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Abstract 

Aust. J. Phys., 1983, 36, 799-824 

A version of QED is developed which allows one to treat electron-photon interactions in the 
magnetized vacuum exactly and which allows one to calculate the responses of a relativistic quantum 
electron gas and include these responses in QED. Gyromagnetic emission and related crossed 
processes, and Compton scattering and related processes are discussed in some detail. Existing 
results are corrected or generalized for nonrelativistic (quantum) gyroemission, one-photon pair 
creation, Compton scattering by electrons in the ground state and two-photon excitation to the 
first Landau level from the ground state. We also comment on maser action in one-photon pair 
annihilation. 

1. Introduction 

A full synthesis of quantum electrodynamics (QED) and the classical theory of 
plasmas requires that the responses of the medium (plasma + vacuum) be included 
in the photon properties and interactions in QED and that QED be used to calculate 
the responses of the medium. It was shown by Melrose (1974) how this synthesis 
could be achieved in the unmagnetized case. In the present paper we extend the 
synthesized theory to include the magnetized case. Such a synthesized theory is 
desirable even when the effects of a material medium are negligible. The magnetized 
vacuum is birefringent with a full hierarchy of nonlinear response tensors, and for 
many purposes it is convenient to treat the magnetized vacuum as though it were 
a material medium. 

Our starting point in this paper is the S-matrix expansion with two terms in the 
interaction Hamiltonian (Section 2). One term is the usual Dirac interaction 
Hamiltonian modified by the re-interpretation of the wavefunctions as exact solutions 
of Dirac's equation in the presence of a static magnetic field. The other term is the 
nonlinear interaction Hamiltonian introduced in Part II (Melrose 1983, present issue 
p. 775). It is shown in Section 2 how one may develop a momentum space 
representation. It is important to formulate the theory in momentum space because 
it is only in momentum space that the responses of the medium may be included 
in a simple way. However, it is not possible to develop a momentum space repre­
sentation directly, as familiar in QED, because the wavefunctions do not have 
momentum space representations in the usual sense. This is connected with the lack 
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of translational in variance across the field or alternatively in the lack of conservation 
of perpendicular momentum. The way this difficulty is overcome is by using 
momentum space representations only of pairs of wavefunctions, specifically in terms 
of the vertex function evaluated in Part I (Melrose and Parle 1983, present issue 
p. 755). A result established in Part I implies that gauge and coordinate dependent 
quantities need appear only in connection with external electrons and positrons and 
these may be included in density of states factors. 

The terms in the S-matrix expansion have diagrammatic interpretations in the 
usual sense, with m-photon vertices included as outlined in Part II. One point which 
has not been emphasized previously concerns the role of closed electron loop 
diagrams. Any closed electron loop is to be replaced by the appropriate m-photon 
vertex, and the m-photon vertex function is to be calculated for a vacuum from the 
amplitude for the closed loop diagram. This point is discussed in Section 3 where 
it is shown that the response of an electron gas may be included by replacing the 
electron propagator by a statistically averaged propagator, as first done in this 
context by Tsytovich (1961). In Section 4 our synthesized theory is completed by 
formulating rules for writing down the S-matrix amplitude corresponding to specific 
diagrams and for evaluating probabilities from the amplitudes. 

In Section 5 gyromagnetic emission and crossed processes related to it are 
discussed. In particular it is shown how emission by positrons and electrons is 
related in the nonrelativistic quantum limit, and how the exact result may be used 
to reproduce a known result for one-photon pair creation in the ultra-relativistic 
limit. In Section 6 Compton scattering and related processes are discussed. In 
particular, two-photon absorption in which the electron is initially in its ground state 
and jumps to its first excited level is evaluated explicitly; this process is of interest 
in connection with hard X-ray lines from neutron stars (Melrose and Parle 1981). 

2. S-matrix Expansion 

The S-matrix expansion, when the interaction Hamiltonian consists of the single­
particle term 

(1) 

and the nonlinear term yf NL(X) introduced in Part II, reduces to 

(2) 

It is shown in Part II that a product of terms involving yf NL(X) may be reexpanded: 

+ disconnected terms + multiply contracted terms. (3) 

Then in equation (2) a term yf~i<x), whicp involves an (n + 2)-photon vertex, is of 
the same order as a product of n terms Yl'j. 
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The expansion (2) when rearranged using (3) leads to connected terms of three 
kinds. Those which involve no term ;if NL are directly analogous to the usual terms 
in QED. Now, however, many processes which are kinematically forbidden in vacuo 
are allowed. The simplest corresponds to an electron line connected to a photon 
line: this describes gyro magnetic emission on absorption. A second kind of term 
includes those which involve only ;if NL. These describe photon-photon interactions 
and are discussed in Part II. The third type of term describes 'nonlinear' modifica­
tions to the usual photon-electron and electron-electron interactions. The simplest 
example is a modification to Compton scattering. The scattering particle gives rise 
to vacuum fluctuations, described say by Af(k"). The incoming (k) and outgoing 
photons (k') interact with this fluctuating field through the nonlinear rxIlVP(k, k', k"). 
The amplitude for this process is to be added to those for the familiar diagrams 
contributing to Compton scattering (Stoneham 1980a). 

(a) Momentum Space 

As pointed out in the Introduction we cannot proceed directly to momentum space 
because only pairs and not individual wavefunctions have momentum space repre­
sentations in the usual sense. Before discussing this we write down the momentum 
space representation of the 4-potential, the photon propagator and yj):;L. These are 
given in Part II [equations (11.35), (ll.4l) and (Il.42)]: 

AIl(k) = I aM(k){ e~(k) cMCk)(2n)\5\k- k M) 
M 

(4) 

AIl(k)AV(k') = -i(2n)\54 (k+k')DIlV(k), (5) 
'--------J 

(b) Electron Line with One Vertex 

Electron terms appear either as external lines or closed loops, with the external 
lines being an electron line from the initial to the final state, a positron line con­
ventionally from the final to the initial state or a pair in the initial or final state. 
An external line with one vertex arises from the term : if/(x) ylll/f(X):. The definition 
(1.46) in Part I of the vertex function with (1.49) or (I.52) allows us to write 

where 

d~:~(k) = {l/V(eB}~"}exp{ikx(epy+e'p;)/2eB} 

x 2no(epy-e'p~- ky) 2no(epz -e'p~- kz ) (8a) 
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is different for cartesian (8a) and cylindrical (8b) coordinates. For conciseness of 
notation we write the second quantized wavefunction (cf. equations I.67) in the form 

{i(x) = I 0; IjtZ(x) exp( -i a<b"q t), (9a) 
q,E 

~(x) = I i1; ifZ(x)exp(ia<b"q I), (9b) 
q,E 

so that we have 

(10) 

where Oq and bq are the electron and positron annihilation operators and ii; and bJ 
are the corresponding creation operators. Then from the definition of the normal 
product we have 

- ~ " J d4 k . [~ , : Ijt(x) yI' Ijt(x): = L... --4 exp( -1 kx) G~,~(kW, 
E'E,q'q (2n) 

(11) 

with 

(12) 

where 

(13) 

includes conservation of energy and parallel momentum. The normal product in 
(12) has the following form: 

electron line, 

positron line, 

final pair, 

initial pair. 

