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Abstract

Computer simulation studies have been made to investigate the phase transition in ND 4CI at low
temperature. Two different types of potential have been used to represent the interaction between
ND t and CI-: (i) the Lennard Jones potential and (ii). the twelfth inverse power or r -12 repulsive
potential. The present study reveals the occurrence of a phase transition in N-D4CI in a well-defined
region. The Lennard Jones potential appears to be more appropriate in depicting the two well
defined phases known as II and III in the literature. The energy pattern curves obtained in this study
give us the nature of the rotational behaviour of ND:' before and after the transition at 249 K.
The libration frequency of the ND t ion is estimated to be of the order of 130 em -1.

1. Introduction

Deuteroammonium chloride is known to occur in three phases, namely
448 K 249 K

Phase I ( ) Phase II+--~ Phase III .
(NaCl) (CsCI) (CsCI)

Recently Garland and Baloga (1977) have observed the A-type transition of the
specific heat in ND4CI at one atmosphere pressure, corresponding to 249·6 K, using
the high resolution a.c. calorimeter technique. Other measurements of, for example,
the dielectric constant, the coefficient of expansion and piezoelectric effects have also
been found to exhibit discontinuities in other ammonium halides. Experimentally
it has generally -proved difficult to decide whether the transitions in ammonium
halides at low temperature are of first or second order.

To explain the nature of the specific heat anomaly, two different points of view
have been suggested. In one of these, due to Pauling (1930), the tetrahedral
ammonium ion is believed to be executing torsional oscillations at low temperatures
in the potential well created by the halogen ions. With a rise in temperature the
amplitude of these oscillations is supposed to increase until the ions acquire sufficient
energy to overcome the potential barrier and go into free rotation. According to
Frenkel (1935), the anomaly in the specific heat could be explained in terms of the
transition from the state in which the NHt ions are ordered, with one of the two
possible orientations, to a state in which the ions are disordered (i.e. distributed
randomly). Frenkel's suggestion has been further supported by NMR studies as well
as by considerations of thermodynamics.
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However, studies of the neutron spectra in ammonium halides by Woods et ale
(1961), Venkataraman et ale (1963) and Bajorek et ale (1965) suggested the idea of
hindered and free rotation of the ammonium ion at low and high temperatures
respectively. At low temperatures sharp peaks in the spectra are obtained, some
of which might be interpreted as being caused by torsional vibration, whereas at
higher temperatures the broad distribution of scattered neutrons in the spectra
suggests the possibility of free rotations of the ammonium ions.

In the present paper an attempt is made to explain the phase II ~ phase III
transition at 249 K in terms of the change in rotational behaviour of the NDt
ion by using a computer simulation technique. Although Pauling's (1930) view
concerning the explanation of the specificheat anomaly is discarded from considerations
of the entropy change, computer simulation studies here are nevertheless quite in
agreement with his hypothesis. Earlier, Trikha and Jain (1975) reported work on
the phase transition in NH4CI using this approach.

X
D D

Fig. 1. Unit cell of
ND4CI having the
CsCI type structure.

The crystal structure of ND4 CI is known from the neutron diffraction study by
Goldschmidt and Hurst (1951). In Fig. 1 we show the unit cell of deuteroammonium
chloride; the four deuterium atoms are arranged tetrahedrally about the nitrogen
atom (at the origin) in positions xxx, xxx, xxx and xxx, with x equal to rj(3aoyt,
where r = 1·03 A is known as the bond length and ao = 3· 86 A is the side of the
unit cell (1 A == 10-10 m). The moment of inertia of NDt is 14·2 x 10- 4 0 g cm",
The nearest neighbours are the eight chlorine atoms situated at the vertices of the
unit cell.

2. Rotating Model and the Interacting Potential

The precise nature of the molecular rotation of NDt corresponding to the
phase II ~ phase III transition is not yet clear and is still the subject of detailed
study, both experimentally as well as theoretically. In the present study, in order to
avoid excessive computational work, we confine ourselves to a single unit cell and
the nearest neighbour interaction. In reality one must consider all possible inter-
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actions between NDt ions situated at different unit cells, which would involve
considerable computational time. However, we feel that the rotational behaviour of
NDt'in a single unit cell is a fairly true representation of 'the whole ND4CI system.
We propose a model in which, for simplicity, Not is assumed to be rotating about
the vertical axis, an assumption based on the results of neutron scattering experiments
on the rotational dynamics of molecules. The rotational motion of the NDt ion
is governed by a proper algorithm equation, as well as by the interatomic forces of its
nearest neighbours, and the rotational kinetic energy of the system is calculated for
different values of the .angular momenta.

The potential energy of the dynamical system is computed by considering the
interaction between NDt and CI-, which can be represented by the well-known
Lennard Jones potential

(1)

where a represents the distance of closest approach (= 3·5 A). For the second case
.we drop the attractive term (a/r)6 in the interatomic potential. The electrostatic
interaction has not been taken into consideration.

