Low-lying Negative-parity Levels of ¹⁷N and ¹⁸N

F. C. Barker

Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601.

Abstract

On the basis of a weak-coupling model, adjustments are made to the interactions used in the full shell model calculations of Millener in order to fit the experimental energies of the low-lying negative-parity levels of ¹⁶N and of the low-lying positive-parity levels of ¹⁸O and ¹⁹O. The predicted energies of the low-lying negative-parity levels of ¹⁷N then agree better with experiment, while those for ¹⁸N lead to suggested spin assignments for the observed levels.

1. Introduction

In a recent study of ¹⁸N with the reaction ¹⁸O(⁷Li, ⁷Be)¹⁸N, Putt *et al.* (1983) found strongly populated levels of ¹⁸N at excitation energies of 121 and 747 keV, while the ground state and a level at 580 keV were weakly populated. Only the ground state has a definite spin-parity assignment, which is $J^{\pi} = 1^{-1}$ (Olness *et al.* 1982).

Full $0\hbar\omega$ and $1\hbar\omega$ shell model calculations by Millener (Olness *et al.* 1982; D. J. Millener, personal communication) indicated that the low-lying negative-parity states of both ¹⁷N and ¹⁸N are well described by the weak coupling of a $p_{1/2}$ proton hole to the low-lying ¹⁸O and ¹⁹O states. This is illustrated in Fig. 1, which also shows the similar situation for the low-lying states of ¹⁵N and ¹⁶N (Millener and Kurath 1975). In the ¹⁸N case, where the 2⁻ states can have mixed ¹⁹O parentage, the lower 2⁻ state contains only a 12.4% admixture of the $\frac{1}{2}^{-} \otimes \frac{3}{2}^{+}$ configuration (Olness *et al.* 1982). The experimental energies of the low-lying ¹⁵⁻¹⁸N and ¹⁶⁻¹⁹O levels are given in Fig. 2.

Millener's calculations used the Millener–Kurath (MK) (1975) interaction between nucleons from the p and sd shells. This was derived to give a good account of the non-normal parity states of a number of nuclei from ¹¹Be to ¹⁶O. It does not, however, give the experimental ordering of the low-lying ¹⁶N levels or of the doublet members in ¹⁷N. This suggests that the predicted energies of the low-lying ¹⁸N levels might be significantly in error also.

We here adjust the MK interaction to fit the observed ¹⁶N energies and use the adjusted interaction to calculate the ¹⁷N and ¹⁸N energies. This is done by calculating the adjustments on the basis of a weak-coupling structure of the ^{16–18}N levels and simple descriptions of the ^{17–19}O levels, and assuming that the same relationship between the adjustments would hold in the full shell model calculation. Since the

0004-9506/84/010017\$02.00

Fig. 1. Spectra of low-lying negative-parity states of $^{15-18}$ N and of low-lying positive-parity states of $^{16-19}$ O calculated by Millener. Excitation energies are in keV. The weak-coupling parentage of the $^{15-18}$ N states is indicated.

Fig. 2. Experimental spectra of low-lying negative-parity states of $^{15-18}$ N and of low-lying positive-parity states of $^{16-19}$ O (Ajzenberg-Selove 1982, 1983; Olness *et al.* 1982; Putt *et al.* 1983).

sd-shell interaction of Chung and Wildenthal (Chung 1976) used by Millener does not reproduce exactly the observed ¹⁸O and ¹⁹O level energies, we also adjust this interaction to fit the observed energies, as was previously suggested for ¹⁹O by Olness *et al.* (1982).

2. Calculation

For the purpose of the weak-coupling calculation, the assumed ${}^{17-19}$ O state descriptions, relative to a closed-shell $1s^41p^{12}$ 16 O ground state core, are

¹⁷O,
$$T = \frac{1}{2}$$
: $\psi(\frac{5}{2}^{+}) = |d_{5/2}, \frac{5}{2}\rangle$, $\psi(\frac{1}{2}^{+}) = |s_{1/2}, \frac{1}{2}\rangle$,
¹⁸O, $T = 1$: $\psi(0^{+}) = |d_{5/2}^{2}, 0\rangle$, $\psi(2^{+}) = |d_{5/2}^{2}, 2\rangle$, $\psi(4^{+}) = |d_{5/2}^{2}, 4\rangle$,
¹⁹O, $T = \frac{3}{2}$: $\psi(\frac{5}{2}^{+}) = |d_{5/2}^{3}, \frac{5}{2}\rangle$, $\psi(\frac{3}{2}^{+}) = |d_{5/2}^{3}, \frac{3}{2}\rangle$, $\psi(\frac{1}{2}^{+}) = |(d_{5/2}^{2}, 0)s_{1/2}, \frac{1}{2}\rangle$.