(14a) 

(14b) 

(14c) 

(14d) 

In the usual diagrammatic interpretation a solid line represents an electron or a 
positron with an arrow along the line from the initial state on the right towards the 
final state on the left for an electron, and in the opposite direction for a positron. 
The vertices corresponding to equations (14) are illustrated in Fig. 1. Note that for 
a positron line there is an additional minus sign in (14b) and the interpretation of 
q' and q as the initial and final states is opposite to that for an electron line. 

The momentum space representation then reduces to 

(15) 

(c) Electron-Positron Line with Several Vertices 

Now consider the S matrix element with two factors J'fJ, and one contraction 
between electron operators. The contraction corresponds to a propagator i G(x2 , Xl) 
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(a) Gyroemission by an electron (d) Gyroabsorption by a positron 

q----~:>~------~~--~»~---q' 

(b) Gyroabsorption by an electron 

q' ---«~-----"::::""---... <~--q 

(e) Gyroemission by a positron (j) Pair annihilation producing a photon 

q --...,>,;;>-----=------;;;...- q' ------<:. 
Fig. 1. Six lowest order processes in a magnetic field. The labelling of external states is the same 
as in equations (14). All these processes are related by crossing symmetries: for example, transition 
rates for (b) and (e) differ only by densities of the external states. 

(a) 

-
( - < ( 

(b) 

< ( 

( e) 

-.-----
I 

~ I ( 

Fig. 2. The three diagrams that 
contribute to lowest order Compton 
scattering; these reflect the three terms 
in the transition probability given by 
equation (70). Diagrams (a) and (b) 
are the usual terms; (e) involves the 
quadratic response of the medium. 
As discussed in Section 4, the 3-photon 
vertex is of order 1, so that diagram 
(e) contributes to the same order as the 
first two diagrams. 
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between the two points in coordinate space. (Here we order points from right to 
left; diagrammatically Xl and X2 are connected by a solid line with the arrow 
directed from Xl to X2') From (1.70) and (1.71) we have 

• • '\' e" ~e" IdEexP{-iE(t2 -t l )} 
1 G(X2, Xl) = 1 L. l/I q"(X2 ) ljI q"(X I ) - ( . . 

q"e" 2n: E-8" iffq" -10) 
(16) 

The S matrix element then reduces to 

(17) 

with 

'[re'e" (k )]V[re"e k )J" 
[Ge'e(k k)]V" = . .!:lel 'e. De'e(k k) '\' 1 q'q" 2 q"q( I 

q'q 2, I . aq , aq • q'q 2' 1 L. <P "( <P • 0) , 
Q" 80 q -OJ 1 -8 w q,,-l 

(18) 

where Q" denotes nfl, a" and 8" collectively. In deriving (18) we use properties 
established in Section 5b of Part I: specifically the sum over the intermediate state 
is performed over p~ and either p~ or s" as indicated there. The sum over p~ implies 
conservation of parallel momentum at the vertex with 

8"p~ = 8pz-k1z = B'p~+k2z' (19) 

The quantity D~:~(k2' k1) is defined for the case n = 2 by (24) below. The dia­
grammatic representations of the terms in (18) are illustra;ed in Fig. 2. 

The result (17) with (18) generalizes to n factors of Yl'" with n - 1 contractions. 
We have 

(20) 

with 

[G~:~(km ... , k1»"n ... Vl = : a~: a~: D~:~(k", ... , k1) L 
Ql ... Qn-l 

with Ei and P zi with i = 1 to n - 1 determined by 

(23) 

The quantity D~',~(k", ... ,k]) includes the gauge dependent factors d;:~(kr) (cf. 
equations 8) for each vertex and the energy <5 functions. The product of these is 
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summed or integrated over the energies, parallel momenta and quantum numbers 
Py or s for the intermediate states. The result is the gauge dependent factor 

x exp(-;:;-~ I (k i X k)z) 
L.eB j<i 

-( t -6 8Py -8 Py - .f.., k iy exp - f.., k ix 8py+8 Py) (24a) 
VeB) Ly ,=1 2eB i=l ~ Ly L z 2n ( "~) (i ~ ( , ,) 

x 
(2nLzjVeB){ -iexp( -i I['W-s'Js~_.(X), (24b) 

with 

x == K'i/2eB, 
n 

I (k ix + i k iy) == K.l exp(i 1[') . 
i= 1 

3. Response Tensors for the Vacuum and· for Magnetized Plasmas 

(25) 

The response tensors for the vacuum are closely related to the amplitude for closed 
electron loop diagrams. After renormalization the amplitude for the two-sided 
(bubble), three-sided ('triangle') and four-sided ('box') loop diagrams give the linear, 
quadratic and cubic response tensors respectively. When an electron gas is present, 
its responses may be included in the amplitude for the loop diagrams in a way 
suggested by Tsytovich (1961). As explained in the Introduction, one relates the 
response to the forward scattering amplitude and one calculates this amplitude by 
introducing a statistically averaged propagator. 

(a) Statistically Averaged Electron Propagator 

Let G(x', x) denote the electron propagator in vacuo. Its evaluation as a vacuum 
expectation value follows from 

G(x',x) = iTr[po T{f(x')it(x)}], (26) 

where Po == I 0><0 I is a density matrix corresponding to the vacuum and 'Tr' denotes 
the trace. An arbitrary electron gas may be described in terms of a density matrix p. 
In practice the density matrix is diagonal in the states of interest, i.e. we have 
Pqq' = 0 for q' =1= q, and although this need not be the case in principle we assume 
it to be the case here. The statistically averaged propagator is defined by replacing 
Po in (26) by p: 

G(x',x) = -iTr[pT{f(x')it(x)}]. 

After inserting equations (9) with (10) in (27) the traces are evaluated using 

(27) 

(28a, b) 

(2Sc, d) 
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where nZ denotes the occupation numbers of electrons (8 = 1) and positrons (8 = -1). 
The propagator in the form (16) is then modified to 

( 1 - ne':, n~':') 
x E 1/( r&' q • 0 + E 1/ r&' . 0' . - 8 q" - I} - 8 ( q" + 1 ) 

(29) 

The principal value part of the integral is independent of the electron gas, and the 
semi-residue part includes a factor 1- 2n~':' with the unit term arising from the vacuum. 

