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Abstract 

The horizontal wave number dependence of the hexagonal planform solutions for the Rayleigh­
Benard convection problem, which have a nonzero vertical component of vorticity (type II solutions), 
has been established. Over the range of wave numbers which support cellular convection, com­
parisons between the thermal transport characteristics of these cyclonic type solutions and those 
traditionally obtained from nonlinear investigations of the single horizontal mode equations (type I 
solutions) have been made. From the numerical results obtained, it is found that the cell aspect ratio 
which maximizes the heat flux of type II solutions is larger than that for type I solutions, at equivalent 
parameter values, and that the value of the horizontal wave number giving maximum Nusselt number 
for type II solutions increases with Rayleigh number and decreases with Prandtl number. 

1. Introduction 

Nonlinear theoretical studies on cellular convection have not, as yet, been able 
to satisfactorily resolve one aspect of the problem, namely the determination of the 
preferred horizontal scales for the cellular motions. Many attempts (see e.g. Toomre 
et al. 1977) have been made to match theoretical predictions with experimental 
observations; however, these have only been both qualitatively and quantitatively 
successful when the system is in its marginal state, i.e. just at the onset of convective 
instability, which is governed by the linearized system of equations (Chandrasekhar 
1961; Murphy 1977). This agreement in the linear theory between theoretical and 
experimental cell sizes is to be expected, since the disturbance will have the scale 
of the mode which first becomes unstable, and this scale is uniquely defined by the 
linear theory. The precise relationship between the Rayleigh number R and the 
horizontal scale of the convective cells in terms of the aspect ratio a (defined as the 
ratio of the vertical to horizontal dimensions of the convective cell and known as the 
dimensionless horizontal wave number), when the stress-free boundary conditions 
apply at both the top and the bottom of the layer, is given by the characteristic 
equation 

R = (rc 2 + a2?/a2 • 

When this relationship is plotted in the R-a parameter plane the locus gives the 
marginal stability curve. In turn the form of this curve is modified by both the 
nature of the boundary conditions employed for the vertical velocity W(z), as a 
function of the vertical coordinate z, and the temperature fluctuation F (z), as well 
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as by the imposition of external constraints such as rotation and a magnetic field. 
Specifically, the minimum value of R for stress-free boundaries, the case considered 
throughout this paper, is given by 

R = 657·5 with a = h n c c V 2 , 

and consequently at the marginal state the disturbances will be characterized by the 
wavelength 

A. = 2nd/a = 23 / 2d, 

where d is the layer depth over 0 ~ z ~ 1. For any particular R = Ro and Ro > R e, 

the range of values of a governed by 

}' = (n2+a2?/a2Ro ~ 1 

will support convective motions in the fluid. 
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Fig. 1. Variation of the Nusselt number N with aspect ratio a for R = 106 

and the values of (J' indicated for type I, type II and mean· field solutions with 
maximum NusseIt number, vertical velocity and heIicity. 
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In nonlinear studies of cellular convection, utilizing the mean-field equations 
(Herring 1963), it is found that the range of horizontal wave numbers supporting 
convective motions in a fluid is also determined by the condition y ~ 1 and, further, 
within this range the heat flux as defined by the Nusselt number 

N = 1 + 101 
FW dz 

reaches a single maximum. However, investigations using the single-mode steady 
state equations with hexagonal planform, which incorporate additional nonlinear 
terms in the differential system and the influence of the Prandtl number (J', have 
demonstrated that for any particular R the range of aspect ratios supporting 
convective motions is reduced with decreasing Prandtl number. This contraction 
in the range of a, which cannot be predicted by the linear theory, takes place 
essentially at the high a end of the range, hence eliminating the narrowest cells that 
support convection following the mean-field equations. This dependence of N on 
a and (J' is illustrated in Fig. 1 where C takes the value ../10 for hexagonal cells. From 
the results summarized here, it is evident that the maximum value of N is attained 
at a value of a which varies with (J' and that the maximum value of a for maximum 
N is attained for (J' ;:::; 0·5. 

Convection in Nature exhibits certain preferred length scales. In the Sun, we 
observe two definite scales of convective motion, granules and super granules with 
approximate widths of 2000 and 30000 km respectively; definite cell sizes are also 
observed in meso-scale convection in the Earth's atmosphere, with cell diameters 
typically of 30-60 km and depths ranging from 1 to 2 km. Further, the ordered 
cellular structure observed in laboratory experiments involving fluids with varying 
Prandtl number is well known from the many excellent published photographs. 
Although the theory allows the system's disturbances to grow with a wide spectrum 
of scales, it is clear that only a small number of these is selected. 

