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Abstract 

The formalism of the averaged Lagrangian has been extended and developed to evaluate the intensity­
dependent precessional rotation and wave number shift of an elliptically polarized electromagnetic 
wave in unmagnetized cold relativistic plasmas; the results are identical to those of Arons and Max 
(1974) and others. Moreover, the expression for two intensity-induced nonlinear modulation fre­
quencies for both the right and left circular polarization components of the wave have been derived. 
The mathematical technique developed here may be useful in the study of other types of nonlinearly 
evolved rotational corrections for motions in fluids, and so the possibilities of broadening the scope 
of this formalism are discussed. 

1. Introduction 

Nonlinear effects in plasmas and other media are much discussed topics of research 
in modern physics because of the wide scope of their applicability in astrophysics 
and laboratory experiments. For theoretical investigations of nonlinear effects of 
frequency shift, wave number shift, precessional rotation, modulational instability 
etc. some standard mathematical methods are followed, which give solutions of higher 
order nonlinear differential equations. The method of Bogoliubov, Krylov and 
Mitropolsky (BKM) (Bogoliubov and Mitropolsky 1961) has been widely used by 
many authors for the study of problems of wave propagation through plasmas 
(see e.g. Montgomery and Tidman 1964; Tidman and Stainer 1965; Boyd 1967; 
Das 1968, 1970, 1971; Chakraborty 1977; Chakraborty and Chandra 1978; 
Chandra 1980). Another mathematical technique, called the derivatives expansion 
method, was adopted by Nayfeh (1965) to recover the results of Tidman and Stainer 
(1965) for the frequency shift of electromagnetic waves in a plasma medium. The 
Lindstedt method (Bellman 1964) is also very useful in solving nonlinear equations 
for weak nonlinear effects in plasmas (Chandra 1974, 1976, 1979). Arons and Max 
(1974), Khan and Chakraborty (1979), Bhattacharyya and Chakraborty (1979), 
Chakraborty et al. (1980, 1981) and others have used some of the available methods 
for finding precessional rotation (PR), shifts of wave parameters and other related 
nonlinear effects in a plasma medium. 

Another interesting method also exists which has not yet been explored to the 
same extent as the other methods listed above. It is a special Lorentz transformation 
(LT) which reduces the partial differential equations for the field variables in time 
and the position coordinate parallel to the direction of propagation into a system of 
ordinary differential equations with respect to a new time variable permitted by the 

0004-9506/83/060867$02.00 



868 B. Chakraborty and S. N. Paul 

special LT. This method has been used for solving higher order nonlinear differential 
equations in the study of nonlinear effects in plasmas (Akhiezer and Polovin 1956; 
Winkles and Eldridge 1972; Clemmow 1974, 1975, 1977; Chain and Clemmow 
1975; Kennal and Pellat 1976; Shih 1978; Decoster 1978; Lee and Lerche 1978, 
1979a, 1979b, 1979c, 1980; Clemmow and Harding 1980; Paul and Chakraborty 
1983). 

Low (1958) applied the Lagrangian formalism to study plasma oscillations and 
hydromagnetic waves in the linear theory. Later, Suramlishvili (1964, 1965, 1967) 
used this formalism to solve some problems of nonlinear plasmas. But these have 
been found to be of little benefit to the development of the Lagrangian approach 
in studying nonlinear problems in plasma physics. A new kind of Lagrangian 
approach has been examined independently in fluid mechanics by Whitham (1965, 
1967, 1974), who introduced the idea of an averaged Lagrangian to both linear and 
nonlinear dispersive waves. When the Lagrangian 2' of motion of a system is known, 
the nonlinear solution of the field equations for strong waves in a plasma can be 
studied with the help of the averaged Lagrangian <2'), which is obtained by averaging 
2' over the time period of the rapidly varying fields. Thus <2') becomes a function 
of the wave amplitudes and their derivatives with respect to time t and the coordinate 
variable z parallel to the direction of wave propagation. This method has been found 
to be very useful for the study of different types of problems in fluid mechanics as 
well as in electrodynamics. Dougherty (1970, 1974) has reviewed the averaged 
Lagrangian method for the solution of equations for cold plasmas and has discussed 
two covariant methods for varying the background. Dewar (1970) applied this 
formalism to investigate the interaction between hydro magnetic waves and a time 
dependent inhomogeneous medium. The problems of wave-wave interactions in a 
plasma were also solved, using this method, by Boyd and Turner (1972, 1973, 1978), 
Kim and Crawford (1977) and Das and Sihi (1980). Dysthe (1974) developed 
Whitham's method in such a form that it became adequate for the description of 
wave phenomena in plasmas. Subsequently, this modified method was applied by 
Das and Sihi (1977, 1979) and Sihi (1980) to investigate the modulational instability 
of an electromagnetic wave through the introduction of the Rayleigh dissipation 
function (Goldstein 1970). Leroy and Bel (1979) used the formalism of the averaged 
Lagrangian for the study of propagation of waves in an isothermal atmosphere in 
the presence of a magnetic field. 

The averaged Lagrangian formalism was also used by Dewar (1977) to develop 
a general treatment of spatially dispersive waves in warm plasmas within the WKB 
approximation and to elucidate some fine points of distinction between the solution 
of microscopic and macroscopic sets of equations for electrodynamics in plasmas. 
Since this discussion on the formalisms can widen the scope of research on the method 
of the averaged Lagrangian for the PR effect and other complementary effects of 
waves in plasmas, we have summarized the main points briefly in Section 7c. 

