Low-lying Negative-parity Levels of 17N and 18N

F. C. Barker

Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601.

Abstract

On the basis of a weak-coupling model, adjustments are made to the interactions used in the full shell model calculations of Millener in order to fit the experimental energies of the low-lying negative-parity levels of 16N and of the low-lying positive-parity levels of 18O and 19O. The predicted energies of the low-lying negative-parity levels of 17N then agree better with experiment, while those for 18N lead to suggested spin assignments for the observed levels.

1. Introduction

In a recent study of 18N with the reaction 18O(7Li, 7Be)18N, Puttez et al. (1983) found strongly populated levels of 18N at excitation energies of 121 and 747 keV, while the ground state and a level at 580 keV were weakly populated. Only the ground state has a definite spin-parity assignment, which is $J^\pi = 1^-$ (Olness et al. 1982).

Full $0h0o$ and $1h0o$ shell model calculations by Millener (Olness et al. 1982; D. J. Millener, personal communication) indicated that the low-lying negative-parity states of both 17N and 18N are well described by the weak coupling of a $p_{1/2}$ proton hole to the low-lying 18O and 19O states. This is illustrated in Fig. 1, which also shows the similar situation for the low-lying states of 15N and 16N (Millener and Kurath 1975). In the 18N case, where the 2^- states can have mixed 19O parentage, the lower 2^- state contains only a 12.4% admixture of the $\frac{1}{2}^- \otimes \frac{3}{2}^+$ configuration (Olness et al. 1982). The experimental energies of the low-lying $^{15-18}$N and $^{16-19}$O levels are given in Fig. 2.

Millener's calculations used the Millener-Kurath (MK) (1975) interaction between nucleons from the p and sd shells. This was derived to give a good account of the non-normal parity states of a number of nuclei from 11Be to 16O. It does not, however, give the experimental ordering of the low-lying 16N levels or of the doublet members in 17N. This suggests that the predicted energies of the low-lying 18N levels might be significantly in error also.

We here adjust the MK interaction to fit the observed 16N energies and use the adjusted interaction to calculate the 17N and 18N energies. This is done by calculating the adjustments on the basis of a weak-coupling structure of the $^{16-18}$N levels and simple descriptions of the $^{17-19}$O levels, and assuming that the same relationship between the adjustments would hold in the full shell model calculation. Since the
Fig. 1. Spectra of low-lying negative-parity states of $^{15-18}N$ and of low-lying positive-parity states of $^{16-19}O$ calculated by Millener. Excitation energies are in keV. The weak-coupling parentage of the $^{15-18}N$ states is indicated.

Fig. 2. Experimental spectra of low-lying negative-parity states of $^{15-18}N$ and of low-lying positive-parity states of $^{16-19}O$ (Ajzenberg-Selove 1982, 1983; Olness et al. 1982; Putt et al. 1983).
Levels of 17N and 18N

sd-shell interaction of Chung and Wildenthal (Chung 1976) used by Millener does not reproduce exactly the observed 18O and 19O level energies, we also adjust this interaction to fit the observed energies, as was previously suggested for 19O by Olness et al. (1982).

2. Calculation

For the purpose of the weak-coupling calculation, the assumed $^{17-19}$O state descriptions, relative to a closed-shell $1s^24p^{12}$ 16O ground state core, are

17O, $T = \frac{1}{2}$: \[\psi(\frac{1}{2}^+) = |d_{3/2}, \frac{1}{2}\rangle, \quad \psi(\frac{3}{2}^+) = |s_{1/2}, \frac{1}{2}\rangle, \]

18O, $T = 1$: \[\psi(0^+) = |d_{3/2}, 0\rangle, \quad \psi(2^+) = |d_{5/2}, 2\rangle, \quad \psi(4^+) = |d_{5/2}, 4\rangle, \]

19O, $T = \frac{3}{2}$: \[\psi(\frac{1}{2}^+) = |d_{3/2}, \frac{1}{2}\rangle, \quad \psi(\frac{3}{2}^+) = |d_{5/2}, \frac{3}{2}\rangle, \quad \psi(\frac{5}{2}^+) = |d_{5/2}, 0\rangle_{s_{1/2}, \frac{1}{2}}. \]

The energy of the state $\psi(J^+)$ is denoted by $E(J)$. The energy $E_i(J)$ of the $^{16-18}$N state of spin I^- obtained by weak coupling of a $p_{1/2}$ proton hole to the state $\psi(J^+)$ is then given by

16N: \[E_i(J) = E(J) + M\{\langle l_j p_{1/2} \rangle \}, \]