Malkus and Veronis (1958) presented a 'relative stability' criterion as a possible 
means to predict which scales of motion would prevail in cellular convection. 
Basically, it specified that the horizontal wave number which gives the highest heat 
flux, meaning that at which convection is most efficient, is the one at which the 
convection will prevail. However, there appears to be no firm physical basis for this 
stability criterion ; further, since it is based on expansions involving a small parameter, 
which is effectively (R/ Rc -1)+, it is only valid near the marginal stability regime 
of the system. Hence, it cannot take into account dynamic instabilities, such as the 
one illustrated by Lopez and Murphy (1983) where boundary layer instabilities led 
to the generation of a component of vertical vorticity and a transition to a new stable 
state. Nevertheless, it is still felt that the fluid will endeavour to transport heat in the 
most efficient manner, but it will also select the most stable mode which is compatible 
with efficiency. Murphy and Lopez (1984) demonstrated the existence of a new state 
which, although being less efficient than the usual state determined by the steady 
single-mode system of equations with hexagonal planform, has a number of 
properties rendering it the more stable of the two, and hence probably the preferred 
state. 

Murphy and Lopez (1984) made a detailed examination of this new state, 
concentrating on the effects of varying the Rayleigh and Prandtl numbers, with a 
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fixed value of the horizontal wave number, on the steady state system. In the present 
study, an investigation of the dependence on the aspect ratio is presented. The 
notation used by Murphy and Lopez (1984) will again be utilized here, and only 
a brief summary of their physical and mathematical formulation will be presented. 
With the new type II solutions it is found that the aspect ratio at which the heat 
flux is maximized is considerably larger than for type I and it increases as the 
Rayleigh number is increased, whereas the maximizing aspect ratio decreases with 
the Prandtl number, but is still larger than the corresponding aspect ratio for type I. 

2. Equations 

As in our previous work (Murphy and Lopez 1984), we investigate the nature of 
finite amplitude instabilities in a horizontal fluid layer of infinite extent, held between 
two isothermal stress-free boundaries separated by a depth d, which is heated from 
below and maintained at a temperature difference of AT. The governing equations 
are the momentum equation 

pau/at +pu. Vu +Vp -pG -jlV2U = 0, (1) 

together with the continuity equation 

ap/at + V . (pu) = 0, (2) 

and the heat equation 

pcy aT/at+pCy u.VT-KV2T= 0, (3) 

where jl, K and Cv are the coefficient of kinematic viscosity, the conductivity and the 
specific heat at constant volume, Gis (0, O,g), g being the acceleration due to gravity, 
and u, T, P and p are the velocity, temperature, pressure and density of the fluid. 
The fluid is taken to be Boussinesq, so that density fluctuations are solely due to 
buoyancy effects, and hence the continuity equation (2) reduces to V • u = 0. 

The steady state single-mode equations, which employ the following expression 
for the (non-dimensionalized) velocity 

{ I ( aJ aJ ) 1 ( aJ aJ ) } u=;;z DW(z)ax+Z(z)ay' a2 DW(z)ay-Z(z)ax' W(z)J, (4) 

are (Murphy and Lopez 1984, equations 11-14) 

(D2_a2)Z = (C/a)(WDZ-ZDW) , (5) 

(D2_a2)2W = Ra2F+(CjCT){W(D2-a2)DW+2DW(D2-a2)W+3ZDZ} , (6) 

(D2_a2)F = WDTo+C(2WDF+FDW), (7) 

D2TO = D(FW), (8) 

where D == d/dz, W is the vertical component of velocity, Z is the vertical component 
of vorticity, To is the mean temperature across the layer, F is the temperature 
fluctuation, a = kd is the aspect ratio with k the horizontal wave number, CT = V/K 

is the Prandtl number which gives the ratio of viscous to thermal diffusivities, and 
R = gIXd 3 AT/Kv is the Rayleigh number with IX the coefficient of volume expansion. 
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From the linearized system (Chandrasekhar 1961) there exist separable solutions 
of the form w(x,y,z) =f(x,y)W(z), where the functionf(x,y) satisfies the two­
dimensional Helmholtz equation 

o2f(x,y) + o2f(x,y) = ~a2f(x,y). 
ox2 oy2 

(9) 

In this study, we employ the particular solution of equation (9) 

f(x,y) = (j-)t{2 cos<t.J3ax) cos(tay) +cos(ay)} , (10) 

corresponding to a hexagonal planform, which is due to Christopherson (1940). Hence 
C, the planform constant defined by 