(b) Closed Loop Diagrams 

Firstly let us calculate the amplitude for loop diagrams ignoring the electron gas. 
An n-sided loop corresponds to an S matrix element with n factors of £" and n 
contractions. We write 

... IjJ(X2) ~(Xl) A~(Xl) yll VJ(x 1): 

(i e)n J d4kn d4k1 ~ . ~ 
= 7 (2n)4'" (2n)4 En ... V1( - kn' ... , - k1)Avn(kn) ... A V1 (k 1)· (30) 

The calculation of V n",v 1 is similar to the calculation of [G)"n."V1 in (21), but with 
one important complication: the sum of the 4-momenta is zero, i.e. L:?= 1 k i = 0, 
and one integral over an arbitrary loop 4-momentum remains. Using (7) one has 
a factor 

which is to be summed or integrated over the intermediate states. There is no 
difficulty with the E and pz integrations, and the remaining integral over Py or sum 
over s leads to the following result: the integral over the undetermined loop 
momentum is equivalent to operation with 

eB fdEJdPz ( i" ( »)·2 4S;4(~ k) 2n. 2n 2n exp - 2eB /::'i k; x k j z ( n) U if'l i , 

where E and p z are the undetermined energy and parallel momentum around the 
loop. Hence we find 

Vn ••• V1· eBJdEJdPz '\ . n ( i" ( ) £ (kn' ... , kd = - - -- L.. (-I) exp - 2 B L.. k; x kj)z 
2n 2n 2n Q1 ... Qn e j<i 
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where Qr denotes (J" n" er collectively. We are free to choose E and pz arbitrarily 
and a possible choice is E = El and p Z = PI z' Conservation of energy and momentum 
are implicit in (31) with 

(32a, b) 

The contributions to the energy integral are of three kinds, those involving only 
principal values and no semi-residues, those involving n - 1 principal values and one 
semi-residue, and those involving more than one semi-residue. The contribution of 
the first kind gives zero, and contributions of the third kind are nonphysical due 
to our use of the Feynman propagator which is acausal. The physical terms arise 
from the n terms in which the semi-residue at each of the denominators is taken 
sequentially. The causal condition then needs to be imposed. This may be done 
in the usual way simply by adding i 0 to each frequency in the denominator in the 
resulting expression. 

The inclusion of the electron gas at this stage is straightforward. Consider the 
term arising from the semi-residue in the rth denominator. It is proportional to 
- i ner 6(Er - er Iff qr), and as explained following equation (29), on performing the 
statistical average over an electron gas the net effect is to multiply this term by 
1 - 2n:~. The unit term then gives the vacuum contribution and the term - 2n!~ gives 
the contribution of the electron gas. 

(c) Response Tensors 

The response tensors may now be identified by noting that the terms in the nth 
order nonlinear response (6) must arise from the (n+ I)-sided loop diagrams as in 
(30). There are n + 1 terms of the form (30) arising from permutations of the sub­
scripts 0 to n. Thus we identify 

The linear response tensor follows from (31) and (30). In this case we have 

(34) 

with e'p~ = epz-kz now implicit. In the final factor in (31) we have appealed to the 
symmetry property (I.60). The term 'He' -e) leads to the vacuum polarization tensor 
after renormalization (Melrose and Stoneham 1977). 

The quadratic response tensor is given by 

(35) 
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with 

(36) 

The cubic response tensor is given by 

(37) 

with 

(38) 

Expressions equivalent to (35)-(38) have been written down previously by Stoneham 
(1978). 

(d) Radiative and Nonlinear Corrections 

So far we have been concerned only with closed electron loop diagrams in which 
all the external photon vertices have different k values. Radiative and nonlinear 
corrections involve cases where the sum of two k values is zero. An example of such 
a term is given in (11.44). Such corrections can be important in leading to new 
physical effects, such as self-focusing of light and collapse of Langmuir turbulence, 
and they should be included in a completely general expansion. However, we ignore 
them here. 
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4. Rules for Feynman Diagrams 

We may now formulate rules for drawing Feynman diagrams, writing down the 
scattering amplitude corresponding to each diagram and evaluating rate coefficients 
from the scattering amplitudes. 

The structure of the theory is not changed in any essential way by the inclusion 
of a magnetic field and of responses of an ambient medium. Consequently any 
standard set of rules for drawing Feynman diagrams may be applied to the present 
theory. The important changes rdate to the interpretation of the diagrams rather 
than to their construction. There is however one change in the construction 
associated with the introduction of m-photon vertices. As discussed in the previous 
section, in QED an m-photon vertex is associated with an m-sided closed electron 
loop diagram. As in Part II an m-photon vertex is drawn as a hatched circle with 
m photon lines attached to it (see Fig. 1 on p. 783). A rule governing their introduction 
is: 

Any closed m-sided electron loop diagram is 
replaced by an m-photon vertex. For the 
purpose of counting the order of a process, 
an m-photon vertex counts as order m - 2. 

We adopt the rules for drawing diagrams in the form summarized by 
Berestetskii et al. (1971, §78). The simplest diagram involves an electron or positron 
line with one vertex connecting it to a photon line. As illustrated in Fig. 1 on p. 803, 
this describes six different processes, all of which are related by crossing symmetry. 
These are gyro magnetic emission and absorption by electrons or positrons, and one­
photon pair creation or annihilation. In our theory splitting of one photon into 
two and coalescence of two photons into one are of the same order as these processes; 
the processes which involve only photons are discussed in Part II. Next in order 
one has Compton scattering and various crossed processes, and also photon-photon 
scattering (Part II). The diagrams contributing to Compton scattering are shown 
in Fig. 2 (on p. 803). Note that the 3-photon vertex contributes through 'nonlinear' 
scattering. 

(a) Scattering Amplitude in Momentum Space 

It is not possible to write down a momentum space representation for processes 
in a magnetic field in the same way as one can in the absence of an external field. The 
reason for this is that the electron propagator is a function of the two space-time 
points separately and not simply a function of the difference between them. Con­
sequently the electron propagator may not be Fourier transformed with a single 
wave vector k. A momentum space representation may be obtained by taking the 
product of the two electron wavefunctions at a single vertex. In this case the Fourier 
transform leads to the vertex function (7). With the momentum space elements 
associated with vertices rather than propagators, the external particle states are 
automatically included and sums over intermediate states need to be performed. 
With the detailed properties of the electron states being included in the vertex 
functions, the electron propagator is replaced by a scalar function like the energy 
denominators in nonrelativistic perturbation theory. We shall refer to them as 'energy 
denominators' . 
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Our convention for the directions of 4-momenta are implicit in the definitions 
of the vertex functions. According to (15), when k is directed towards an electron­
photon vertex the argument of the vertex function has a minus sign. Consequently, 
when the argument k of the vertex function is positive the 4-momentum is directed 
away from the vertex. In other words positive k is associated with emission of a 
photon. For the m-photon vertices the signs of the arguments in the relation (33) 
imply that all 4-momenta are directed towards the vertex. In this case a positive 
argument is associated with absorption of a photon. 

Consider the convention that an electron-positron line has its arrow directed from 
the state q to the state q'. For an electron line (a' = a = 1), q corresponds to the 
initial state and q' to the final state, and for a positron line, q' corresponds to the 
initial state and q to the final state. The other possibilities correspond to pair creation 
and pair annihilation with both q and q' in the final and initial states respectively. 
The initial state is always on the right and the final state on the left. We label 
a sequence of states along an electron-positron line q, ql' ... , q., q' in the same 
direction as the arrow. 

