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Abstract 

The application of the interacting boson model to the coupled channel description of inelastic proton 
scattering is studied. The radial shape of the transition potentials is determined by analogy to the 
usual geometrical models, whereas the reduced matrix elements are calculated from the boson 
Hamiltonian. The general formalism is applied to scattering from the Ge isotopes. We find a better 
description for the heavier isotopes in terms of an O(6)-symmetric model than for a vibrational model. 

1. Introduction 

The interacting boson model (IBM) of Arima and Iachello (1976, 1978a, 1978b) 
has been frequently used in recent years for the description of the structure of medium 
and heavy nuclei away from closed shells. Energy spectra, quadrupole moments and 
electromagnetic transition rates have been calculated for a large number of nuclei, 
and encouraging agreement with experiment has been obtained with only a small 
number of parameters which vary smoothly with mass number. As limiting cases of 
symmetry in the boson Hamiltonian, the IBM encompasses the classical geometric 
models like rotational, vibrational and y-unstable nuclei, and describes also situations 
between these extreme models as symmetry breaking. Thus the IBM describes, for 
example, the transition from vibrational to rotational nuclei in the Sm isotopes 
(Scholten et al. 1978). 

Applications of the IBM to dynamical processes instead of the static quantities 
mentioned above have been much less frequent. Examples of such applications are 
inelastic electron scattering (Iachello 1981; Dieperink 1981) and inelastic proton 
scattering (Morrison and Smith 1980; Cereda et al. 1982). In the present paper we 
will deal with the latter aspect. Previous applications of the IBM to inelastic proton 
scattering have been confined either to DWBA calculations (Morrison and Smith 
1980; Amos et al. 1984), which are meaningful only for the lowest 2+ state, or to 
the vibrational limit of the IBM (Cereda et al. 1982). As previously stated, the main 
interest in discussing dynamical problems in the IBM stems, however, from the 
possibility to describe nuclei of a transitional character which are not well described 
by one of the classical models. 

The description of momentum transfer dependent processes requires a radial 
dependence for the relevant form factors in addition to the usual parameters of the 
IBM Hamiltonian. It is of course desirable to derive these form factors from an 
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underlying shell-model picture as has been attempted by Amos et al. (1984). Alterna
tively, information on them can be obtained from experiment (Moinester et al. 1982). 
This question is central to an application of the IBM to inelastic proton scattering, 
and it will be discussed at length in the next section. 

One set of isotopes which exhibits an apparent structure change with increasing 
neutron number is provided by the Ge isotopes (A = 68 to 76) (Vergnes 1980). 
Within the IBM, these structure or shape changes correspond to the system moving 
between the vibrational [SUeS)], y-unstable [0(6)] and rotational [SU(3)] limits. 
Classical geometric models do not provide form factors for y-unstable nuclei, in 
contrast to vibrational and rotational nuclei. Consequently, scattering from y-unstable 
nuclei has almost never been studied experimentally and theoretically. Existing data 
for Ge are limited to a rather old set of data, covering all stable isotopes, taken at 
14· S MeV with limited resolution (Curtis et al. 1970), and new data for 74Ge taken 
at 22 MeV (Tamisier et al. 1982). It is interesting to note that the latter authors 
were unable to get a fit to the data for 74Ge in a vibrational model, but found 
acceptable agreement in an asymmetric rotational model with state-dependent 
y deformation. After the calculations for the present paper were finished, a new 
set of data for 76Ge was published (Ramstein et al. 1983) which corroborates the 
findings for 74Ge. 

The structure model for Ge in the IBM is discussed in Section 3. Contrary to an 
earlier model (Duval et al. 1983) we use the IBM-I, i.e. we do not distinguish between 
neutron and proton bosons, and do not consider mixing between different configu
rations. The application to inelastic proton scattering is discussed in Section 4 with 
special emphasis on the sensitivity of the results to the radial dependence of the form 
factors. The conclusions are presented in Section S. 