Lagrangian densities are known for many of the equations whose soliton solutions 
have been studied. Hence, Crawford (1980) searched for an improved perturbation 
technique to study the theory of plasma solitons. Such a technique was made 
distinguishable from the averaged Lagrangian method, by employing an averaged 
Hamiltonian density expressed in canonical variables whose choice is determined 
from Lie algebra considerations. However, this technique has also been introduced 
into plasma physics by Dewar and Kaufman and their coworkers (Dewar 1970, 1972, 
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1973, 1976; Johnston 1976; Johnston and Kaufman 1977, 1978, 1979; Kaufman 
1978) in the course of their development of the oscillation centre theory and studies 
of turbulence. The investigations reported in the present paper further extend the 
scope of application of this method to nonlinear problems of waves in plasmas, and 
show that it is very powerful also for the study of nonlinear wave precession and 
related problems of self-generating rotations of plasmas due to waves. 

The existing methods, which use the averaged Lagrangian < 2) for the determination 
of the characteristics of nonlinear dispersive wave properties in continuous media 
and their extension to waves in plasmas, do not directly lead to the solution of the 
problems of nonlinear evolution of rotational motion from these waves. These 
latter categories of problems include the nonlinearly induced effect of birefringence 
due to different rates of dispersion of the field variables of the left and right circular 
polarization (to be called in short the LCP and RCP respectively) wave components. 
To find this birefringence it is necessary to isolate the nonlinearly correct LCP and 
RCP components ani their field vectors perpendicular to the direction of wave propa­
gation by using rotating (complex) coordinates, and then apply the technique of 
varying the amplitudes of these wave components in the action integral in which the 
integrand is (2). 

Application of Hamilton's principle of least action on (2), through the variation 
of the action integral S, gives rise to the equations for the nonlinear evolution of the 
fields in space or time. For plasmas, scope is thus provided for finding some higher 
order field evolution effects (e.g. some types of modulational instabilities) in a compact 
manner. The usual methods of studying this nonlinear evolution, using a process of 
successive approximation ensuring secular free solution of the first harmonic wave 
field, would require more involved mathematical manipulations. 

Although the old method of using 2 for the study of rotation of rigid bodies and 
fluids has a long history and extensive usage, the scope and regions of applicability 
of this method and the other using < 2) are vastly different. Thus, the existence of the 
Lagrangian analysis of rotational motion of fluids and rigid bodies is not at all 
helpful to our problems, just as the known Lagrangian dynamics does not directly 
lead to that for (2). Hence, our work also increases the scope of applications of 
this powerful method to a wider range of problems, including perhaps those of 
nonlinearly generated torques in fluid flow studies. To explore the possibility of 
further work, we include a brief discussion on some relevant topics in Section 7. 

In Section 2 we start from the expression for the 2 of the electromagnetic field 
for electron motion in cold unmagnetized plasmas, in which only the electrons arc 
mobile while ions provide the neutralizing static background of positive charges. 
Using the Lagrangian concept of fluid motion for the electrons, the Lagrangian of 
motion is expanded in a Taylor series in powers of the displacement vector $ of 
the fluid from the equilibrium position vector r. Terms up to the fourth power of 
the components of $ and other field variables and their derivatives with respect to 
time t and z are retained in 2, which is then written as the sum 22 + 23 + 2 4 , 

where 2 i contains a sum of terms of the i th power in the components of $ and other 
field variables. Then the usual expressions for the components of the vector fields 
are replaced by the expression for the LCP and RCP wave components. These are 
obtained from an appropriate complex combination of the field components perpen­
dicular to the direction of propagation of the wave field. The field equations for the 
linearized approximation and the nonlinearly excited second harmonic wave field 
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are obtained from the perturbation expansion of the field variables in the sum 
Lagrangian 2! 2 + 2! 3 in terms of an unspecified expansion parameter p. This parameter 
is retained merely for book-keeping purposes to specify the fields of all orders correctly 
according to their orders of smallness. Solutions for the first order field variables 
including the linear dispersion relation have been derived in Section 2. 

In Section 3 the field equations are used for another expansion procedure in which 
the independent variables t and z for the differentiation of the field amplitudes are 
stretched, or in other words, replaced by at and az where a is another expansion 
parameter. But like p, a is also used merely for book-keeping purposes, and so is not 
necessarily specified in any manner. By using this procedure for finding the nonlinear 
effects, the expressions for 2! 2' 2! 3 and 2! 4 are evaluated and their averages over the 
time period of the wave field are determined as functions of the amplitudes of the 
LCP and RCP waves and their partial derivatives with respect to t and z. The action 
integral, in which the averaged sum Lagrangian is the integrand, is then given a 
variation according to Hamilton's principle to obtain the differential equations for 
the nonlinear evolution of the LCP and RCP wave fields. From these, the nonlinear 
PR effect and the increment to the wave number in the spatial evolution problem, 
and to the frequency shift in the temporal evolution problem are evaluated in Section 
4. The differential equations for the variation of the field amplitudes in Section 3 
are used in Section 5 for finding the nonlinearly modulated wave field solutions. 
Two modulation frequencies, depending on the field intensity, are obtained for both 
the LCP and RCP waves. It is shown that frequency shift and precessional frequency 
are the two parts of these modulation frequencies. In Section 6, modulation frequencies 
are estimated numerically for the radiation of high intensity laser beams. Some 
relevant comments about the formalism of the averaged Lagrangian are then given 
in Section 7; a brief discussion about the force densities in nonlinear laser plasma 
interaction is also given. Section 8 gives a summary of the present work, while 
Section 9 contains brief proposals for investigating more general problems of the 
type considered here. 

2. Lagrangian of Motion in an Electromagnetic Field and a Preliminary Analysis 

We assume that the plasma is stationary, cold, homogeneous, un magnetized and 
free from collisional and gravitational effects, and that only motions of the electrons 
become relativistic due to a powerful incident electromagnetic wave. Ion motion is 
much below the relativistic limit and so neglected. The plasma is moreover assumed 
to be below a certain threshold power limit so that self-action effects (e.g. self-focusing, 
self-steepening etc.) are insignificant. 