(b) Rules 

(I) With each electron-photon vertex is associated an index J1 and a 4-momentum 
k directed away from the vertex. The vertex contributes to Sfi a factor 

i e[r"2"! (k)]/L 
QZQl ' 

where (a2 , q2) and (ai, ql) label the states in the opposite direction to the arrow along 
the electron-positron line. 

(2) With each pair (ab q2) and (ai' ql) of electron-positron states, ordered in the 
opposite direction to the arrow along the electron-positron line and at the end of 
the line, is associated in Sfi a factor D~:~(k", ... , k 1) given by (24). 

(3) Energy and parallel momentum are conserved at each vertex and in the rth 
line they are given by 

Er = a6"q-(wl + ... +Wr) = a'6"q,+(Wr+l + '" +wn), 

arprz = apz-(k1 + ... +krL = a'p~+(kr+l + ... +knL· 

(39a) 

(39b) 

The rth internal electron-positron line contributes to Sfi an energy denominator 

i/{Er-a,{6"qr -iO)}. 

(4) An m-photon vertex with all4-momenta kl' ... , km directed towards the vertex 
contributes to Sfi a factor 

-i(m-I)! aV! ... Vm(kl' ... ,km)(2n)4b4(kl + ... +km). 

[The factor (m - I)! arises from (6), with 0 ... n + 1 replaced by 1 ... m, due to a factor 
m in the denominator and a factor m! in the numerator from the term in 
(A(l) + ... + A(m))m involving m! A(l) ... A(m>, i.e. assuming m different photon fields.] 

(5) An internal photon line with 4-momentum k directed from vertex J1 to vertex 
v contributes to Sfi a factor 

·-iD/Lv(k) , 

associated with vertex functions [r~{.(kW and [r~':'~( -k))". 
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(6) An external photon line corresponding to mode M contributes to Sfi a factor 

or 

for absorption or emission respectively, with 

(40) 

(c) Averaged Transition Rate 

In the absence of a magnetic field, 4-momentum is conserved and it is conventional 
to write Sfi = (5fi +i(2nt(54(Pf -PJTf j, where Pf and Pi denote the final and initial 
4-momenta respectively. In the presence of a magnetic field only energy and parallel 
momentum are necessarily conserved and one cannot define a Tfi in this way. 
Nevertheless, it is convenient to seek a reduced matrix element which plays a role 
similar to that of Tfi. Specifically, we would like Mfi to be independent of the choice 
of gauge. In general one cannot describe a given process without introducing a 
gauge (or some equivalent concept) because the process may depend on the initial 
position of the particles in the xy plane. In cartesian and cylindrical coordinates, 
this position is included in the initial data through Py and s respectively. In practice 
one is rarely interested in the dependence on initial position and it is convenient 
to average over it. 

The transition rate Wi--+f for a transition from state i to state f is given by 

(41) 

The densities of the initial and final states are given as follows: For an electron 
we have (cf. equations 1.33) 

(42a, b) 

and (cf. equations 1.34) 

(43a, b) 

in cartesian and cylindrical coordinates respectively. For photons we have Di = 1 and 

D f = V dk/(2n? . (44) 

Note that each electron-positron line (other than closed loops which have already 
been discussed) is described by a factor D~:~ in Sfi' and that the factors Di given 
by (42) appear in the denominators in the expressions (24) for D~:~. It follows that 
in the transition rate the factors Di all cancel. Equivalently we could renormalize 
our wavefunctions such that Di is unity in (42) and the analogous factors LyLz/V(eB)t 
and 2nLz/VeB do not appear in (24). 

Included in the initial data is the value of Py or of s for each initial electron or 
positron. These quantum numbers provide information on the location of the 
particle in the xy plane, and in practice we are not interested in this information. 
Consequently we average over this position. We sum or integrate over the quantum 
numbers which determine the position of the final particle. Using (1.63) and (1.65) 
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in the case of cartesian and cylindrical coordinates, this average corresponds to 
operation with 

JtLx 2 L Jd ~ -1 rc = Py 
Dav = Lx dx = --Ly -, 

-tLx VeB 2rc 
(45a) 

= 2rc JR dr r = 2rcLz '" 
2 ~ , 

rcR 0 VeB s 
(45b) 

with V = Lx Ly L z and V = rcR2 L z respectively. This averaging process is relevant 
only if the value of Py or of s is determined. For example, if there is only one 
particle in the initial state then Wi~f does not depend on its position and it is not 
necessary to average. It is convenient to average over all initial positions however, 
and to adjust the result by making the replacements 

(46a,b) 

in any cases where the function being integrated or summed is independent of Py or s. 
Consider the case where there is only one electron-positron line. The foregoing 

discussion together with the form (24) of D~',~ leads to the following result for the 
averaged (denoted by a bar) transition rate: 

where Er, P zf and Ej> P zi denote the final and initial values of energy and parallel 
momentum respectively, and with Mfi constructed as with the rules above, but with 
rule (2) modified as follows: 

(2') For the purpose of constructing Mfi , D:',~(km ... , k t ) is to be replaced by 

vexp( __ i_ I (ki x k)z). 
2eB j<i 

The modified density of final states in (47) is 

Df = (VeB/2rc)dpz/2rc. (48) 

The result (47) is readily derived by considering the three cases of an initial pair, a 
final pair and a line joining initial and final states separately, and by treating each 
in the two gauges. It is not difficult to generalize (47) to cases where there is more 
than one electron-positron line but we do not do so here. 

The transition rate (47) is closely related to the probability per unit time for 
emission of a photon. This quantity has been used extensively in semiclassical theory. 
For present purposes it may be defined by writing 

(49) 

setting V = 1 and assuming implicitly that parallel momentum is conserved. In the 
classical limit the probability (49) reproduces well-known semiclassical results (see 
e.g. Tsytovich 1970, 1972; Melrose 1980), as shown explicitly below. 
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5. Gyromagnetic Emission and One-photon Pair Creation 

The simplest processes in the present theory are those which correspond to an 
electron-positron line with a single vertex. There are six such processes: gyro­
magnetic emission and absorption by an electron or a positron and one-photon pair 
creation or annihilation. These processes are all related by crossing symmetries and 
may be described in terms of a single probability. The probabilities which have 
been written down previously do not show these crossing symmetries explicitly. 
Sokolov and Ternov (1968, p.76) indicated an expression for the probability of 
gyro magnetic emission by an electron in vacuo and then concentrated on the case 
of synchrotron radiation. Melrose (1974) wrote down a probability in terms of the 
r function derived using Johnson and Lippmann wavefunctions (see Part I), and 
when taking the nonrelativistic limit (Melrose and Zheleznyakov 1981) the expected 
symmetry between electron and positron processes is not apparent. 

