance' between statistics and geometry, reconciliation is 
finally brought about between the Van der Waals and Ornstein-Zernike theories. 
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