The Lagrangian for the motion of electrons in plasmas can therefore be written 
as (Landau and Lifshitz 1975) 

where 

( R2)t eNo ' E2_H2 
2! = -moNo 1 -? -eNo¢(R) - -c-(R.A) + 8n ' 

H= curIA, 

E= -grad¢-A/c, 

divA = ¢/c, 

(1) 

(2) 

(3) 

(4) 
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and where mo, - e and R are the rest mass, charge and position vector of an electron 
respectively. Also, No is the electron number density, ¢ and A are the scalar and vector 
potentials, E and H are the electric and magnetic fields, and dots denote time 
derivatives. 

We use the Lagrangian concept of fluid motion and so choose a particular fluid 
particle to describe the location of a fluid element and its state in terms of the time 
coordinate alone. The dependent variables are then regarded as functions of the 
initial location r of a fluid element and of time t. So if R is the position vector of the 
displaced fluid from the equilibrium state, then 1 r 1 ~ 181 and 

R(t) = ret) +8(r, t). (5) 

The displacement 8 vanishes initially and at the origin so that 8(r, 0) = 0 and 
8(0, t) = O. The macroscopic fluid velocity in terms of 8 is given by 

vCR, t) = dR/dt = v(r+8, t) 

= vCr, t) +(8. \l)v(r, t) +-!-(8. \l)2v(r, t) + .... (6) 

Since the displacement amplitude is small, neglecting higher order terms gives 

vCR, t) = vCr, t). (7) 

To the lowest order, 8 is regarded as given at a point, but to higher orders it is left 
undefined through the relation 

vCr, t) = 08(r, t )/ot . (8) 

Assuming that the powerful first harmonic fundamental wave is transverse and 
propagates along the z-axis, we can write 

a/ox = 0, %y = O. (9) 

Then expanding the Lagrangian about the position vector r, assuming that the higher 
harmonic waves are nonlinearly excited effects of higher order, and retaining terms 
correct up to the third harmonic wave solution, we obtain (see the Appendix) 

(10) 
where 

(11) 

(12) 

(13) 

with f£ 2, f£ 3' f£ 4 containing the quadratic, cubic and bi-quadratic terms respectively. 
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(a) Equations for the Motion of Electrons 

For the Lagrangian density .se as a function of the field variables $, ¢ and A, the 
action integral S is given by 

s = f f 1. r .se(tS', ¢, A; i, ¢/, A, A'; $, ¢",.4, A", ... ) dr dt, (14) 

where dr is the volume element in the three-space, dt is the time differential, T is the 
well-defined total volume and a prime denotes a derivative with respect to z; the 
limits of integration are taken from one given configuration TJ at time t1 to another 
configuration T2 at time 12 • 

Hamilton's principle of least action gives 

as = 0, (15) 

and so for the variation of $, ¢ and A the following Lagrangian equations are obtained: 

For .se = .se 2 +.se 3 these equations give 

1.. 4neNo · 
A"--A ---tff 

x c2 x C x 

1.. 4neNo · 
A"--A ---tff 

Y c2 Y C Y 

4neNo a ( ; ) ---- tffztff . 
c az Y 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

For evaluation of the nonlinearly generated PR of an elliptically polarized first 
harmonic transverse wave we isolate the LCP and RCP waves with the help of rotating 
(complex) coordinates because their nonlinearly correct dispersion rates are different. 
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This procedure gives rise to the nonlinearly induced effect of birefringence, and the 
rate of PR is proportional to this difference. So putting 

(25) 

in relations (19)-(24) and (11)-(13) we obtain 

(26) 

(27) 

(28) 

1 A' A' + 1 N £'2 N D,/,.I cfJ' 2 - 8n + - ZmO 0 (0 z - e 0 fO z 'I' + sn' (29) 

(30) 

(31) 

(b) Perturbation Expansion of Field Variables and First and Second Order Equations 

For a field variable P the perturbation expansion in series is 

(32) 

where Jl is an unspecified expansion parameter retained exclusively for book-keeping 
purposes. This series expansion gives rise to the following field equations: (i) for 
the linearized approximation 

(33) 

i(1) = _....:... ,/,.1(1) 
Z mo'l" (34) 

,/,.11(1) = 4neN 1ff'(1) 
0/ 0 Z , (35) 

A"(l) 1 A··(l) _ 4neNo .(1) 
± -- ± ---Iff±, 

C2 C 
(36) 



874 B. Chakraborty and S. N. Paul 

and (ii) for the nonlinearly excited second harmonic fields 

(37) 

(38) 

(39) 

A ,+,(2) _ ..!:...A"(±2) _ 4neNo ;'(+2) = 4neNo a (1) '(1) 
2 ([) ----;-(iffz iff±). - c c - c uz 

(40) 

(c) Solutions for First Order Field Variables and Corresponding Dispersion Relation 

For a purely transverse first harmonic wave solution, propagating parallel to the 
z-axis, we have 

E± = l{(a±b)exp(itjl) +(a+5)exp(-itjl)}, (41) 

where tjI = kz-·wt. Obviously, for real amplitudes, these relations give the elliptically 
polarized wave form (Ex, Ey) = (a cos tjI, b sin tjI). 