Here we write down the exact expression for the relevant probability, discuss the 
crossing symmetry and then discuss the nonrelativistic and ultra-relativistic limits. 
The usual expressions for one-photon pair creation may be derived in the ultra­
relativistic limit. The possibility of maser emission of y rays is then discussed briefly. 

(a) The Probability 

The probability for processes corresponding to a single photon in the mode M 
interacting with an electron or a positron is 

M . e2 RM(k) * . [ G'G .]/L 2 ('P .' 0 ) Wq'q(k) = Ik II eMik ) rq'q(k) I 2nD e0 q -B rffq,-wM(k) , 
eo wM ( ) 

(50) 

As written the probability is for emission of the photon, and it includes emission 
by an electron (e = e' = 1) or a positron (e = e' = - I) and one-photon pair annihilation 
(e= -e' = 1). The corresponding results for absorption and one-photon pair creation 
are obtained by reversing the sign of k and using 

wM(-k) = -wM(k) , e~(-k) = e~(k), 

RM( - k) = RM(k) , [r~',~( - kW = [r~~',(k)]*" . 

(51a, b) 

(5Ic,d) 

The reversal of the order of the states in (5Id), which follows from (1.60), reflects 
the usual detailed-balance relation. Specifically, if w~ik) denotes the probability 
for emission by an electron with transition from state q to q', then the same probability 
applies to absorption between the same two states, i.e. with a transition from q' 
back to q. 

Conservation of parallel momentum is implicit in (50) in the form 

(52) 

The pz describe the physical momenta. For emission by an electron, e = e' = 1 in 
(52) gives p; = pz-kz as required, and for emission by a positron, e = e' = -1 
in (52) gives pz = p~-kz' which is also the required result in view of the states q 
and q' being final and initial states for positrons. 

An explicit expression for the vertex function in (50) is written down in (1.57). 
This cumbersome expression simplifies considerably in the nonrelativistic and ultra­
relativistic limits. 
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(b) Nonrelativistic Limit 

The nonrelativistic limit here corresponds to p; Im2 .~ 1, p~jm2 = 2nBjBc ~ 1 and 
x = k'fj2eB ~ 1. Gyromagnetic emission then favours low harmonics, with w :::::; jQe 

andj = 1,2,3, .... We assume that the dispersion is weak and write k z :::::; wcose, 
x :::::; j2(Bj2Bc)sin2e. When only the leading terms in an expansion in x are retained 
for each j [cf. equations (A1S) of Part I] the vertex function (I.57) for electrons gives 

r + + k " ( . j . Xl' 0 { ( B ) t( I' )t t(j-l) } 
q'q (.) = U rr ,,, -1) 2Be (l-j)! (j-l)!( ,1, ) 

{ "_ BCOSe( I! )txt(j-rr) } 
+Orr'-rr (_i)l rr2i3;" (l-j+a)! (j_a)!a(j,iaj , -tane) , (53) 

with n' = n - j. For positrons q' labels the initial state and hence we would write 
n = n' - j for emission at the jth harmonic. However, it is more useful to note that 
the symmetry properties (1.60) and (1.61) imply 

r~;-(k) = (-Y--l[r;q+(k)J*. (54) 

As is obvious on physical grounds, (53) with (54) implies that the only difference 
between emission by a positron and by an electron is in the handedness of the emitted 
radiation. 

As pointed out by Melrose and Zheleznyakov (19S1), the terms in (53) with no 
spin-flip (a' = a) correspond to 2j electric multipole emission and the terms with 
spin-flip correspond to magnetic multipole emission. The result (53) corrects the 
corresponding result quoted by Melrose and Zheleznyakov (19S1) for the terms 
involving a spin-flip for j > 1. 

The form (53) is relevant for electrons or positrons in low Landau orbitals, i.e. 
for small values of I and I'. In the opposite limit the particles may be treated 
classically. It is straightforward to show that the leading term in the classical limit 
[cf. equation (AI9) of Part I] leads to r;'q+(k) and r~;-(k), reducing to the classical 
quantity V(j, k) given by equation (A3Sb) of Part II, apart from an arbitrary phase 
factor. The classical theory of gyro magnetic emission has been discussed in detail 
(see e.g. Melrose 19S0) using the classical counterpart of (50). 

(c) One-photon Pair Creation 

The probability (50) may be used to treat one"photon pair creation by setting 
8 = -1 and 8' = 1. The absorption coefficient rxM(k) is given by 

M "eBJdPz M rx (k) = L.. - -:-- wq,q(k). 
n.n' 2n 2n: 

(55) 

(I,a' 

In the absence of a material medium we are free to choose a frame in which k is 
along the I-axis (k z = 0, t/J = 0). The two natural modes of the birefringent vacuum 
then correspond to polarizations along the 2- and 3-axes; we refer to these as the 
perpendicular and parallel modes respectively. We have 

rx.L,II(k) = L eBJ dpz ~ i {r;q-(k)} 2,3 I 22n:0(i&'q + i&'q'-w) , (56) 
n,n', 2n: 2n 280 W 
rr,rr 
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where we assume that the effect of the magnetic field on the dispersion of the photons is 
weak. After summing over the spin states the resulting expression is independent 
of the choice of spin eigenfunctions. Using either (1.57) or the form written down 
by Melrose (1974) one obtains 

(57) 

with 

(58a, b) 

and with 

(59a) 

4 ' BJn In--1] + nne n'-n n'-n , (59b) 

where arguments are omitted. Conservation of parallel momentum requires 
P~+Pz = 0 in this case. 

In the usual treatment of this process the ultra-relativistic approximation is made 
(see e.g. Erber 1966). To rederive the known result we assumed that nand n' are 
large and continuous and replaced the sums in (57) by integrals. Next we assume 
2neB, 2n' eB ~ m2 , p; and expand em e~, with the leading terms being (2neB)"t, (2n' eB)-!­
respectively. The variables of integration are then changed to u, wand E with 

sinh u == pz/m, sinhw == {(n'}t- n-!-}/4(n'n)t, 

The E integral is performed over the t5 function giving 

(n')-!- + n-!- :::::; xt {I - (m 2 /w 2 )cosh2u cosh2 w} , 

where x = w2 /2eB is the argument of the J functions. We find 

with 

pll :::::; t(J:, -n + J~:-_1nf + (2m2 /(2)cosh2w{2cosh2w cosh2u - sinh2u} 

x {(J~'-n? + (J::-_ly} . 

(60a, b) 

(60c) 

(61) 

(62) 

(63a) 

(63b) 
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The final steps involve using equations (AS)-(A 7) and (A21) of Part I to re-express the 
J functions in terms of J~'-n and its derivative, and then making the Airy integral 
approximation to them: 

with 

J ~'-n(x) :::::: (I/nv3)(2m/w)cosh ucosh w Kl/3(Z) , 

(d/dx)J ~'-n(x) :::::: (l/nv3)(2m2/w2)cosh2u cosh w K2j3(z) , 

x == weB/2m3 = Bw/2Be m . 