2. IBM and Coupled Channel Calculations 

A central issue of coupled channel calculations is the specification of the transition 
operators between the various excited states. In this section we show how the IBM 
can be used to obtain expressions for these. If we restrict ourselves to two types of 
correlated pairs, s bosons (L = 0) and d bosons (L = 2), as is usually done, then the 
most general form ofa one-body quadrupole operator to lowest order is 

Q(2) = !Xz(s+d+d+S)(2)+P2(d+d)<2), (1) 

where s (s+) are destruction (creation) operators for s bosons and similarly for 
d (d +). The boson effective charges !X2 and P2 are not fixed by the IBM Hamiltonian, 
but have to be found by fits to experimental properties or calculated from an under
lying shell-model picture. In this form (1), Q(2) can be used to calculate static 
properties. For dynamic calculations, a radial dependence has to be introduced. 
This is most naturally done by allowing !X2 and P2 to depend on r. If we now take 
the matrix element of (1) between states I i) and (f I which can be connected by a 
quadrupole transition, then we find the transition density 

p~;)(r) = A~;)!X2(r) + Bif) pz(r) , (2) 

with the reduced matrix elements 

A~P = (f II (s+d+d+s)<2) IIi), (3a) 
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B~P = <f II (d+d)<2) Iii), (3b) 

which can be calculated knowing the IBM Hamiltonian. Whereas these matrix 
elements depend of course on the states I i) and I f), the radial dependence of azCr) 
and {32(r) is the same for all transitions. Similarly, the transition density for monopole 
and hexadecapole transitions can be found. For hexadecapole transitions, only 
d bosons can contribute, and we find 

pli)(r) = Eli) {34(r) , (4) 

with the matrix elements 

B~:) = <f II (d + d)4 II i) . (5) 

The monopole case is slightly more complicated. The most general form of the 
monopole operator is 

51(0) = ao(s+ s )(0) + Yo(d + dYO) . 

The total number of bosons is, however, conserved which means that 

(s+sYO)+.j5(d+dYO) = NB. 

By introducing {30 = Yo -.j 5 ao, equation (6) can be rewritten as 

i1(0) = aO(r)NB +{3o(d+d)(O). 

(6) 

(7) 

(8) 

In addition to this operator, a contribution will come from the core which is not 
treated in the IBM. So the transition density for monopole transitions is finally 
found to be 

pl?>cr) = {Pcore(r) + N B ao(r )}b jf + {3o(r) B\?) , (9) 

with the matrix elements 

B\~) = <f II (d + d)(O) II i) . (10) 

The matrix elements BfP (I = 0,2,4) and All) contain the nuclear structure information 
and are calculated from the IBM Hamiltonian. This will be discussed in the next 
section for the special case of the Ge isotopes. Here, we are concerned with the 
determination of the radial form factors {31(r) (I = 0,2,4) and a2(r). Once they are 
found, the transition potentials can be obtained by a folding procedure with an effective 
interaction, treating exchange contributions in a zero-range approximation (Petrovich 
et al. 1969) which should be reasonable for collective states of interest in the IBM. 
Here, we will follow, however, the usual reasoning of the collective model and assume 
that the transition potentials are related to the optical potential in the same way 
as the transition densities are related to the ground state density. The diagonal terms 
Pcore(r) +NBaO(r) in the monopole transition are thus given by the optical potential. 
For increasing mass number, its radius increases as A 1/ 3 and thus takes care of the 
additional bosons. 

Information on the densities azCr) and {32(r) comes from inelastic electron scattering 
(Moinester et al. 1982) to 2+ states in Sm isotopes. By comparing transition densities 
for various states with differing structure, a2(r) and {3zCr) can be extracted. For 
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cxir) a surface peaked form was found which can be approximated by the first 
derivative of a Woods-Saxon shape. In contrast, 13ir) displayed a node in the nuclear 
surface and thus resembles more the second derivative of a Woods-Saxon form. 
However, 132(r) is not determined as accurately as cx2(r) which is normally the dominant 
term. A quantity which is better determined than the radial form is the transition 
radius R,,: 