We can also write (41) more generally as 

(42) 

where tjI ± = k± z -w± t and O!± are the amplitudes of the LCP and RCP components 
of the wave. The quantities a, a, b, 5 or O!± and iX± are complex field amplitudes 
having the same dimensions as the electric field intensity vector. For the nonlinear 
evolution of the field variables, O!± and iX± are assumed to be slowly varying functions 
of z or t and from their variations the nonlinear effects are determined; for solutions 
correct up to squares of the field amplitudes the phases are equal and so we write 

tjI + = tjI_ = tjI = kz - wt , (43a, b) 

Relations (9) ensure that 

iff~l) = o. (44a, b) 

Hence, equation (3) gives 
cE= A, (45) 

and so 
(46) 

Therefore we have 

A~) = -(icj2w){0!± exp(itjl) -iX,!, exp( -itjl)}, (47) 

and equation (33) yields 

(48) 
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Now, eliminating ~~) from equations (33) and (36) we obtain 

(49) 

where w~ = 4nNo e2/mo, with wp the characteristic plasma frequency (or the so-called 
Langmuir frequency). By using equation (43) in (49), the familiar dispersion relation, 
independent of field intensity, is obtained: 

(50) 

3. Differential Equations for Nonlinearly Evolved Wave Fields using (.2) 

To consider the nonlinear Lagrangian of motion for both the temporal and spatial 
evolution problems simultaneously, we first assume the field amplitudes OI:± and IX± 
of (42) to be slowly varying functions of both z and t and their derivatives to be of 
the order of the smallness parameter 8. This parameter can be regarded as independent 
of the other smallness parameter {L of relation (32). For the potentials A~) we write 

(51) 

and, similar to the amplitudes OI:±, we regard d~) and d~) as slowly varying functions 
of z and t; d~) are the complex conjugates of d~). Then using (42) in (46) we obtain 

• ( 2 1 C 8 • 8·· 
+ - IX - -IX - -1X_)exp( -i t/I). 2w =F W =F w2 + 

(52) 

Putting this expression for A~) into (49) and keeping terms up to 82 we find that 

where Vg is the group velocity ow/ok; for equation (50) 

Vg = kc2/w. 

Now, using (33) and (44) in the second order equations (38) and (39) we obtain 

i(2) +W2 ~(2) = _.l(_e_) 2 ~(A(l) A~») 
z p Z 2 mo c oz + , 

ljJ(2) = 4neN ° f ~~2) dt/l. 

Therefore, with the help of (52), equation (55) yields 

~(2) = _ i ke2 { 01:+ 01:_ exp(2i t/I) -IX+ IX_ exp( - 2i t/I)} 
Z 4m~w2(4w2_w;) 

(53) 

(54) 

(55) 

(56) 

(57) 
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So, from (56) and (57) we get 

2 2 
../..(2) _ e wp {' . . .1,) - - ( . • I,)} 
'f' - - 2 2( 2 2) ()(+cLexp(21,/, +()(+()(_exp -21,/, . 

8moW 4w -wp 
(58) 

As the second order transverse electric field components are zero, i.e. E12 ) = 0, 
equation (45) gives 

(59) 
Therefore, (37) yields 

Iff<f) = o. (60) 

Taking averages of the terms of (29), (30) and (31) over I/J between 0 and 2n, correct 
up to terms in /14 , 8 2/1 2 and /12 , the non-vanishing terms become 

(61) 

(62) 

(63) 

(66) 

(67) 

(68) 

(69) 
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In relations (64)-(69), only those terms are retained which contain only one first 
order derivative of the amplitudes ()(± and a± with respect to t or z, because the still 
higher order derivatives are higher order nonlinear terms which have been neglected 
from other terms. Using equations (61)-(69) in (29)-(31) we find that 

(70) 

The action integral for the averaged Lagrangian (2) is given a variation with 
respect to the amplitude a+ : 

oS = JJI.f {<2(a++oa+,a:"+oa:,,,~++0~+» 
-<P(a+,a:",~+)} drdt = 0, 

The Lagrangian equation thus becomes 

0(2) 02(2) i]2<2> 
--=--+--
oii+ ozoa:" oto&+· 

Similarly, for the variation of ()(+, a_, ()(_ we obtain 

D(2) [i(2) 82(2) 
--= --+---.-, 
oa_ ozoa'- otoa_ 

(71) 

(73) 

(74) 

(75) 

(76) 
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Using (70) in equations (73)-(76) we obtain the following relations: 

(77) 

(78) 

where we have put B = 1, /1 = I, n = kc/w, X = W;/W2 and n2 = 1 - X. Equations 
(77) and (78) are the differential equations for the nonlinearly evolved wave field. 
By substituting the variations of IX+ and IX_ with respect to time and space into (77) 
and (78), the nonlinear dispersion relation of the elliptically polarized electromagnetic 
wave can be derived. 

4. Precessional Rotation and Shifts of Wave Parameters 

It is known that the frequency or wave number of an electromagnetic wave is 
changed due to nonlinear interactions in plasmas (Montgomery and Tidman 1964; 
Sluijter and Montgomery 1965; Tidman and Stainer 1965; Boyd 1967; Das 1968, 
1971; Chandra 1974, 1979). For an elliptically polarized wave Arons and Max 
(1974) noticed that the nonlinear effects give rise to precession of the polarization 
ellipse without effecting the ellipticity. Katz et al. (1975) and Lie and Wonnacott 
(1976) verified this result in the long wavelength limit for an elliptically polarized 
wave passing through a cold plasma, using the Lagrangian and Hamiltonian formalisms 
of classical mechanics. Several groups have developed the theory of precessional 
rotation and showed that it becomes significant in laser-plasma interactions (see e.g. 
Chakraborty 1977; Chakraborty and Chandra 1978; Khan and Chakraborty 1979; 
Bhattacharyya and Chakraborty 1979, 1982; Chandra 1980; Chakraborty et al. 
1980, 1981, 1982; Bhattacharyya 1981, 1983). In this section we derive the 
expressions for wave number shift or frequency shift and the complementary 
effect of precessional rotation of an elliptically polarized wave from the nonlinearly 
evolved birefringence effect (Paul and Chakraborty 1983; Chakraborty and Paul 
1983) in cold unmagnetized plasmas. 