C = If P(x,y) dXdy/ff P(x,y) dxdy, 
cell cell 

(11) 

takes the numerical value J i- in the case of hexagonal convection cells. 
Two important numbers characterize the flow, the first of these, the Nusselt number, 

is the first integral of equation (8), expressed as 

N = F(z) W(z) -DTo(z) , 

and gives the ratio of heat transferred by the convective system to that which would 
have been transferred if the system were immobilized. The second is the helicity, 
which is only nonzero if the flow has a vertical component of vorticity, and this 
is defined by 

Ho =IJf u.(Vxu)dxdydz, 
cell 

(12) 

which in this case takes the form 

Ho = f: {DW(z)DZ(z) -Z(z)(D2-a2)W(z) +a2W(z)Z(z)} dz. (13) 

Equations (5)-(8) are solved together with stress-free boundary conditions, which 
state that 

W(z) = D2W(Z) = DZ(z) = 0 

on z = 0 and z = 1. The bounding surfaces are also considered to be isothermal, 
so that 

F(z=O) = F(z= 1) = 0 

in conjunction with To(z=O) = 0 and To(z= 1) = -1. 
The method of solution employed is that of truncated Fourier expansions as 

detailed by Murphy and Lopez (1984), where the variables are expanded in either 
a sine or cosine series, depending on the boundary conditions, and then substituted 
into equations (5)-(8) which yields a system of algebraic equations for the coefficients 
of the expansions, with these being solved by utilizing the generalized Newton­
Raphson method. 
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3. Numerical Results 

It has been established by Murphy and Lopez (1984) that when the single-mode 
nonlinear hexagonal system was solved using the stress-free boundary conditions, 
two distinct solutions existed for certain ranges of the Rayleigh and Prandtl numbers. 
It was also concluded that the aspect ratio of the cell would play an important role 
in determining the physical characteristics of the flow associated with the new type II 
solutions. This dependence has now been investigated numerically and the results 
are reported here for the selected parameter values of R = 105 , 3 X 105, 106 and 
3 x 106 together with (J = 1· ° and 0· 1, while the aspect ratio a has been varied over 
the entire range supporting type II solutions, which is a sub range of that defined 
by l' ~ 1. 

On a comparative basis it is evident from Figs 2a and 3a that at all values of 
a for which type II solutions exist, the convective heat flux due to type I is greater 
than for type II solutions, and at the high end of the range of a which supports 
type II solutions, type I and type II coalesce. Physically it is quite reasonable that 
type II solutions do not exist at large a, as this situation corresponds to very narrow 
cells, and since adjoining vortices would be directed in opposite directions, this would 
inhibit their generation. The wave number computed for the coalescence of the 
type I and type II solutions, for any set of parameter values, will be denoted by aj. 

In Figs 2 and 3, the variation of (a) the Nusselt number, (b) the maximum vertical 
velocity in the layer, (c) the helicity and (d) the vertical vorticity at the bottom of 
the layer-the vertical vorticity always being greatest at the bottom boundary and 
decreasing monotonically up through the layer-is shown against the aspect ratio 
for various values of the Rayleigh Rand Prandtl (J numbers for the type II solutions. 
For a range of a values in the vicinity of aj' the variations of the Nusselt number 
and maximum vertical velocity with a for type I solutions are also included (dashed 
curves). The full type I dependence of the Nusselt number and maximum vertical 
velocity was given by Murphy (1980), and has been summarized here in Fig. l. 

When the Prandtl number is large, say (J > 10, only type I solutions were found 
to exist, regardless of the aspect ratio. For (J = 1· 0, it can be noted from Fig. 2 
that type II solutions exist at low values of a, where l' ~ 1, corresponding in 
geometric terms to wider convection cells. At small a, the Nusselt number is now 
independent of the Rayleigh number when (J is fixed (see Fig. 2a), and it is only when 
the type II N-a curve, for a particular value of R, reaches the neighbourhood of aj 