17N:

\[
\begin{align*}
E_i(J) &= E(J) + 2 \sum_{J' \neq J} U_1^2(\frac{5}{2}I_1\frac{1}{2}J_1J) M \{\langle d_{5/2} p_{1/2} \rangle \}, \\
E_i(J) &= E(J) + 3 \sum_{J' \neq J} \langle d_{5/2}^2 J \rangle \{\langle d_{5/2}^2 J \rangle \}^2 U_2(\frac{5}{2}I_1\frac{1}{2}J_1J) M \{(d_{5/2} p_{1/2} \rangle \},
\end{align*}
\]

18N:

\[
\begin{align*}
E_i(J) &= E(J) + \frac{1}{6} \sum_{J' \neq J} (2J + 1) M \{\langle d_{5/2} p_{1/2} \rangle \} + M \{(s_{1/2} p_{1/2} \rangle \},
\end{align*}
\]

Here $M \{\langle l_j p_{1/2} \rangle \}$ is the isospin 1 diagonal particle–hole matrix element ($l_j = d_{s/2}$ or $s_{1/2}$), and fractional parentage coefficients and Jahn U coefficients are involved. It is convenient to consider the mean energy of a doublet

$E(J) = \frac{1}{2(2J+1)} \sum_{J' = J} (2J+1) E_i(J),$

and the doublet splitting

$D(J) = E_{J + \frac{1}{2}}(J) - E_{J - \frac{1}{2}}(J).$

If one writes

$S(J,J') = \bar{E}(J) - \bar{E}(J') - \{E(J) - E(J')\},$

for the separation of the mean doublet energies in $^{16-18}$N relative to the separation of the corresponding parent states in $^{17-19}$O, then one obtains the weak-coupling formulae

16N: \[
S(\frac{1}{2}, \frac{3}{2}) = X, \quad D(\frac{5}{2}) = A_{32}, \quad D(\frac{1}{2}) = A_{10},
\]
where

$$ \Delta J' = M \{(l_j \frac{1}{2} J_j^1)J_1\} - M \{(l_j' \frac{1}{2} J_j'^1)J_1'\}, $$

$$ X = \frac{3}{4} \Delta_{10} - \frac{1}{2} \Delta_{32} - \Delta_{20}. $$

Table 1. Values of energy separations and splittings in $^{16-18}\text{N}$

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Quantity</th>
<th>Value (keV)</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{16}N</td>
<td>$S(\frac{3}{2}, \frac{5}{2})$</td>
<td>-716</td>
<td>-710</td>
</tr>
<tr>
<td></td>
<td>$D(\frac{5}{2})$</td>
<td>297</td>
<td>-229</td>
</tr>
<tr>
<td></td>
<td>$D(\frac{3}{2})$</td>
<td>278</td>
<td>212</td>
</tr>
<tr>
<td>^{17}N</td>
<td>$S(2, 0)$</td>
<td>-288</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>$S(4, 0)$</td>
<td>-148</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>$D(2)$</td>
<td>533</td>
<td>-42</td>
</tr>
<tr>
<td></td>
<td>$D(4)$</td>
<td>500</td>
<td>-272</td>
</tr>
<tr>
<td>^{18}N</td>
<td>$S(\frac{3}{2}, \frac{5}{2})$</td>
<td>-117</td>
<td>-117</td>
</tr>
<tr>
<td></td>
<td>$S(\frac{1}{2}, \frac{1}{2})$</td>
<td>-730</td>
<td>-736</td>
</tr>
<tr>
<td></td>
<td>$D(\frac{5}{2})$</td>
<td>34</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>$D(\frac{3}{2})$</td>
<td>21</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>$D(\frac{1}{2})$</td>
<td>200</td>
<td>266</td>
</tr>
</tbody>
</table>

* b Olness et al. (1982); D. J. Millener, personal communication.

Values of $S(J, J')$ and $D(J)$ obtained from experimental energies (Ajzenberg-Selove 1982, 1983) and from the full shell model calculations of Millener are given in the third and fourth columns of Table 1. The values for ^{18}N make use of energies corresponding to unmixed 2^- states of pure parentage, $E(2^-; \frac{1}{2}^- \otimes \frac{3}{2}^-) = 19 \text{ keV}$ and $E(2^-; \frac{1}{2}^- \otimes \frac{5}{2}^+) = 136 \text{ keV}$, which with a mixing matrix element of $\pm 51 \text{ keV}$ give eigenstates with the energies and 12.4% mixing calculated by Millener.