(a) Wave Number Shift and Precessional Rotation 

In spatial evolution problems, only the derivatives of IX± with respect to z are 
necessary; these are independent of the time coordinate t. Therefore, in these problems 
we assume IX± = IX~ exp(i bk± z) in equations (77) and (78) and IX~ to be real quantities. 
The expressions for the wave number shift and precessional rotation derived can be 
represented as 

(79) 

(80) 

where we have replaced IX± bya±b. 
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The precessional angle Ps and the precessional number PN are given by 

(81a, b) 

(b) Frequency Shift and Precessional Rotation 

In temporal evolution problems the derivatives of ()(± with respect to time tare 
considered and C(± are assumed to be independent of the space coordinate z. By 
assuming that ()(± = C(~ exp(i8w± t), where ()(~ are real quantities, the expressions 
for the frequency shift and precessional rotation of the elliptically polarized wave are 

(82) 

(83) 

The precessional angle Pt and the precessional frequency t) are given by 

(84a, b) 

5. Self-induced Wave Modulation 

Nonlinear interactions in plasmas also create modulation instabilities for acoustic 
and electromagnetic waves during their propagation through the medium; as a 
result, the frequencies of the waves are modulated. In this section, we obtain two 
nonlinearly evolved modulation frequencies for a stable elliptically polarized wave 
in cold plasmas and notice that these frequencies are different in nature compared 
with the frequencies obtained by previous authors (see e.g. Taniuty and Yajima 1969; 
Shimizu and Ichikawa 1972; Ichikawa et al. 1972; Kakutani and Sugimoto 1974; 
Watanabe 1977; Das and Sihi 1977,1979; Sharma et al. 1978; Sihi 1980; Murtaza 
and Salahuddin 1982). 

Equations (77) and (78) can be written as 

(85) 

(86) 

where 
8 8 8 

D = -8 +vg -8 = -::;- (say). 
t z os 

(87) 

For the evaluation of intensity-induced modulation in the wave we now write 

(88) 

(89) 
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Then putting 

, e2 X ( 02 1. 02) 11.+ 4 2 2 grL_ - 4rL+ , 
mo C OJ 

(90a, b) 

where 
(91) 

into equations (85) and (86) we obtain two nonlinear equations for the wave modulation 
y ±. Ignoring squares and higher powers of y ±, these reduce to the following mutually 
coupled linear differential equations: 

'2X 
Dy+ -iA+y+ = - 4 1e2 2 {g(y++y_+Y_)rL<:?-t(2Y++Y+)rL~2}, 

moc OJ 
(92) 

(93) 

Now we can assume y± to be real and write Dy± = iI1Y±; then the quadratic for 
the modulation frequency 11 is 

(94) 

The solution of this equation is 

e2 X e2X 
11 = - ( rL°2 + rL°2) + {g2 rL°2 rL°2 +~_(rL°2_rL°2)2p- (95) 

16m6c2OJ + - - 2m6c2OJ + - 64 + - , 

where the two roots are real and different, and the RCP and LCP parts have two 
modulation frequencies. Thus, the strong elliptically polarized wave nonlinearly 
develops intensity dependent splitting due to two modulation frequencies in addition 
to the birefringence of the wave (shift in wave number or frequency, and precessional 
rotation etc.). 

From equation (95) it is observed that: 

(i) when rL~ = YrL<:', Y being any positive integer, 

2(1 2) 02 X 2 02 X e + Y rL_ e rL_ {2 2 1 (2 2}t . 
11 = - 16 2 2 ± 2 2 2 g Y +(;4 Y -1) , 

moc OJ mo c OJ 
(96) 

(ii) when rL~ ~ rL<:', 

(97) 

(iii) when rL~ = 0, or rL<:' = 0, 

(98) 

Writing equation (95) in terms of the amplitudes a and b we find more interesting 
results. The modulation frequency thus obtained can be written as 

(99) 
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where Aw is the frequency shift and 

Therefore, frequency shift and precessional rotation may be considered as the two 
parts of the modulation frequencies. It is observed. that one of the modulation 
frequencies turns out to be zero when the frequency 11 is equal to twice the frequency 
shift of the wave. For a circularly polarized wave, if we put b = 0, thenl1 = 12 = o. 
Therefore, the modulation frequencies have the values 

It is to be noted that when the wave frequency is very close to the plasma frequency, 
both the frequency shift and the PR become large and so the modulation frequencies 
become most significant. For a high frequency wave, if w ~ wp (i.e. X ~ 1), the PR 
almost vanishes even at higher intensities. So, in this case, the modulation frequencies 
are 

(J = -- (/0 + 2Awo) and -10 , (100) 
where 

and IJ is the eccentricity of the polarization ellipse of the wave. Furthermore, we 
see that the modulation frequencies in equation (100) are always negative. 

6. Numerical Estimation 

We consider a Nd-glass laser beam with wavelength 1·06 pm and frequency 
1· 78 x 1015 Hz, propagating through an over-dense plasma (No ;:::0 5 x 1020 cm -3). 

Let the power of the laser beam be 1016 W cm -2. Then we obtain (i) a wave number 
shift of 1·05 x 102 cm -1, (ii) a precessional rotation of 10 , for a distance of 
5·5 x 10 - 3 cm, and (iii) modulation frequencies of 14·5 x 1012 Hz and 16·7 x 1012 Hz. 