that it 'peels' away from the 'asymptotic' R-independent N-a curve. In the case 
where (J = 1·0, it 'peels' off to lower N values and coalesces with the type I N-a 
curve, at which point the helicity and vertical vorticity vanish. Also, the values of 
a at which the type II N-a curves leave the 'asymptotic' curve and those at which 
the helicity and vertical vorticity reach their maximum appear to coincide for (J = 1·0. 
The numerical results for (J = 1· ° given in Fig. 2a also indicate that the maximum 
value of the Nusselt number is attained, for each of the three values of R considered, 
at values of a which are in the vicinity of the respective aj points. Now assuming 
that the type II solution is the physically preferred solution [the results from Lopez 
and Murphy (1983) strongly suggest this to be the case], and using the hypothesis 
put forward by Malkus and Veronis (1958) that the preferred cell size corresponds 
to the wave number for maximum heat flux then, when (J = 1·0, one would expect 
to observe cells exhibiting the characteristics of essentially type I solutions with very 
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Fig. 4. Variation with aspect ratio a across the fluid layer 0 ~ z ~ 1 for type II solutions of (a) 
the vertical velocity W(z), (b) the temperature fluctuation F(z), (c) the mean temperature profile 
To(z) and (d) the vertical vorticity Z (z). In each case R = 3 X 105 and a = 0·1. 
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little helicity. However, the aspect ratio of these cells is larger than that predicted 
by the single-mode equations which neglect the component of vertical vorticity, 
designating narrow convection cells at maximum heat flux. 

It appears that these (J = 1· 0 solutions are also representative of the solutions 
for all values of (J > 1· 0 up to the maximum value of (J associated with type II 
solutions. The situation, however, changes as one goes to a lower Prandtl number. 
Fig. 3 shows the corresponding variation of (a) Nusselt number, (b) maximum 
vertical velocity, (c) helicity and (d) vertical vorticity at z = 0, against a, for (J = o· 1. 
Now, the Nusselt number for type II solutions is no longer essentially monotonically 
increasing with a to aj , but instead has a well defined maximum, especially for the 
larger values of R considered, well before aj is reached. For small a, N is again 
independent of R when (J = 0·1. However, there now exists a range in a where 
the convective heat flux for a particular value of R is greater than for all larger values 
of R, and it is within this range of a that the maximum Nusselt number for the 
type II solutions occurs. Another interesting feature associated with these values of 
a for N max is that they correspond to the maximum helicity, vertical vorticity and 
vertical velocity for each R considered. It is significant that all four are maximized 
at the same value of a when (J = 0·1. Accordingly, one would then expect this 
to be the preferred a, which is still larger than that corresponding to Nmax for type I 
solutions, but is now associated with a flow possessing both. substantial helicity and 
vertical vorticity. A degree of non-uniqueness is apparent with these nonlinear type 
II solutions. Specifically, at the particular values of a where any two curves in the 
N-a parameter space intersect, the same N value is given for at least two different 
values of R, as illustrated in Fig. 3a. An equivalent situation is evident from Fig. 3b 
which gives the W max variation for type II solutions. 

The effects of varying the aspect ratio on the physical features of the flow 
associated with the type II solutions-as depicted by the velocity, vorticity and 
temperature distributions across the layer-is now considered in detail. In Fig. 4 
the profiles of the functions (a) W(z), (b) F(z), (c) To(z) and (d) Z(z), for 
o < z < 1, for the parameter values R = 3 X 105 and (J = 0·1 have been plotted 
against the aspect ratio in the range a = 0·314--19· 110. As the aspect ratio is reduced 
to its lower limit, the profiles of W, F and To all tend towards the conductive state; 
the Wand F profiles are sine curves of very small amplitude and the To profile is 
a straight line with gradient -1. However, it is surprising to observe that the Z 
profile which, under normal expectations, should be identically zero near the con­
ductive state, has a definite cosine form in amplitude, with the coefficient Lo #- 0 
(see Murphy and Lopez 1984, equation 16b). At the large a end of the range, which 
approximates aj for the transition from separate type I and type II to type I alone, 
the highly nonlinear nature of both these solutions near aj is evident. This is 
manifested most strongly in the W, F and To profiles while, in contrast, the Z profile 
which prototypes the type II solutions rapidly vanishes. We have undoubtedly 
established that at large a type I and II solutions coalesce, whereas there was no 
evidence of any comparable behaviour at Iowa; even at very small a the type I 
and II solutions retained their separate identities. The vertical vorticity at Iowa, 
relative to the vertical velocity, was always nonzero provided it was also nonzero 
at some larger values of a for the same Rand (J values. In general, the Z profile 
given in Fig. 4d shows that near the bottom of the layer the vertical vorticity is 
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quite large, that it gradually diminishes up through the layer, and that within the 
upper section of the fluid layer an abrupt reduction takes place. 