R; = J cxir)r6 dr / J cx2(r)r4 dr, (11) 

and correspondingly for Rp. Experimentally, one finds for their ratio in 148Sm 
(Dieperink 1981) RpjR" = 1'20, whereas the assumption of a first derivative form 
for cxir) and a second derivative for 13ir) leads to RfJjR" = 1·27 in good agreement 
with experiment. It is of course questionable whether this experimental result for 
Sm is relevant for Ge. A recent measurement of the transition densities for the 
2-;- states in the Ge isotopes (Goutte et al. 1983) has demonstrated their surface 
peaked form, thus supporting at least the form of cx 2(r). Thus, we will use 

cx2(r) = .J+k 202 RdU jdr, 13ir) = .J+ k22d;R2d2Ujdr 2, (12a, b) 

where U is the optical potential of Woods-Saxon shape with radius R. The proportion
ality factors k have to be regarded as generalized deformation parameters or effective 
charges and must be determined in a phenomenological approach by a fit to the data 
(cf. Morrison and Smith 1980). In equations (12) we have denoted the transition 
potentials in the same way as the transition densities above. 

Experimental information on 13o(r) is much scarcer than for 13ir), and does not 
exist for 134(r). It is of course tempting to use the same functional form for all 
13lr) (I = 0,2,4), which are all related to operators d + d. In the absence of other 
information we will do so for 134(r) and use 

134(r) = .Jtk422 t.R2 d2Ujdr 2 . (13) 

Information on 13o(r) is obtained rather indirectly from isomer shifts in Sm (Moinester 
et al. 1982). The diagonal term involving cxo(r) in equation (9) contributes in this 
case and is in fact the dominant term, so that the only information on 13o(r) obtained 
thereby is the existence of a nod~ inside the nucleus, which has of course to be present 
for a monopole transition. One possible choice for 13o(r) seems to be therefore 

13o(r) = k022 t.R2 d2 U jdr 2. (14) 

As discussed below, this choice corresponds to the normal second order vibrational 
model. However, 13o(r) has to fulfill the constraint 

Jooo 130(r)r2 dr = 0, (15) 

because of the orthogonality between states. This is not satisfied by equation (14). 
Instead, one may use the breathing mode form factor (Satchler 1972): 

13o(r) = k022{3U(r)+rdUjdr}. (16) 
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In order to test the sensitivity of the results to the radial shape of the form factor 
we have used both forms (14) and (16). 

We are thus left with four free parameters, k022' k 202 , k222 and k422' which are 
to be determined by fitting the experimental data. The relation of these parameters 
(in a slightly different normalization) to the microscopic shell-model structure has 
been investigated by Morrison and Smith (1980). They found that 

kulAZ = f RA,(r) RAZ(r) GL(r)r2 dr, (17) 

where RA,(r) and RAZ(r) are bound state wavefunctions for bosons and GL(r) is 
related to the effective interaction. So one expects ku,AZ to be constant over a range 
of nuclei when the bound state wavefunctions do not change. This means essentially 
that one must not cross a subshell closure if one wants the same parameters kulAZ 
for a range of nuclei. This condition is not fulfilled for the Ge isotopes where transfer 
experiments (Rotbard et al. 1978) have shown an abrupt change in the proton shell 
occupation at 72Ge. Therefore we will treat the kulAZ as free parameters for each 
isotope. 

An attempt to calculate the radial dependence of the form factors microscopically 
by Amos et al. (1984) has confirmed the surface peaked nature of a2(r). In this paper, 
a similar shape was found for air) and P2(r) for the Sn isotopes in contrast to the 
assumptions made above. This microscopic calculation must, however, assume 
rather large core polarization corrections to reproduce the experimental transition 
probabilities. The radial shape of these core polarization contributions is not known, 
so that microscopic calculations of form factors in the IBM do not seem to be very 
reliable. Therefore, we prefer to use the phenomenological approach outlined here. 