Let us now consider a CO2 laser beam with wavelength 10·6 pm, frequency 
1·78 X 1014 Hz, passing through a dense plasma (No ;:::0 1018 cm -3), with power 
1012 W cm - 2. We see that (i) the wave number shift is 1 ·2 cm .-1, (ii) the precessional 
rotation is 3.4° for a distance of 1 cm, and (iii) the modulation frequencies are 
1· 83 x 101Q Hz and 3 ·42 x 108 Hz. 

7. Some Relevant Comments 

(a) Consequences 01 Wave-precession Effect 

The wave parameter shift effects were first discovered at about the time of the 
advent of masers and lasers. Being easier to evaluate, these effects have been much 
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studied and are comparatively better known. But the effect of PR is of more recent 
origin and, because of complications due to rotation and other reasons, has been 
very much neglected until now. Some theoretical results have been published, but 
no published experimental results have been cited, although the consequences of 
such results should be important and definitely more interesting than those of wave 
parameter shift. The PR effect and all its consequences can be enhanced by some 
physically possible conditions of resonance or phase matching, or possibly by other 
artificial means. The most important consequences are induced magnetization and 
synchrotron radiation. If the effects of PR are experimentally detected in the near 
future, these would provide useful information on the influence of strong fields of 
certain frequency ranges on various states of matter, including plasmas. 

The theory of the nonlinear interaction of electromagnetic waves with a plasma 
was initially developed in the microwave range and subsequently extended to the 
optical range of frequencies. The theory of nonlinear optics has been rapidly expanded 
into a new domain with the help of tunable dye lasers and ultrashort pulsed lasers, 
and the activity has been extended to a wide range of media including plasmas. 
Laser fields develop significant nonlinear characteristics, including the PR effect, 
in plasmas and other media. 

The Faraday rotation (FR) effect, which is much used for plasma diagnostic 
purposes, is considerably modified for strong electromagnetic waves by the PR 
effect. Experimental results reported recently (Lax 1982) indicate the observation 
in the ISX-B tokamak of this modified FR effect at the sub-millimetre wavelengths 
used to measure the poloidal magnetic field produced by the driving current. Thus, 
an evaluation of the nonlinearly correct FR effect by the method explained in the 
present work would be useful. 

Another promising consequence, pointed out by Chakraborty and Chandra 
(1978), is the nonlinearly induced rotation of the plane of polarization of a strong 
plane polarized electromagnetic wave by internal noise fields, even in the absence of 
any biasing magnetic field. Similar to FR, the PR of an electromagnetic wave can 
therefore be used for plasma diagnostic purposes in unmagnetized plasmas. 

(b) Discussion on Forces of Self-action Effects 

The possibility of the occurrence of nonlinearly induced self-action effects such 
as self-focusing, self-trapping, and self-precession (due to birefringence) in a material 
medium was suggested by Askar'yan (1962), Akhmanov et al. (1967), Chiao and 
Godine (1969) and others. In plasmas, self-focusing and self-phase modulation were 
initially reported in experiments on the laser breakdown of gases by Korobkin and 
Alcoc (1968). However, Johnson and Chu (1974) have pointed out that the observed 
self-focusing is actually due to a plasma gradient. Max et al. (1974) have considered 
the effect of self-focusing and self-phase modulation of light in a relativistic plasma. 
The self-focusing mechanism requires a threshold power depending mainly on the 
plasma density, pulse duration and laser frequency, below which it is insignificant. 
For the Nd-glass laser (A = 1·06 11m, W = 1'78 X 1015 Hz) in an over-dense plasma 
No = 1021 cm- 3), the threshold power, according to estimates by Kaw (1969) and 
Kaw and Dawson (1970), is about 1019 W cm- 2 . 

In general, all self-action effects occur simultaneously in laser induced plasmas, 
but which one dominates depends on the experimental conditions (e.g. long pulse 
or short pulse excitation) and the power of the laser beam. Below the threshold 
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power the intrinsic nonlinear instabilities due to stimulated Raman scattering (SRS), 
driven by a strong laser beam, can be minimized. The threshold power for self­
focusing is larger for picosecond pulses than for nanosecond pulses. Also, if the 
medium is isotropic, homogeneous and cold (i.e. a thermal velocity much less than 
c), then other self-action effects (e.g. SRS, self-focusing etc.) arising from the pondero­
motive forces and thermal instabilities are negligible. Therefore, below a certain 
threshold power the manifestation of the self-precession mechanism is possible. 
By increasing the field intensity, the refractive index becomes non-uniform and, as a 
result, bends the rays towards a focus. This results in the destruction of the PR 
effect and therefore by this means it seems possible to deposit some amount of 
wave energy into the plasma. 

The analysis of the expressions for force densities is important in the generation 
of nonlinear self-action effects of wave propagation in plasmas, especially for forces 
at the laser-plasma interaction. Many peculiarities are observed in the interaction 
of focused laser beams with materials, and the discussion on the role of the effective 
part of the forces is not yet over. For instance, the ith component of the electromagnetic 
force density F of a plasma is given by 

(101) 

where 9 is the electromagnetic momentum - (eJ-l/4nc)(E x H), and 

(6ij is the Kronecker delta) is the ijth component of the three-dimensional 
stress tensor t. Hora (1969) has defined equation (101) as the equation of motion 
and regarded it as the ponderomotive force description of Lorentz. The alternative 
force description in the two-fluid model of the macroscopic theory, neglecting 
gravitation, used by Hora (1981, Sect. 6.1) is 

1 (1 DE) F= -vp+-(JxH)+J.v 2-' , 
C ill at (103) 

where w is the wave frequency, J is the current density and p represents the total 
gas dynamical pressure in the plasma. These force equations have been extensively 
considered by Hora and his group to find the effects of laser-plasma interactions, 
even at the local regions where the beam intensity increases very much. The relativistic 
generalizations of some aspects of the force densities involved have also been provided 
by Jones et al. (1982). These investigations are relevant to the proper assessment of 
the role of wave precession in laser-plasma interactions and we briefly discuss some 
of these points belov.. 