The boundary conditions adopted for W(z) dictate that there be no flow normal 
to the top boundary, and hence it is practical to plot the streamlines of the flow at 
this level and demonstrate the effects of different aspect ratios on the cellular flow 
pattern for type II solutions. These are given in the sequence of Fig. 5 for R = 106 , 

U = 1·0 and for the various values of a indicated. A more complete representation 
of the convective motions is obtained when these flow patterns are viewed in con­
junction with Fig. 6, where the vector projections of the velocity (top) and vorticity 
(middle) together with contours of their strength, given respectively by contours of 
I u I and I V x u I,as well as the corresponding isotherms (bottom), are plotted in 
the x-z plane at the y values indicated for nine values of a. It is not possible to 
draw streamline representations in the x-z plane because there are components of 
velocity normal to it. At Iowa Figs 5a and 6a show that the flow is almost entirely 
horizontal. However, there must be some vertical flow as the vorticity does show some 
horizontal components and the Nusselt number is greater than one. In addition, 
Fig. 5a reveals the tops of some very strong vortices; the large ones which are 
situated at the centre of the individual cells, such as that at (x, y) = (0,0), are directed 
upwards and are surrounded by six weaker ones, located at the vertices of the 
hexagonal cells and directed downwards. The nature of the isotherms at this small 
aspect ratio reflects the small vertical velocity associated with the type II flow, in that 
they are mostly horizontal with an upwelling in the centre of the cell, together with com­
parable downdrafts at the vertices. Overall a near linear temperature gradient persists. 

When the aspect ratio is increased to about a = 3 or 4, the manner in which 
the flow spirals upwards through the vortex in the centre of the hexagonal cell and 
then flows into the downward vortices at the vertices is readily observed from Figs 
5b and 5c and Figs 6c-6e. The isotherms indicate the development of plumes of 
hot fluid rising in the centre and cooler fluid descending at the vertices. 

At a ~ 5 one finds, from Fig. 6j, the flow developing circulation currents near 
the top of the layer, so that in the x-z plane the velocity vector projections are no 
longer all directed in the negative x direction, indicating that the flow is no longer 
purely clockwise inside the cell. The corresponding streamlines in Fig. 5d indicate 
a reduced amount of swirling at the top of the layer, but still show how the flow 
helixes up the central region of the cell and descends down the vortices at the vertices 
of the cell. The isotherms show the development of extended isothermal regions 
in the layer. . 

Fig. 6g demonstrates that for a ~ 7 the circulatory motion has now extended 
considerably deeper into the layer, the vertical vorticity is concentrated essentially 
in the central base of the cell, where the twisting is strongest, and also, as indicated 
by Fig. 5e, the vertical vorticity at the top of the layer is almost zero, with the 
streamlines showing very little twisting at the top of the layer. The isothermal region 
now is also very well defined. At a ~ 10 as in Fig. 6h, which coincides with maximum 
helicity and vertical vorticity at the bottom of the layer, this behaviour is even more 
pronounced; the streamlines plotted in Fig. 5f are now almost radial, indi­
cating that the vertical vorticity is almost zero there. When a ~ 17 as in Fig. 6i, 
the flow is now virtually typical type I (see Fig. 7) for a large aspect ratio at u = 1·0, 
with a thin viscous boundary layer at the top and extended central isothermal region. 
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Fig. 7. Velocity streamlines at the top of layer, when the fluid descends 
at the centre of the cell, for type I solutions; these are independent 
of Rand 0'. 

4. Conclusions 

The results given above now demonstrate that for a given physical situation, 
described by the Rayleigh and Prandtl numbers, there can exist a continuous and 
bounded spectrum of horizontal wave numbers which permit two distinct non-trivial 
solutions of the system of single-mode equations (5)-(8) describing thermal convection 
in a fluid layer. In the present state, the theory offers no clear means for selecting 
one horizontal scale in preference to another, and yet it is clear from observations 
and experimental results that a selection mechanism prevails in Nature. At best, 
one could expect the fluid to transport heat in the most efficient and stable fashion. 

As concluded by Murphy and Lopez (1984), the type II solutions, when they exist, 
are more stable than the corresponding type I solutions. In addition, this study has 
shown that the most efficient mode is not necessarily the most stable, and consequently 
there must be some form of physical compromise in the case of a single horizontal 
mode to determine the ultimate form of the convective state. Traditionally for type I 
solutions, this essentially meant that for given Rayleigh and Prandtl numbers, the 
preferred wave number corresponded to that which gave the largest heat flux as 
determined by the Nusselt number, but now, for a given set of R, (J and a, there 
exists the possibility of two distinct values of N, type I and type II. If this is the case, 
then the value of the horizontal wave number a which gives the largest N for type II 
solutions is expected to be the preferred length scale. 

A time-dependent multi-mode analysis should give a clearer understanding of 
the selection mechanism for the preferred scales of motion, if it exists, as well as 
demonstrating the interaction between the different scales. 
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