This results in 

(64a) 

(64b) 

(6Sa, b) 

+t{2cosh2w cosh2u -sinh2u }cosh4wcosh2u Ki/3(Z)} . (66) 

The result quoted by Erber (1966) is for unpolarized photons and is reproduced by 
evaluating t(rx.L+rxll) using (62) and (66). 

(d) Maser Emission of'Y Rays 

It is well known that amplification of gyromagnetic emission is possible (see e.g. 
the literature cited by Hewitt et al. 1982). Recently it has been pointed out that 
maser emission of 'Y rays is possible in principle due to pair annihilation (Ramaty. 
et al. 1982). Here we examine the possibility of 'Y-ray maser emission due to one­
photon pair annihilation. 

To illustrate the approach let us first consider gyro magnetic emission. The rate 
at which the process proceeds in the direction q -+ q' involves factors n;(l-n;) from 
the electron states and 1 + N M(k) from the photon states, and the rate it proceeds 
in the opposite direction involves factors (l-n;)n; and NM(k). Hence the net rate 
is given by 

(67) 

The first term on the right-hand side of (67) describes spontaneous emission and 
the second term describes absorption. The absorption is negative for n; > n;. 

Now in the case of one-photon pair annihilation the rates of emission and 
absorption of the photons are proportional respectively to n; n;.{l +NM(k)} and 
(I -nn(1-n;)NM (k), and hence the net rate is given by 

(68) 

Thus amplification of y rays is possible only for n; +n; > 1, which corresponds 
to the electrons and positrons being degenerate. One readily confirms that the 
condition n; + n; > 1 cannot be satisfied for thermal distributions of electrons and 
positrons in equilibrium, but it can be satisfied for Fermi-Dirac distributions of 
electrons and positrons with J-l + + J-l- > 0, where J-l + and J-l- are the chemical 
potentials and where J-l + + J-l- = ° corresponds to thermal equilibrium. 
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We conclude that maser emission of ')' rays due to one-photon pair annihilation 
is possible only in a relativistically degenerate electron-positron plasma which is 
nonthermal in the sense fl + + fl- > O. 

6. Compton Scattering and Related Processes 

In the absence of a magnetic field the allowed second order processes are Compton 
scattering, two-photon pair creation and annihilation and electron-electron, 
electron-positron and positron-positron scattering. In the presence of a magnetic 
field additional crossed processes are allowed. Two-photon emission and absorption 
are related to Compton scattering and decay of one photon into a pair plus another 
photon and its inverse are related to two-photon pair creation. All the processes 
related to Compton scattering can be described in terms of a single probability, which 
we write down below. We then discuss Compton scattering for electrons in low 
Landau orbitals and two-photon absorption when the initial electron is in its ground 
state and the final electron is in its first excited state. 

The diagrams which contribute to Compton scattering are illustrated in Fig. 2 
(see p. 803). Besides the usual diagrams (a) and (b), there is an additional one (c) 
involving the quadratic nonlinear response of the medium. In the language of plasma 
physics this diagram describes scattering off the shielding or self-consistent electro­
magnetic field of the particle; it is also called nonlinear scattering. 

(a) The Probability 

We choose to write the probability so that for e' = e = 1 it describes two-photon 
emission: 

wMq'q'M(k', k) = e4RM,(k) RM(k) 1 * (k) *, (k') MIlV(k k') 12 
e~{wM,(k')WM(k)} eMil eM v , 

x 2nc5(et&"q-e' t&"q,-wM(k)-wM,(k'»); (69) 

MIlV(k,k') = L [~::~:,(k)]Il[~~:,~C~')]V exp (- _i_Ck' x k)z) 
Q" et&"q-wM.(k )-e t&"q" 2eB 

" [r::~:,(k)]Tr:~~Ck)]1l (i k' ) ) + L.. exp -( X k z 
Q" et&"q-wM(k)-e"t&"q" 2eB 

+(2Je)[r::~(k+k')]9D9q(kM+k~,)aqIlV(kM+k~" -kM' -k~,), (70) 

where kM denotes (wM(k), k) and similarly for k~,. In the following calculations 
we neglect the final term in (70) which is due to so-called nonlinear scattering. Its 
effect has been discussed by Stoneham (1980a, 1980b). For Compton scattering 
M -+ M', the probability is w':~M(k', -k), which is to be evaluated using (70) and (51). 

(b) Initial Electron in Its Ground State in Vacuo 

We now specialize to the case of scattering by an electron initially at rest in its 
ground state in vacuo. In the final state the electron may have any n' for the present: 

e = 1, t&"q=m, 

e' = 1, t&"q' = (m2+p~2+2n'eB}~, 

pz = 0; (71a) 

(7Ib) 
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We neglect the dispersion of the waves setting 

kx = w sin 8 cos ljI , ky = w sin 8 sin ljI , kz=wcos8. 

(72a) 

(72b) 

The b function in (69) then implies 

w' = (l/sinl 8')[m + w(l- cos 8 cos 8') - {ml + 2n' eB sinl 8' 

+ 2mw cos 8'( cos 8' - cos 8) + w 2 ( cos 8 - cos 8')l} t] . (73) 

We consider only the cases n' = 0 and n' = 1 explicitly. 

Case n' = O. To reduce the probability (70) further we need to evaluate the scalar 
products involving the r functions. We do this in the temporal gauge, denoting 
the polarization vectors e and e' by their cartesian components. Using (I.57) and 
(I.58) we have, for arbitrary Pz' 

with 

x (Hl-cr")[ -p~"ei!/lJ~"-1(x)-J2eLa(l+e")(1-p;p~)-t(1-e")(p;-p~)} 

+J~,,(x)ba(1 +e")(p~- p~) -t(1-e")(1 + p; p~)}] 

+t(1 + cr")[i ei!/lJ~"_1(x)J2edt(1 +e")(p; - p~) +t(1-e")(1 - p; p~)} 

+i p~" J~,.(x)ba(1 +e")(1 + p; p~)+!(I-e")(p;+ p~)}]), 

J 2 eL == (l, - i, 0) , b == (0,0,1), 

(2neB}t 
Pn = tS'~+m . 