The problem of ponderomotive forces of strong electromagnetic waves, giving 
rise to self-action effects in plasmas, is of considerable interest in laser-plasma 
interactions, as well as in magnetic confinement devices, r.f. confinement and micro­
wave heating. The reason for this interest is that the particles of a plasma are weakly 
interacting and so may be adequately described by the Vlasov equations, or some fluid 
approximation to it, which give a self-consistent model. 
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Interaction of laser radiation with a plasma gives rise to ion and molecular 
scattering of light, light mixing and self-focusing, in addition to precessional rotation 
of the radiation below a threshold limit. Study of plasma heating due to absorption 
of laser light by means of the usual process is useful in programs of controlled thermo­
nuclear fusion. Macroscopic motion of a plasma, generated by the interaction of 
strong electromagnetic fields in the region of the focused laser beam, was found by 
Hora (1969) to be directed against the laser light, and the high values of ion energies 
measured could be theoretically verified under some assumptions. Jones et al. (1982) 
have considered the mechanisms for high intensity laser beam propagation in a 
plasma with the help of the three-dimensional development of the plasma density. 
The detailed workings of the counteracting mechanism and the limiting conditions 
of the relativistic self-focusing for the production of extremely high intensities have 
been given by these authors. 

When very high intensity laser beams are focused to diameters of about 30 wave­
lengths at a target in a vacuum, a relativistic quivering velocity of the electrons of 
the target is produced. This gives rise to a relativistic self-focusing of the propagated 
laser beam within the target plasma immediately produced. Thus the beam rapidly 
shrinks down to diameters of about a wavelength. This focusing generates a very 
high laser intensity and consequently accelerates the charged particles by the pondero­
motive forces to very high energies. According to Hora (1981, Sects 13.3 and 13.4) 
the beam shrinks within a propagation length equal to the initial beam diameter 
at electron densities close to the cut-off value, and even at intensities 10-100 times 
less than the relativistic threshold intensity. 

A relativistic inertial current, in combination with the nonlinear force proportional 
to v x H, is an important source of relativistic self-focusing in a homogeneous plasma. 
The nonlinear radial force due to the radial gradient of the laser field, 
- (ajar )(E 2 + H 2 j8n), which expels the plasma from the beam centre, is another 
type of self-focusing mechanism. While the relativistic self-focusing occurs almost 
instantaneously, in a time of the order of the optical oscillation, the ponderomotive 
self-focusing has a delay due to the motion of the plasma from the beam centre. 
Due to this delay of the ponderomotive self-focusing, the non-ponderomotive parts 
of the general expression for the total nonlinear force can be neglected when compared 
with the nonlinear self-focusing force including thermal gradients for these types of 
self-action effects. 

(c) Energy-Momentum Tensor and Lagrangian Formalism 

A general microscopic derivation of the energy-momentum tensor for non­
dispersive electromagnetic waves in material media is difficult to obtain, but a macro­
scopic solution in arbitrarily moving media, using the method of virtual power, 
has been given by Penfield and Haus (1967). They showed that the ponderomotive 
force density acting on the medium is that expected from the Abraham form of the 
energy-momentum tensor, plus a part described macroscopically as electrostrictive 
and magnetostrictive effects. Calculations of the electrostrictive and magnetostrictive 
coefficients from first principles by using an analytical microscopic treatment are 
difficult to carry out. Only for collisionless plasmas can these coefficients be evaluated 
microscopically. The reason is that particles of such a plasma are weakly interacting 
and so can be described using the self-consistent Vlasov equations or even the equations 
for the fluid mixture approximation. The ponderomotive force in a cold plasma can 
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be obtained from the Abraham tensor with the electrostrictive correction. Results 
are available for the total perturbed energy-momentum tensor connected with a 
one-dimensional wave packet, calculated from the ponderomotive force expression 
combined with the electromagnetic energy-momentum tensor both in the non­
dispersive and cold plasma cases. 

A ponderomotive force description based on the momentum-flux-density tensor 
by Hora (1969) showed that the resulting forces are positive for Maxwell's theory of 
electrodynamics and negative for the Lorentz theory. This difference is noticeable 
for oblique incidence and vanishes for perpendicular incidence of light on a plane 
inhomogeneous plasma. Moreover, at high electron densities in inhomogeneous and 
collision dominated plasmas a confining force was determined, which acted in the 
direction of the light, producing the radiation pressure due to the nonlinear pondero­
motive force. From the expression for the total momentum transferred by the collision­
less de-confining acceleration of the plasma (the acceleration of the plasma against 
the direction of laser propagation), the range of the electron density was determined 
for which this acceleration is found to dominate over the thermal absorption process. 

Hamilton's principle of least action and the method or relativistic field theory 
led to a canonical procedure which, from a Hamiltonian viewpoint, is also very 
natural. Just as the canonical momentum for a particle in general differs from its 
physical momentum, so does the canonical energy-momentum tensor for a subsystem 
differ from its physical energy-momentum tensor. This distinction is different 
from that between the canonical and the symmetrized energy--momentum tensor for 
the system as a whole. The canonical and physical split-up procedures could be 
applied to either the canonical or symmetrized tensor, although according to Dewar 
(1977), the physical split-up of the canonical energy-momentum tensor is not useful. 