Transition potentials given as first and second derivatives of the optical potential 
are well known from traditioml.l collective models. The correspondence to the IBM 
approach presented here is most readily recognized in the vibrational limit of the 
IBM. In this case, no d bosons are present in the ground state, and one- and two
phonon states contain one and two d bosons respectively. So transitions from the 
ground state to the one-phonon state have to proceed with the operator (s+ d+d+ s )<2), 
which changes the number of d bosons, and similarly from the one-phonon state to 
the two-phonon triplet. The corresponding radial form factor is air) which we 
have assumed to be given as the first derivative of the optical potential. This coincides 
with the customary first-order vibrational model where these transitions are the only 
ones considered. The reduced matrix elements will be different in the IBM, however, 
because of the finite boson number. The operator (d + d)(2) induces recoupling terms 
in the one-phonon state and transitions among the members of the two-phonon 
triplet, because it does not change the number of d bosons. The associated form 
factors PI(r) (I = 0,2,4) are represented by second derivatives of the optical potential. 
This corresponds to a second-order vibrational model in the classical picture. Again 
the reduced matrix elements will be different in the IBM. A similar correspondence 
can be established in the rotational limit, but not so easily because the number of 
d bosons no longer has a simple relationship to the nuclear state, so that d-boson 
number changing and preserving operators contribute in all cases. Our choice of 
radial dependences is thus a natural generalization of the classical models. 

Finally, we discuss the relation of the parameters kulAZ to electromagnetic tran
sition rates. For an isoscalar projectile and a first order derivative form factor. the 
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question of obtaining R(EL) values from deformation parameters has recently been 
clarified by Wagner et al. (1982). Their work can readily be generalized to second 
order derivatives, and the result can be summarized as follows: If the potential for 
the transition with multi polarity L ~ 2 from a state with spin Ii to a state with spin 
If is given by 

1 (1) dU 1 (2) 2d2u 
FL(r) = ou . H~PL R dr + (2L+l)t PL tR dr2' (18) 

then the (isoscalar) associated transition probability is 

2/f+l 1 A2 
B(L I.-d) =-----

" f 2/i+12L+l (4n)2 

x {-(L+2)Pi1) R(rL-1) +!(L+l)(L+2)Pf) R2(~-2)}. (19) 

Here (rL) is the radial moment of the (real part of) the optical potential. For 
monopole transitions, a related formalism (Bauhoff 1984) can be used to obtain the 
(r2)tr transition matrix element. For the breathing mode form factor (16), the result 
reads 

(r 2)tr = 2pA(r 2). (20) 

The deformation parameter P is here the product of the reduced matrix element and 
the appropriate parameter ku,A2. Note that a formula corresponding to (20) cannot 
be derived for monopole form factors of second derivative form because it does not 
fulfill (15). 

If one wants to apply these formulas to low-energy proton scattering from Ge 
isotopes one faces two problems. First, the incident protons do not interact with 
equal strength with target neutrons and protons. At low energies, the neutron-proton 
interaction is about three times as strong as the proton-proton interaction. Second, 
even if one assumes equal strength for both types, the resulting transition rates cannot 
be easily compared with results obtained from electromagnetic measurements because 
of uncertainty on how to scale the results. The geometric collective model suggests 
scaling with (Z/A)2, which varies from 0·21 for 70Ge to 0'18 for 76Ge. For the IBM, 
on the other hand, an inert core of 56Ni is assumed, which is not changed in the excited 
states. So the transition affects only the valence nucleons, and the scaling factor 
should be {n,,/(n,,+nv)Y, where n" (nv) is the number of proton (neutron) bosons. 
This leads to scaling factors between 0·082 for 70Ge and 0·040 for 76Ge. So the 
factors are not only much smaller than those from the collective models, but change 
also much more rapidly among the isotopes. For these two reasons, extractions of 
R(EL) values are very uncertain and give at best an order of magnitude estimate. 