The energy of the state $\psi(J^+)$ is denoted by E(J). The energy $E_I(J)$ of the ^{16–18}N state of spin I^- obtained by weak coupling of a $p_{1/2}$ proton hole to the state $\psi(J^+)$ is then given by

¹⁶N:
$$E_{I}(J) = E(J) + M\{(I_{J} p_{1/2}^{-1})I\},$$

¹⁷N: $E_{I}(J) = E(J) + 2\sum_{\overline{J}} U^{2}(\frac{5}{2}\frac{5}{2}I\frac{1}{2};J\overline{J}) M\{(d_{5/2} p_{1/2}^{-1})\overline{J}\},$
¹⁸N:
$$\begin{cases} E_{I}(J) = E(J) + 3\sum_{\underline{J}\overline{J}} \langle d_{5/2}^{3}J\{|d_{5/2}^{2}J, d_{5/2}\rangle^{2}U^{2}(J\frac{5}{2}I\frac{1}{2};J\overline{J}) M\{(d_{5/2} p_{1/2}^{-1})\overline{J}\}\}, \\ (J = \frac{3}{2}, \frac{5}{2}) \\ E_{I}(\frac{1}{2}) = E(\frac{1}{2}) + \frac{1}{6}\sum_{\overline{J}} (2\overline{J} + 1) M\{(d_{5/2} p_{1/2}^{-1})\overline{J}\} + M\{(s_{1/2} p_{1/2}^{-1})I\}. \end{cases}$$

Here $M\{(l_j p_{1/2}^{-1})I\}$ is the isospin 1 diagonal particle-hole matrix element $(l_j = d_{5/2}$ or $s_{1/2}$), and fractional parentage coefficients and Jahn U coefficients are involved. It is convenient to consider the mean energy of a doublet

$$\overline{E}(J) = \frac{1}{2(2J+1)} \sum_{I} (2I+1) E_{I}(J),$$

and the doublet splitting

$$D(J) = E_{J+\frac{1}{2}}(J) - E_{J-\frac{1}{2}}(J).$$

If one writes

$$S(J,J') = \overline{E}(J) - \overline{E}(J') - \{E(J) - E(J')\},\$$

for the separation of the mean doublet energies in ${}^{16-18}$ N relative to the separation of the corresponding parent states in ${}^{17-19}$ O, then one obtains the weak-coupling formulae

¹⁶N:
$$S(\frac{1}{2}, \frac{5}{2}) = X,$$
 (1a)
 $D(\frac{5}{2}) = \Delta_{32}, \qquad D(\frac{1}{2}) = \Delta_{10},$

¹⁷N:
$$S(2,0) = 0$$
, $S(4,0) = 0$, (1b)
 $D(2) = \frac{5}{6}A_{32}$, $D(4) = \frac{3}{2}A_{32}$,
¹⁸N: $S(\frac{3}{2}, \frac{5}{2}) = 0$, $S(\frac{1}{2}, \frac{5}{2}) = X$, (1c)
 $D(\frac{5}{2}) = A_{32}$, $D(\frac{3}{2}) = \frac{2}{3}A_{32}$, $D(\frac{1}{2}) = A_{10}$,

where

$$\begin{aligned} \Delta_{JJ'} &= M \left\{ (l_j \, \mathbf{p}_{1/2}^{-1}) J \right\} - M \left\{ (l'_{j'} \, \mathbf{p}_{1/2}^{-1}) J' \right\}, \\ X &= \frac{3}{4} \Delta_{10} - \frac{7}{12} \Delta_{32} - \Delta_{20}. \end{aligned}$$

Table 1.	Values of energy	v separations and splittings in ^{16–18} N

Nucleus	Quantity	Experiment ^A	Value (keV) Shell model ^B	Adjusted
¹⁶ N	$S(\frac{1}{2},\frac{5}{2})$	-716	-710	-716
	$D(\frac{5}{2})$	297	- 229	297
	$D(\frac{1}{2})$	278	212	278
¹⁷ N	S(2,0)	-288	96	96
	S(4, 0)	-148	465	465
	D(2)	533	-42	396
	D(4)	500	-272	517
¹⁸ N	$S(\frac{3}{2},\frac{5}{2})$		-117	-117
	$S(\frac{1}{2},\frac{5}{2})$		-730	-736
	$D(\frac{5}{2})$		34	560
	$D(\frac{3}{2})$		21	372
	$D(\frac{1}{2})$		200	266

^A Ajzenberg-Selove (1982, 1983).

^B Olness et al. (1982); D. J. Millener, personal communication.

Values of S(J,J') and D(J) obtained from experimental energies (Ajzenberg-Selove 1982, 1983) and from the full shell model calculations of Millener are given in the third and fourth columns of Table 1. The values for ¹⁸N make use of energies corresponding to unmixed 2⁻ states of pure parentage, $E(2^-; \frac{1}{2} \otimes \frac{5}{2}^+) = 19 \text{ keV}$ and $E(2^-; \frac{1}{2}^- \otimes \frac{3}{2}^+) = 136$ keV, which with a mixing matrix element of ± 51 keV give eigenstates with the energies and $12 \cdot 4\%$ mixing calculated by Millener.