3. Algorithm for the Rotational Motion

Let 11(t), 12(t) and 13(t) be the directions of the principal axes of the NDt ion
at time t and 11 , 12 and 13 be the principal moments of inertia. The angular velocity
Wand angular momentum n of NDt are written

W(t) = (01(t) 11(t) + (02(t) 12(t) +(03(t) 13(t),

n(t) = 11 (01 (t) 11(t) +12(02(t) 12(t) +13(03(t) 13(t) ,

where (01 (t), (02(t) and (03(t) are the components of the angular velocity W(t).
The equations of motion to be solved are

net) = t(t),

(2)

(3)

(4)

(5)

where t is the torque exerted. on each molecule by its environment and r:t (= 1,2,3)
refers to the direction of the principal axes.

In the present case we use an algorithm which is very similar to that in conventional
studies of molecular dynamics in liquids. The rotational motion of NDt is governed
by the algorithm equations

. ....
1(J.(t + I1t) = 1(J.(t) + 1(J.(t )!i.t+i{4/~(t) --I(J.(t -!i.t)}i\t 2 ,

n(t+!i.t) = n(t) +!{2t(t+ !i.t)+5t(t) - t(t-!i.t) }!i.t,

(6)

(7)

. ..
where 1(J.(t) and la(t) are the first and second time derivatives of the direction cosines
respectively. The only complication in the present case is that we have the additional
constraint that la(t) are orthogonal unit vectors. Further, we write

Wet) = I- 1 . n (t ) , (8)
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where I denotes the inertia tensor. The algorithm given by equations (6) and (7)
has been found to give both excellent stability and energy conservation over long
periods of time, which are the necessary conditions for this type of computation.

(a)
) 18

Phase II
317
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"'-Transition regionP7315
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Fig. 2. Average total energy as a
function of the rotational kinetic
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4.. Results and Discussion

In the present analysis the angular momentum of the NDt ion is gradually
increased to study its rotational motion in the field of eight chlorine atoms. The
rotational kinetic energy of the system is computed for different values of angular
momentum in the range 1·0 to 10· 0 (in reduced units).

In Fig. 2 the variation of the average total energy (E> is shown as a function of
the average rotational kinetic energy (ERK>of the system for 5000 time steps with
I1l = 0'05, corresponding to (a) the r -12 repulsive potential and (b) the Lennard
Jones potential. In each case, the two solid lines of different slopes correspond to
the two phases II and III in ND4Cl. These phases are well separated by a transition
region. Here phase III corresponds to lower values of (E> and (ERK>before the
transition, and phase II to higher values of (E> and (ERK>after the transition. A
comparison of the two potentials indicates that the Lennard Jones force is more
appropriate in depicting the two well-defined phases.

In Fig. 3 we plot the potential energy (solid curves) and the rotational kinetic
energy (dashed curves) as a function of time for the angular momenta indicated (in
reduced units) for the Lennard Jones potential. In each case the potential energy
is found to dominate the rotational kinetic energy. It is observed that the variation
of the two energies with respect to time is more or less of the same type indicating
the ordered motion of the NDt ion under the influence of its neighbours. This system
corresponds to the phase III shown in Fig. 2b.
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Fig. 3. Potential energy (solid curves) and rotational kinetic energy (dashed curves) as a function of
time for the NDt ion having angular momenta 1·0, 2·0 and 3·0 (in reduced units) with the
Lennard Jones potential. The average energy in each case is indicated.
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Fig. 4. As for Fig. 3, but for the r -12 repulsive potential.
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In Fig. 4 we plot energy as a function of time for the ,,-12 repulsive potential.
In this case the energy pattern curves are again more or less similar indicating again
the ordered motion of the NDt ion. The magnitude of the potential energy is
increased here compared with the Lennard Jones potential because the attractive
r - 6 term has been omitted. This system corresponds to the phase III shown in
Fig.2a.

In Fig. 5 we show the energy pattern curves corresponding to angular momenta
7·0 and 6·0 for (a) the Lennard Jones potential and (b) the, -12 repulsive potential.
Since all these energy pattern curves are different for different angular momentum
imparted to the NDt ion about the z-axis, this situation therefore corresponds to
phase II. The motion of NDt becomes quite complex, consistent with it having
free motion.

5. Conclusions

We draw the following conclusions from this work:

(1) The present rotating model ofNDt supports the hypothesis of Pauling (1930)
for the explanation of the specific heat anomaly at 249 K.

(2) The computed libration frequency ofNDt comes out to be rv 130 cm- 1 which
is nearly half the value of 280 em -1 quoted by HUller and Kane (1974). The
discrepancy can be attributed to the fact that in the present model NDt rotates
through 360° even in phase III which has some type of hindered rotation whereas, in
reality, NDt undergoes torsional oscillation where the angle of rotation may be much
less than 45°. In phase II, NDt undergoes some kind of free rotation through 360°
and, therefore, the present model of NDt is quite close to reality.

(3) From the energy pattern curves we notice that with an increase of temperature
the NDt ion is also subject to vibrational motion. The tumbling motion is the
combined effect of rotational as .well as vibrational motion at higher temperatures.

(4) The Lennard Jones potential appears to be much more effective in predicting
phases II and III than the r -12 repulsive potential.

(5) Since we have assumed the structure of ND4CI to be of CsCl type in our
computational work, the discontinuity in the (E) versus (ERK ) curve therefore
corresponds to phases II and III of ND4Cl.
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