(74) 

(75a) 

(75b) 

In using (74) in (70) we need to take account of the sign e" in the value of p;, which 
follows from the relevant b function in (8) for example. In the first term in (70) 
we have p; = e"(pz -k~) and in the second we have p~ = e"(pz +kz)(after changing the 
sign of k as indicated). A lengthy calculation then leads to the result 

x 12: a 1(n)+az(nW2nb(tS'q,-m-w+w') , (76) 
n 

with 

a n = exp{ -(i/2eB)ww'sin 8 sin 8' sin(ljI -ljI')}{~(WW' sin 8 sin 8') n 

1 ( ) 2mw' _ w,lsinl 8' + 2neB n! 2eB 

x ein(!/I -!/I') {w'(2m + w - w') + w'cos 8'(w cos 8 - w'cos 8')}e z e~* + 
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I (OJOJ'sin 8 sin 8,)n-l i(n-l)(I/I-I/I')[{ '(2 ') + --- e OJ m+OJ-OJ 
(n-I)! 2eB 

- OJ'cos 8'(OJ cos 8- OJ'cos 8') }(ex + i ey)(e~ + i e~)* 

+ OJ'sin 8'e -il/l'(OJ cos 8 - OJ'cos 8')(ex +i ey)e:* 

+OJ sin 8 eil/l(OJ cos 8- OJ'cos 8')ez(e~ +i e;)*]} , (77a) 

exp{ (ij2eB)OJOJ' sin 8 sin 8'sin(t/I- t/I')}{ I (OJOJ'sin 8 sin 8') n 
a2(n) = 2mOJ+OJ2sin28-2neB n! 2eB 

x e - in(I/I-I/I') {OJ(2m + OJ- OJ') + OJ cos 8(OJ cos 8 - OJ'cos 8') }ez e;* 

1 (OJOJ'Si118Sin8,)n-1 -i(n-l)(I/I-I/I')[{ (2 ') 
+ (n-I)! 2eB e OJ m+OJ-OJ 

- OJ cos 8(OJ cos 8 - OJ'cos 8') }(ex - i ey)(e~ - i e~)* 

+ OJ'sin 8'eil/l'(OJ cos 8- OJ'cos 8')(ex - i ey)e;* 

+ OJ sin 8 eil/l( OJ cos 8 - OJ' cos 8')ei e~ - i e~)*]} . (77b) 

The sum over n in (76) is from n = 0 to 00 for the terms proportional to ez e;* and 
from n = 1 to 00 for the other terms. 

Apart from notation, (76) with (77) reproduces an expression derived by Herold 
(1979), who expressed his result in terms of a cross section. 

Case n' = 1. An electron initially in the ground state may be left in the first 
excited state as a result of a scattering event. The states other than the ground 
are doubly degenerate and only the transition rate summed over the two degenerate 
states is independent of the choice of spin eigenfunctions. Here we identify the spin 
states as the eigenvalues of the magnetic moment operator, as discussed in Part 1. 
In our convention the ground state has spin down (IT = -1) and we describe 
transitions to the states n' = 1, /' = 1, IT' = -1 and n' = 1, /' = 0, IT' = 1 as being 
without a spin-flip and with a spin-flip respectively. 

The probability analogous to (76) is 

, e4 exp{ -(OJ2sin28+OJ'2sin28')j2eB} 
wlO(k, -k) = 16 2 , o( 0)( 0)( ') lloOJOJ fffq. fffq,+m fffq,+fffq, m+OJ-OJ 

x I I I br<n)+b2'(n) 122nc5(fffq,-m-OJ+OJ') , (78) . 
a'= ± 1 n 

with fff~, = (m2+2eB)t here. The functions br<n) and b2'(n) are rather lengthy and 
are given in Appendix 1. 

Transitions to n' > 1 may be described analogously with the explicit expressions 
being similar in form to (78). 
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(c) Double Absorption 

We have suggested elsewhere (Melrose and Parle 1981) that two-photon absorption 
leading to a transition from n = 0 to n' = 1 might be important in the generation 
of X-ray cyclotron lines in some X-ray pulsars. The probability for double absorption 
is W~;M( -- k', - k), and the detailed case of interest here follows from (78) by replacing 
w', cos 8' and l/J' by -'---w', -cos 8' and l/J' +n respectively. 

We evaluate the transition rate for double absorption, 

D I dk dk' , , 
r = (2n? (2n)3 Wl'O( -k, -k) N(k) N(k ), (79) 

by assuming (a) that the photons come from a single distribution [this leads to an 
extra factor of -t, i.e. 16 is replaced by 32 in (78)], (b) that the photons are distributed 
with axial symmetry and we average over azimuthal angles, (c) that x, x' and BIBc 
are all ~ 1 and (d) that we may average over states of polarization. The average 
over polarization states is achieved by writing 

I {bnn)+b~'(n)} = eie;Gi~' 
n 

and making the replacement 

After averaging over polarizations we obtain a relatively cumbersome averaged 
probability which is written down in Appendix 2. 

We may evaluate the rate (79) explicitly given the form of N(k). For an isotropic 
distribution of photons independent of w over a narrow range Liw about w = -tQ., 
we find 

(80) 

where r = ~IY.Qe(BI BJ is the transition rate 1 ---+ 0 due to one-photon emission. The 
significance of this result has been discussed by Melrose and Parle (1981). 

7. Concluding Remarks 

In this paper and the two preceding papers in the series we have shown how 
quantum electrodynamics (QED) may be extended to treat the effects of an ambient 
magnetic field and an ambient electron gas exactly. This generalized version of QED 
is in effect a synthesis of QED and the kinetic theory of plasmas, with a magnetized 
vacuum treated as though it were a plasma-like medium. We have illustrated the 
uses of this theory by rederiving a variety of results otherwise treated using diverse 
approaches. We have extended some of the known results. Specifically we have 
(i) corrected existing results for nonrelativistic gyro magnetic emission to exhibit the 
symmetry between electron and positron emission, (ii) rederived formulae which 
describe one-photon pair creation presenting general (rather than strictly ultra­
relativistic) formulae and including polarization in the ultra-relativistic case, (iii) 
discussed y-ray maser emission due to one-photon pair annihilation, (iv) treated 
Compton scattering from the ground to the first excited state, and (v) treated 
two-photon absorption from the ground to the first excited state. However, our 
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main purpose has been to present the development of the theory in a systematic 
way rather than to obtain intrinsically new detailed results. 

In one sense our theory is still incomplete. QED needs to be renormalized. 
Although the inclusion of an ambient magnetic field (or of an electron gas) does 
not alter the singular terms which are removed by renormalization, it does lead to 
finite corrections to the otherwise singular terms. In the case of the vacuum 
polarization the magnetic field leads to birefringence and to nonzero contributions 
to the nonlinear response tensors, as discussed in Part II. The other singular terms 
in QED are the electron self-energy and the vertex correction. To include all the 
effects of an ambient magnetic field we should include the finite corrections due to 
B i= 0 to these functions. Moreover, in evaluating them, we should also include 
the vacuum polarization in the photon propagator. However, these corrections are 
usually not important. For example, classically the electron self-energy in a plasma 
is different from that in vacuo [the difference for an electron at rest is found by 
integration of -e¢(x) over all space for ¢(x) = -e/r and ¢(x) = (-e/r)exp( -·r/AD) 
and subtracting one from the other]; in practice this is unimportant except when the 
electron moves from one medium to another and then the emission of transition 
radiation may be related to the change in the self-energy. By analogy our neglect 
of the contribution from B i= 0 to the electron self-energy should not affect the 
processes discussed in this series of papers. 
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Appendix 1. Compton Scattering 

The coefficients in (78) for no spin-flip (a' = -) and for spin-flip (a' = +) are: 

b-( ) exp{i(xx')tsin(tjI-tjl')} -t -iI/J{(l/ ')( ')tn in(I/J-I/J') 
1 n = - x en. xx e 