We assume that adjustments to the MK interaction will give adjustments to the values of S(J, J') and D(J) for ^{16–18}N that are related in the same way as in the weakcoupling formulae (1). Thus, adjustment of the MK interaction to make the calculated values of S(J, J') and D(J) for ¹⁶N agree with the experimental values implies changes in the values of X, Δ_{32} and Δ_{10} of -6, 526 and 66 keV respectively, and these imply definite changes in the calculated values for ¹⁷N and ¹⁸N. These adjusted values of S(J, J') and D(J) are given in the last column of Table 1. Adjusted values of the ¹⁶⁻¹⁸N level energies are then obtained by using these adjusted values from Table 1, together with experimental values of ^{17–19}O energies. Since the experimental 17 O energies were fitted in the calculation of Millener and Kurath (1975), the adjusted ¹⁶N energies agree with the experimental values. By using experimental values for the ^{18,19}O energies, we are effectively adjusting the sd-shell interaction used in the shell model calculations. The resultant adjusted ^{17,18}N level energies are shown in Fig. 3. The 2⁻ levels shown are the result of mixing the states of pure parentage with a mixing matrix element of ± 51 keV, giving a lower 2⁻ level containing only $1\cdot 3\%$ of the $\frac{1}{2}^{-} \otimes \frac{3}{2}^{+}$ configuration.

	T
<u>4250 9/2</u> -	
<u>3733 7/2</u> -	
	<u>1135 1</u> -
	860 07
	869 0
<u>2236 5/2</u> -	
1840 3/2-	566 3-
	<u>458 2-</u>
0 4/0-	<u>80 1 -</u>
<u>u 1/2</u>	<u>0 2 -</u>
¹⁷ N	¹⁸ N

3. Discussion

It is seen from Table 1 and Fig. 3 that the adjusted interactions give better agreement with the experimental level energies of ¹⁷N than did the original Millener calculation, at least as far as the ordering and separations of the doublet members are concerned. This suggests that the predicted ¹⁸N energies for the adjusted interactions should be more accurate than those given by Olness *et al.* (1982).

There is still the difficulty, however, that the predicted ground state of ¹⁸N is 2⁻, whereas the observed ground state is 1⁻ (Olness *et al.* 1982). An argument for expecting a 1⁻ ground state has been given by Sheline (1983) on the basis of the collective model. Putt *et al.* (1983) found the ground state and 580 keV level of ¹⁸N to be weakly populated in the reaction ¹⁸O(⁷Li, ⁷Be)¹⁸N, while the 121 and 747 keV levels were strongly populated. Since the $\frac{3}{2}^+$ level of ¹⁹O is weakly populated relative to the $\frac{5}{2}^+$ ground state in ¹⁸O(d, p)¹⁹O (Wiza and Middleton 1966), it is reasonable to suppose that ¹⁸N states of $\frac{1}{2}^- \otimes \frac{3}{2}^+$ structure would be populated weakly compared with those of $\frac{1}{2}^- \otimes \frac{5}{2}^+$ structure in ¹⁸O(⁷Li, ⁷Be)¹⁸N. The requirements of minimal changes to the ¹⁸N spectrum of Fig. 3, of a 1⁻ ground state, of weak population of the $\frac{1}{2}^- \otimes \frac{3}{2}^+$ states, and of small mixing of the $\frac{1}{2}^- \otimes \frac{3}{2}^+$ and $\frac{1}{2}^- \otimes \frac{5}{2}^+$ 2⁻ states lead to suggested spin assignments of 2⁻, 2⁻ and 3⁻ for the observed 121, 580 and 747 keV levels of ¹⁸N respectively. The main change to the spectrum of Fig. 3 is a reduction of the energy of the lower 1⁻ state by about 200 keV. The non-observation of the $\frac{1}{2}^- \otimes \frac{1}{2}^+$ 0⁻ and 1⁻ levels in ¹⁸O(⁷Li, ⁷Be)¹⁸N is not surprising, since the similar reaction ¹⁶O(⁷Li, ⁷Be)¹⁶N populates the low-lying 0⁻ and 1⁻ levels, of $\frac{1}{2}^{-} \otimes \frac{1}{2}^{+}$ structure, very weakly relative to the low-lying 2⁻ and 3⁻ levels, of $\frac{1}{2}^{-} \otimes \frac{5}{2}^{+}$ structure (L. K. Fifield, personal communication).

Acknowledgments

The author is grateful to L. K. Fifield and D. J. Millener for information about the latter's shell model calculations, and to R. H. Spear for comments.

References

Ajzenberg-Selove, F. (1982). Nucl. Phys. A 375, 1.

Ajzenberg-Selove, F. (1983). Nucl. Phys. A 392, 1.

Chung, W. (1976). Ph.D. Thesis, Michigan State University.

Millener, D. J., and Kurath, D. (1975). Nucl. Phys. A 255, 315.

- Olness, J. W., Warburton, E. K., Alburger, D. E., Lister, C. J., and Millener, D. J. (1982). Nucl. Phys. A 373, 13.
- Putt, G. D., Fifield, L. K., Hotchkis, M. A. C., Ophel, T. R., and Weisser, D. C. (1983). Nucl. Phys. A 399, 190.

Sheline, R. K. (1983). Aust. J. Phys. 36, 825.

Wiza, J. L., and Middleton, R. (1966). Phys. Rev. 143, 676.

Manuscript received 15 August, accepted 12 October 1983