3. IBM Calculations for Ge Isotopes 

The structure ofthe 68-76Ge isotopes is described in the IBM-I framework (Arima 
and Iachello 1976) using an uncoupled basis representation (Morrison and Smith 
1980). The parameters of the empirical boson Hamiltonian are determined by a 
x2 minimization of the calculated energy levei spectra of these isotopes, assuming a 
56Ni closed core. The IBM-I formalism is used in preference to IBM-2 because of 
the need to limit the plethora of parameters both in the reaction analysis (separate 
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k values for both proton and neutron valence bosons) and in the structure model 
where up to six boson types and ten interaction parameters have been used (Duval 
et al. 1983). This restriction is not important for our purposes because a boson 
Hamiltonian retaining p-n symmetry automatically ensures that the predictions of 
IBM-l and IBM-2 are exactly equivalent for the lowest (maximal symmetry) eigen
states, their predictions merely being scaled by the standard Z/ A and N / A of the 
geometric models (Morrison 1980). In typical IBM-2 parametrizations (Bijker et al. 
1980), the boson Hamiltonian used only slightly breaks F-spin p-n symmetry for 
the lowest states and only marginally improves energy and B(E2) fits over an equivalent 
IBM-l approach. We therefore use IBM-l as an accurate approximation to the 
structure of these states, limiting the number of parameters. Our intention is to 
discover whether an empirical analysis of reaction data within the IBM and coupled 
channel model retains sufficient sensitivity to, by itself, discriminate between different 
nuclear structure models (H B) and therefore be a valid tool. It is crucial therefore to sen
sibly limit the number of free parameters. Within IBM -1, the excitation energy spectrum 
in a nucleus is a function of six one-body and two-body matrix elements of the boson 
Hamiltonian. These are determined by a X2 search applied to the even 68-76Ge 
isotopes, both as a whole and as clusters of two to three isotopes, with weak constraints 
on the 0; levels which are expected to be anomalous (Vergnes 1980; Duval et al. 1983). 
The best fit was obtained for 68-72Ge and 72-76Ge separately with the interaction 
parameters given in Table 1. 

Table 1. Matrix elements (in MeV) of the IBM-1 boson 
Hamiltonian 

Our notation follows that of Arima-Iachello (1976) 

Matrix element A = 68-72 A = 72-76 

<s2 1 VI d 2 )L=O -0·164 -0,465 
<d2 1 VI d2 )L=O -0,608 -0,406 
<sd I VI d 2 )L=2 ~o -0,019 
<d2 1 VI d 2)L=2 -0·289 -0,391 
<d2 1 VI d 2 )L=4 0·017 -0·020 

ed 1·101 0·864 

For the lighter isotopes, the fitted Hamiltonian is similar to a spherical vibrator 
[SUeS) limit] with a 'uo' perturbation (Arima and Iachello 1976), whereas the heavier 
isotopes are best fitted by a perturbed y-unstable system [0(6) limit]. If we fold back 
the interaction parameters to define a potential energy surface (Ginnochio and Kirson 
1980), it appears that a nuclear shape change occurs with 72Ge as the 'pivot'. 
In both regions, 72Ge is least well 'fit', and we shall concentrate on 68, 70Ge and 
74,76Ge as systems where the two different shapes are well established. This change 
of shape is well supported by other experimental evidence, and although IBM-l 
cannot support a permanent triaxial shape, as has been suggested (Duval et al. 1983), 
there is no empirical evidence for this (Vergnes 1980) and the y-unstable vibrator 
[0(6) limit] will therefore be a good approximation for weak triaxiality (Ginnochio 
and Kirson 1980). As a consequence of the change in shape, the structure factors 
(3) will change in these nuclei. We address in the next section the question of whether 
a standard reaction analysis is sufficiently sensitive to these changes to be a valid 
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discriminatory tool. To do this for a range of levels in these SU(5) and 0(6) systems, 
extension beyond the direct reaction mechanism (Morrison and Smith 1980) is 
required. 
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Fig. 1. Results in the IBM for proton inelastic scattering from (a) 70Ge at 14· 5 MeV" (b) 74Ge at 
22 MeV and (e) 76Ge at 14·5 MeV. For the monopole transition potential, a breathing mode form 
factor (solid curves) and the second derivative of the optical potential (dashed curves) are used. In 
Figs la and Ie the data are from Curtis et al. (1970), and in Fig. Ib from Tamisier et al. (1982). 