We assume that adjustments to the MK interaction will give adjustments to the values of $S(J, J')$ and $D(J)$ for $^{16-18}\text{N}$ that are related in the same way as in the weak-coupling formulae (1). Thus, adjustment of the MK interaction to make the calculated values of $S(J, J')$ and $D(J)$ for ^{16}N agree with the experimental values implies changes in the values of X, Δ_{32} and Δ_{10} of $-6, 526$ and 66 keV respectively, and these imply definite changes in the calculated values for ^{17}N and ^{18}N. These adjusted values of $S(J, J')$ and $D(J)$ are given in the last column of Table 1. Adjusted values of the $^{16-18}\text{N}$ level energies are then obtained by using these adjusted values from Table 1, together with experimental values of $^{17-19}\text{O}$ energies. Since the experimental ^{17}O energies were fitted in the calculation of Millener and Kurath (1975), the adjusted ^{16}N energies agree with the experimental values. By using experimental values for
the 18,19O energies, we are effectively adjusting the sd-shell interaction used in the shell model calculations. The resultant adjusted 17,18N level energies are shown in Fig. 3. The 2$^-$ levels shown are the result of mixing the states of pure parentage with a mixing matrix element of ± 51 keV, giving a lower 2$^-$ level containing only 1.3% of the $\frac{1}{2}^- \otimes \frac{3}{2}^+$ configuration.

Fig. 3. Spectra of low-lying negative-parity states of 17N and 18N calculated using adjusted shell model interactions.

<table>
<thead>
<tr>
<th></th>
<th>17N</th>
<th>18N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/2$^-$</td>
<td>2$^-$</td>
</tr>
<tr>
<td>4250</td>
<td>9/2$^-$</td>
<td></td>
</tr>
<tr>
<td>3733</td>
<td>7/2$^-$</td>
<td></td>
</tr>
<tr>
<td>1135</td>
<td>1$^-$</td>
<td></td>
</tr>
<tr>
<td>869</td>
<td>0$^-$</td>
<td></td>
</tr>
<tr>
<td>2236</td>
<td>5/2$^-$</td>
<td></td>
</tr>
<tr>
<td>1840</td>
<td>3/2$^-$</td>
<td></td>
</tr>
<tr>
<td>568</td>
<td>3$^-$</td>
<td></td>
</tr>
<tr>
<td>458</td>
<td>2$^-$</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>1$^-$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2$^-$</td>
<td></td>
</tr>
</tbody>
</table>

3. Discussion

It is seen from Table 1 and Fig. 3 that the adjusted interactions give better agreement with the experimental level energies of 17N than did the original Millener calculation, at least as far as the ordering and separations of the doublet members are concerned. This suggests that the predicted 18N energies for the adjusted interactions should be more accurate than those given by Olness et al. (1982).

There is still the difficulty, however, that the predicted ground state of 18N is 2$^-$, whereas the observed ground state is 1$^-$ (Olness et al. 1982). An argument for expecting a 1$^-$ ground state has been given by Sheline (1983) on the basis of the collective model. Putt et al. (1983) found the ground state and 580 keV level of 18N to be weakly populated in the reaction 18O(7Li,7Be)18N, while the 121 and 747 keV levels were strongly populated. Since the $\frac{3}{2}^+$ level of 19O is weakly populated relative to the $\frac{5}{2}^+$ ground state in 18O(d,p)19O (Wiza and Middleton 1966), it is reasonable to suppose that 18N states of $\frac{1}{2}^- \otimes \frac{3}{2}^+$ structure would be populated weakly compared with those of $\frac{1}{2}^- \otimes \frac{5}{2}^+$ structure in 18O(7Li,7Be)18N. The requirements of minimal changes to the 18N spectrum of Fig. 3, of a 1$^-$ ground state, of weak population of the $\frac{1}{2}^- \otimes \frac{3}{2}^+$ states, and of small mixing of the $\frac{1}{2}^- \otimes \frac{3}{2}^+$ and $\frac{1}{2}^- \otimes \frac{5}{2}^+$ 2$^-$ states lead to suggested spin assignments of 2$^-$, 2$^-$ and 3$^-$ for the observed 121, 580 and 747 keV levels of 18N respectively. The main change to the spectrum of Fig. 3 is a reduction of the energy of the lower 1$^-$ state by about 200 keV. The non-observation of the $\frac{1}{2}^- \otimes \frac{3}{2}^+$ 0$^-$
and 1^- levels in 18O(7Li,7Be)18N is not surprising, since the similar reaction 16O(7Li,7Be)16N populates the low-lying 0^- and 1^- levels, of $\frac{1}{2}^- \otimes \frac{3}{2}^+$ structure, very weakly relative to the low-lying 2^- and 3^- levels, of $\frac{1}{2}^- \otimes \frac{5}{2}^+$ structure (L. K. Fifield, personal communication).

Acknowledgments

The author is grateful to L. K. Fifield and D. J. Millener for information about the latter’s shell model calculations, and to R. H. Spear for comments.

References

Manuscript received 15 August, accepted 12 October 1983