Hamilton's principle is open to the objection that it requires one to postulate the 
form of the Lagrangian density. But, as pointed out by Dewar (1977), any macro­
scopic theory involves a number of postulates and Hamilton's principle may be deeper 
than many of these. However, the arbitrariness of the Lagrangian density disappears 
due to the fact that (i) the macroscopic Lagrangian is an average of the microscopic 
density, which is known; (ii) 'Lorentz in variance' is imposed by the macroscopic 
Lagrangian; and (iii) the Maxwell equations, which are actually the Euler-Lagrangian 
equations of the system, are known a priori. Thus a definite form of the total 
Lagrangian density without any ambiguity is obtained. Penfield and Haus (1967) 
have discussed the rules for forming Lagrangian densities, and remarked that the 
systematic book-keeping and standardized set of rules for applying the variational 
principle allow the derivation of the equation of motion without errors. 

8. Summary 

In the present paper, we have extended the method of the averaged Lagrangian 
to obtain the PR and shift of a wave parameter of an electromagnetic wave. Our 
results are identical to equations (24) and (25) of Arons and Max (1974), if their 
notation is followed. We have derived the results for the PR by analytically finding 
the nonlinearly developed birefringence in a cold, relativistic, unmagnetized, colIision­
less plasma. Two modulation frequencies have been obtained as a consequence of 
the nonlinear interaction of an electromagnetic wave in the plasma, and each of these 
is shown to be a sum of the frequency shift and the PRo Some aspects of the physics 
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of strong waves in plasmas and other media have been briefly discussed to widen the 
scope of applying the formalism of the averaged Lagrangian. 

9. Concluding Remarks 

In this section we suggest further investigations involving the present work. 

(i) In the cases where the effects of collisions, gravitation, kinetic temperature, 
static magnetic field etc. are included, the evaluation of nonlinear effects 
such as precessional rotation will be more fascinating and should give some 
important results in the study of nonlinear Faraday rotation, inverse Faraday 
effect etc. The method of the averaged Lagrangian should be further extended 
to investigate these types of problems. Expressions for modulation frequencies 
in these cases should show some interesting features of nonlinear interactions 
in plasmas. 

(ii) An interesting modification of the formalism presented here is proposed in 
the application of the transformation to the space-independent frame, 
developed by Paul and Chakraborty (1983), for the evaluation of the non­
linearly induced wave precession and other complementary effects. 

(iii) Due to several difficulties, the collisional effect between particles is avoided 
in the calculation using the averaged Lagrangian principle. Recently Das 
and Sihi (1977, 1979) introduced the collision term through the Rayleigh 
dissipation function (Goldstein 1970) in a study of modulation instabilities 
in nonlinear plasmas. Following this procedure, the collision term could 
perhaps be easily introduced in a generalization of the problem considered 
in the present paper. 

(iv) According to Whitham (1974, p.396), the variational approach for the 
averaged Lagrangian can be extended to the cases of slowly varying media, 
particularly if the variation is small in one period. The argument that the 
wave action is conserved in these cases is valid only for non-conducting 
fluids, but this idea seems to provide some useful hints for an extension to 
slowly varying plasma-like media as well. 
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Appendix 

The Lagrangian of equation (1) has four terms. In the first term, replacing R by if, 
expanding binomially in powers of the component of if and keeping up to fourth powers of these components we find that 

In the second termof (1), replacing R by r+<&" and expanding in a Taylor series 
about R = r we obtain 

-eNo¢(r+<&") = -eNo{¢(r) +(<&". \l)¢(r) + (l/2!)(<&" • \l)2¢(r) 

+ (1/3 !)(<&" • \l)3¢(r) + ... }. (A2) 
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In the third term we use R = 8 and expanding A(r+c8') in a Taylor series we get 
. .. 

(-eNo/e)(R.A) = (-eNo/e)[c8'.A(r)+(c8'.\7)A(r) 

+ (1/2!){g • (c8'. \7)2A(r)} + ... J. (A3) 

Now using equations (2) and (3) in the fourth term of (1) and expanding similarly 
by Taylor series we find 

Therefore, on expansion the Lagrangian 2 of (1) becomes 

,P = 22+23+ 2 4' 

(A4) 

(A5) 

where 22 contains only the quadratic terms, and 23 and 24 have the cubic and 
bi-quadratic terms respectively: 

22 = No{tmor&o2 +e«(8".\7)¢(r)-~{~-A(r)} 

+ _1_ (\7¢)2 _ ~(A. \7)¢ + A: +(\7 x A)2)} , (A6) 
SnNo e e 

23 = -No( -te(c8'.\7)2¢(r)-~{~(c8'.\7)A(r)}), (A7) 

2 = N (m O (ri4 +g4 +;4 +2;2;Z +2;2;2 +2;2;2) 
4 0 Se2 x y z x y y z z x 

(AS) 

The wave is assumed to propagate along the z-axis, so we put Ez = 0, A z = 0, 
%x = 0, %y = ° and find that equations (A6)-(AS) reduce to 

+ -- - + - A +A - - --1 {(O¢)2 1 (.2 .Z) (OAx)Z (OAy)2}] 
SnN 0 OZ eZ x y oz oz ' (A9) 

(AI0) 

(All) 
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Assuming that the fundamental wave of the first harmonic is transverse and the 
nonlinearly excited longitudinal wave appears only in the second order approxi­
mation, relations (A9)-(All) reduce to 

OJ _ 1 N (;'2 ffi2 ;'2) N f!J o<jJ eNO(fp A ~"A) 
oZ 2 - zmo 0 Wx +w y +w z -e OWzT - -- Wx x +w y y 

uZ C 

+-- +-A+A -- - +-1 (O¢)2 1 ('2 '2) 1 f(O.Ax)2 (OAy)2} 
8n OZ 8nc2 x y 8n l oz OZ' 
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