4. Application to Scattering from the Ge Isotopes 

As an example of the general formalism developed in Section 2, we consider 
now inelastic proton scattering from the Ge isotopes A = 70, 74 and 76. The isotope 
68Ge is unstable, so no proton scattering data exist, and 72Ge is left out because of the 
uncertainties in its structure. For the remaining three isotopes, we consider the 
2t, 21",01" and 4t states, in addition to the ground state. With the boson Hamiltonian 
given in the previous section, we have calculated the reduced matrix elements for 
transitions between these five states for angular momentum transfers of L = 0,2 
and 4. Higher angular momenta are not possible in the IBM. Additional states of 
higher excitation energy can be included in the coupling scheme. We have not done 
it here because one might anticipate sizable quasiparticle admixtures in these higher 
states which are not described by the IBM. 

Specifically, we consider the 14· 5 MeV data of Curtis et al. (1970) for all three 
isotopes, and in addition for 74Ge the more recent higher quality data of Tamisier 
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et al. (1982), taken at 22 MeV. In the latter experiment, the 01 and 4t states were 
resolved from each other, in contrast to the results of Curtis et al. The optical potential 
is taken from the original publications. In the coupled channel calculations, real 
and imaginary parts were both deformed with the same deformation parameter. 
We have not included a spin-orbit deformation because its influence is found to be 
small for cross-section data. It has of course to be considered when polarization data 
are available. The calculations are performed with the coupled channel code ECIS79 
by J. Raynal (unpublished, 1979), which allows the input of arbitrary reduced matrix 
elements and externally defined transition potentials. The 'deformation parameters' 
k022' k 202 , k222 and k422 are determined by a X2 fit to the existing data. We have put 
strongest emphasis on a fit to the 2t data which have been measured most accurately. 

Table 2. Best-fit values for the 'deformation parameters' kU1 }.2 

The parameters are given for all nuclei considered for monopole form factors of either breathing 
mode or second derivative form 

k U1 }.2 7°Ge(14'5 MeV) 74Ge (14'5 MeV) 74Ge (22 MeV) 76Ge (14'5 MeV) 

Breathing mode 

k022 -0·012±0·005 0·0022±0·0041 -0·012±0·001 0·015±0·005 
k 202 0·040±0·001 0·029±0·001 0·027±0·OOO5 0·028±0·001 
k222 0'019±0'004 o . oo27± 0 . 0006 0·00097 ± 0·00076 -0·0042±0·0014 
k422 0·015±0·004 0·0020±0·0014 0·0027 ± 0·0015 0·O029±0·0018 

Second derivative 

k022 -0·0025±0·0073 0·0011 ±0·0011 0'032±0·002 -0·025±0·004 
k 202 0'038±0·001 0·029±0·001 0·027±0·0004 0·024±0·001 
k222 0·016±0·004 0·0026±0·001O o . 0023± 0 . 0007 -0,0011 ±0·001O 
k422 0·017±0·004 0·0018±0·0018 0'OO29±0'001O 0·0006±0·0010 

Results are shown in Figs la, lb and Ie for 70Ge, 74Ge and 76Ge respectively, 
and the corresponding best-fit values of kUlA2 are given in Table 2. We have also 
included in Table 2 the results for 74Ge at 14· 5 MeV, which are not shown in Fig. 1. 
As discussed in Section 2, the form of the monopole transition potential is uncertain, 
and we have used both the breathing mode form and the second derivative ofthe 
optical potential. Results for both cases are shown in Fig. 1 and Table 2. The 
quoted uncertainties for the kLAI ).2 are those given by the ECIS code and correspond 
to the change in any kUlA> which will increase the X2 by the inverse of the number 
of parameters. 

In all nuclei, the fit to the 2t data is the best of all states considered. This is not 
surprising since it is well described by a standard DWBA vibrational model calculation. 
The s+d+sd+ term is the dominant one in the excitation of the 2t state in the IBM 
in all cases, and the first derivative form of the form factor ao(r) reproduces the 
conventional radial shape. For the other states, the fits for the 21 and 4t states are 
reasonable in all cases and, in fact, better than in the standard second order vibrational 
model (Curtis et al. 1970; Tamisier et al. 1982). The results for the 01 state differ 
strongly from nucleus to nucleus and depend sensitively on the radial form of the 
monopole form factor which mediates the one-step transitions to this state. The 
influence of changes in the monopole form factor on other states is visible, but not 
as dramatic as for the 01 state. For 70Ge, the use of the breathing mode form (solid 
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curve in Fig. la) leads to an obvious improvement compared with the normal second 
derivative form (dashed curve). In the other two isotopes, the quality of the 01" 
fits is generally inferior and does not discriminate between the two forms. 