2mw' -w'2sin21j' +2neB 

x ([ {w'(iS' q' + is'~,) + w'cos 8'(w cos 8 - w'cos 8') }(m + is'~,)(n - x) 
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+ w sin (J eil/l {w'(w cos (J- w'cos (J') - w'cos (J'(tff q' + tff~,) } (ex -i ey)e~*) 

+ {I/(n-I) I }(xx')Hn-l) ei(n-l)(I/I-I/I') 

x (w'sin (J' e -il/l' (m+ tff~,)(w cos (J - w'cos ()')(n -I-x)(ex + i ey)e~* 

+w sin (J eil/l[(w cos (J-w'cos (J'){(m+ tff~,)(n-x)-w'} 

- w2sin2(J e2il/l(tff q' + tff~,)(ex - i ey)(e~+ i e~)* 

+ (m + tff~,){ w'(tff q' + tff~,) + w'cos (J'(w'cos (J' - w cos (J)} 

x (n-I-x)(ex+iey)(e~+ie~)*)}, (AI) 

bz(n) = exp{ -i(xx'}tsin(~-l/I')}x'-te-il/l'{(llnl)(xx')-!-ne-in(I/I-I/I') 
2mw + w2sm2 (J - 2neB 

x ([ {w cos (J(w cos (J- w'cos (J')+ w(tffq' + tff~.) }(m + tff~,)(n - x') - 2neB(tff q' + tff~,)]ez e~* 

+ w'sin (J' eiljJ' {w cos (J(tff q' + tff~,) - w(w cos (J - w'cos (J') }ez(e~ +i e~)*) 

+ {1/(n-1)1}(xx,)-!-(n-l) e-i(n-l)(I/I-I/I') 

x (w sin (J e -il/l(m + tff~,)(w cos (J - w'cos ()')(n -I-x')ez(e~ - i e;)* 

+ w'sin ()' eil/l'[w cos (J(tff q' + tff~,) + {em + tff~,)(n -x') + w} 

x (wcos(J-w'cos(J')](ex -iey)e~* 

+w,2sin2(J' e2il/l'(tffq'+ tff~,)(ex -iey)(e~ +ie~)* 

+ (m + tff~,)(n -l-x'){ w(tff q' + tff~,) - w cos (J(w cos (J - w'cos (J')} 

x (ex -iey)(e~ -ie~)*)}, (A2) 

bien) = _ exp{ -i(xx')tsin(l/I-lf/)} x-te-:I/I{(1ln!)(xx')tnein(I/I-I/I') 
2mw' -w'2sin2(J +2neB (2eB) 2 

x (2eB [{n(m + tff~,) - w'(n - x) }(w'cos (J' - w cos (J) + w'cos (J'(n - x)(tff q' + tff~.)]ez e~* 

- w sin (J(m + tff~,){ w'(tff q' + tff~,) + w'cos (J'(w'cos (J' - w cos (J)} (ex - i ey)e~*) 

+ {l/(n -1) I }(xx')Hn-l) ei(n-l)(I/I-I/I') 

x (w'sin ()' e- il/l'2eB(n -1- x)(tffq, + tff~,)(ex +i ey)e~* 

+ w sin (J'eil/l[(m + tff~,){ w'(tffq, + tff~,) + w'cos (J'(w cos (J -- w'cos (J')} 

+ 2eB (n - x)(tff q' + tff~,)]ezCe~ + i e~)* 

+ w2sin2(J e2il/l(m + tff~,)(w cos (J- w'cos (J')(ex - i ey)(e~ +i e~)* 

+2eB(n-I--x){w'(w cos (J-w'cos (J'}-w'cos (J'(tffq, + tff~,)} 

x (ex +iey)(e~ +ie;)*)} , (A3) 
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x (2eB [{n(m + tS"~.) + w(n- x') }(w'cos ()' - w cos ()) - w cos ()(n - x')( tS" q' + tS"~,)]e z e~* 

- w'sin ()' eil/l' (m + tS"~,){ w(tS"q' + tS"~,) + w COS ()(w'cos ()' - w cos ())) ez(e~ + i e;)*) 

+ {1/(n_l)!}(xx,)t(n-l)e-Hn-1)(I/I-I/I') 

X (-wsin()e- il/l2eB(n-l-x')(tS"q'+ tS"~,)ez(e~ -ie~)* 

+ w'sin ()' eW [ {w( tS"q' + tS"~,) + w cos ()(w cos () - w'cos ()') }(m + tS"~,) 
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- 2eB (n - x')(tS" q' + tS"~,)](ex - i ey)e~* 

+ 2eB (n - 1 - x'){ w( w' cos ()' - w cos ()) + w cos ()( tS" q' + tS"~,) } 

X (ex-iey)(e~-ie;)*)}. (A4) 

Appendix 2. Double Absorption 

We calculate the rate of double absorption by an electron in its ground state 
at rest, to its first excited state with spin down «(J' = - 1) and spin up «(J' = + 1). 
We assume that the photon freg uencies are close to the cyclotron freg uency : 

w' = 1De(l- b) , (A5a, b) 

with b ~ 1. Then to lowest order in the fine structure constant IX, B/Be and b, we 
have, after averaging over photon polarizations, 

w~ 'o(k, k') dk dk' = IX2 ZO' b(Ei - Er) dw dw' d() d()' d l/J dl/J' N (k) N (k') , (A6) 

with 

z- = (!!..) 3(2n)3 sin () sin V' {t[ 472(sin2() + sin2()') - 760 sin2() sin2()' 
Be 512 

+ 440 sin2() sin2()' - 864 cos () cos ()'} 

+ sin () sin ()' cos( l/J-l/J')(-H208 - 72(sin2() + sin2()') + 26 sin2() sin2()' 

+ cos () cos ()' {160- 8(sin2() + sin2()')}] 

+ t b(sin2() - sin2()')( - 32 - 32 cos () cos ()')) + 
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+sin28 sin28' cos2(1/I-1/I')[!{16-2(sin28+ sin28')+ S cos 8cos 8'} 

-tl5(sin28- sin28')J+i sin38 sin38' cos 3(1/1 -I/I')} , 

+ ']\ l5(sin28 - sin28'){ - 404S -136(sin28 + sin28') + 716 sin28 sin28'} 

+ sin 8 sin 8' cos( 1/1 -1/I')(H160 - 4O(sin28 + sin28') 

+cos 8cos 8' {20S - S(sin28+sin28')}] 

+tl5(sin28- sin28')( -376- SOcos 8cos 8')) 

+sin28 sin28' cos 2(1/1 -1/I')[t{16-2(sin28+sin28')} 

--2jI5(sin28-sin28')]} . 

(A7) 

(AS) 

On assuming isotropic distributions of photons and carrying out the integrals over 
angles and over frequencies from 15 = -l1w/Q. to 15 = + I1w/Q., we obtain the 
result (SO). 
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