Table 2 reveals that k 202 is best determined by the experimental data. This stems 
from the good fit to the 2t state. For the other kU1A2 values sizable uncertainties in 
their magnitude are found. They are largest for k 022 , i.e. the monopole form factor. 
This reflects of course the unsatisfactory fits for the 01" states. For 74Ge, we find 
good agreement for the two different energies in all cases except for k 022 ' This is not 
surprising since the 4t and 01" states are not resolved at 14· 5 MeV. The determination 
of the parameters from the sum of the two cross sections necessarily introduces 
uncertainties, and since the fit to the 01" data at 22 MeV is bad, one gets an unreliable 
result at 14· 5 MeV. If we compare the results for the different isotopes, we find that 
they are different for 70Ge on one side and 74Ge and 76Ge on the other side. This 
can be related to the expression (17) for the kL),' A2 in terms of the underlying wave
functions. Since the proton occupation number for the f5/2 shell and the 2p shells 
changes abruptly at 72Ge (Rotbard et al. 1978), the contributing shells are different 
for 70Ge compared with the heavier isotopes, and therefore the overlap integrals 
(17) will be different in the two cases. 
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Fig. 2. As in Fig. lb, but the 
vibrational limit of the IBM is used. 
The monopole form factor is of the 
second derivative form. 

In order to test how much the proton scattering results depend on the underlying 
boson structure, we have performed a calculation for 74Ge in the vibrational limit 
of the IBM. The best-fit result is shown in Fig. 2. As is customary in the vibrational 
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model, we have used a monopole form factor of the second derivative form. It is 
evident that the results are worse than those in Fig. Ib which are obtained with a 
boson Hamiltonian close to the 0(6) limit. It is not possible to improve the result 
for the 4i and OJ: states by changing k022 and k422 as one might naively expect. 
The magnitude of the two-step contributions does not allow it. So we find that the 
proton scattering results are in fact sensitive to the nuclear structure input, and the 
free parameters kU1A2 do not mask this dependence. Our result confirms the findings 
of Tamisier et al. (1982) and Ramstein et al. (1983) that proton scattering from the 
heavier Ge isotopes cannot be described in the vibrational model. 

5. Conclusions 

In this paper, we have investigated the description of proton inelastic scattering 
in the IBM. The discussion was based entirely on a macroscopic collective approach 
by using analogies with the classical geometric models. The radial shapes of the 
transition form factors were given in terms of the optical potential and its derivatives. 
The IBM provided the reduced matrix elements for the coupling between the states 
of interest. The application to the Ge isotopes has demonstrated the sensitivity to 
the nuclear structure input. The fits obtained were of comparable or better quality 
than those of the usual vibrational model. 

Obviously we have not presented an exhaustive discussion of the subject. Further 
investigations are necessary in two different areas. The first one concerns the appli
cation to a wider range of nuclei in a phenomenological way. Of particular interest 
in this respect are the Sm isotopes which exhibit a transition from vibrational to 
rotational character. On the other hand, the microscopic basis for the approach has 
to be investigated. The first steps in this direction have already been taken (Amos et al. 
1984). Ultimately, one would like to calculate the radial shape of the form factors 
and the' scaling parameters kU1A2 from an underlying fermion model. This will 
then require an explicit treatment of exchange effects. A coupled channel code which 
includes anti symmetrization has still to be written. Therefore, a large amount of 
work must be done before a completely microscopic description can be given. On 
a more positive note, we have shown that an analysis of inelastic proton scattering 
based on a phenomenological coupled channel and IBM approach does retain 
sufficient sensitivity to be a valid test of the underlying nuclear structure. Additionally, 
the OJ: levels in 74. 76Ge are shown to be beyond the scope of the standard collective 
IBM prescription. 
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