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Abstract 

The dispersion functions which appear when the response of a non-degenerate thermal electron 
gas is treated using a relativistic quantum theory are shown to be the same as the functions which 
appear in the non-quantum limit. These functions are evaluated at two speeds V1 and V2 which 
in the non-quantum limit reduce to the phase speed ca/I k I. It is shown that the effects of partial 
degeneracy may be included by expanding about the non-degenerate limit, and the expansion of the 
response functions is given explicitly. It is also pointed out that thermal corrections to the 
completely degenerate limit may be included using a standard technique and the lowest order 
corrections are given. 

1. Introduction 

In an accompanying paper (Hayes and Melrose 1984, present issue p. 615; 
hereafter denoted as HM) we showed that dispersion in a relativistic quantum electron 
gas may be described in terms of three functions S(O)(k), S(1)(k) and S(2)(k). These 
involve integrals over the occupation number nee) which is a sum of contributions 
from electrons and positrons. In HM we evaluated these integrals for completely 
degenerate electrons, and our results reproduced those of Jancovici (1962). In the 
present paper we evaluate these integrals for thermal distributions of electrons and 
positrons. 

A strictly thermal distribution is a Fermi-Dirac distribution, with the chemical 
potentials for electrons and positrons being equal and opposite. In the limit of small 
temperatures, such a distribution reduces to the completely degenerate distribution. 
Our main emphasis in this paper is on the opposite (non-degenerate) limit of a Boltz
mann gas, i.e. nee) oc exp( -eIT). 

In Section 2 we evaluate the s(n)(k) for a Boltzmann gas in terms of the relativistic 
plasma dispersion function T(v,p) of Godfrey et al. (1975) (cf. also Melrose 1982). 
In evaluating the integrals an important intermediate step is the definition of a 
function I (t, p) whose properties are discussed in Appendix 1. In Section 3 it is shown 
that with the known analytic properties of T(v, p) our formulas imply dissipation 
identical to that implied by the formulas for the degenerate gas (cf. Section 4 of 
HM) for both LD and PC, and that the s(n)(k) are real in the dissipation-free region 
/ k /2 < w 2 < 4m2 + / k /2. In Section 4 the non-quantum (but relativistic) limit is 
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derived and the explicit expressions given by Melrose (1982) are reproduced. In 
Section 5 the first order corrections to the non-degenerate and degenerate limits are 
obtained. 

2. Plasma Dispersion Functions for a Boltzmann Gas 

The general distribution function for a thermal electron-positron gas is given by 

nee) = L [exp{(e-,tl)/T} + lr1 , 
{ 

(1) 

where' = 1 for electrons, , = - 1 for positrons and the chemical potentials /l + and 
/l- are determined by the total number density and the ratio of the number densities 
of electrons and positrons. In evaluating the dispersion functions, we may treat the 
electrons and positrons separately and sum over their contributions. 

We now consider only the electron distribution, and write the electron chemical 
potential /l + as /l. A Boltzmann electron gas corresponds to the non-degenerate 
limit /l -+ - 00, and in this limit the expansion for the electron distribution function 

00 

nee) = L (-ly-1exp{r(/l-e)/T} (2) 
r= 1 

converges rapidly. The leading term r = 1 gives the distribution for a Boltzmann gas: 

nee) = Aexp( -e/T) , (3) 

where A = expC/1/T). Substituting (3) into the expressions for the proper number 
density no [given by equation (21) of HM, i.e. HM (21)] and actual number density n, 
where n = 2 f d3 p/(2rr)3 nee), we find 

rr2pnO 

A = m3K1(p) 
rr2pn 

m3K2(p) , 

where p = miT is the inverse temperature in units of (5'93 x 109 K)-1. 

(4) 

We evaluate the functions s(n)(k) given by HM (23) for a Boltzmann gas using 
the same initial steps as in the case of a completely degenerate gas (cf. Appendix 2 
of HM). That is, we partially integrate and then express the integral over e as one 
over t, where elm = (1 + t 2)/(1_ t 2). The resulting expressions contain integrals of 
the form 

J(t, p) = f + 1 dt' exp{ - p(l + t,2)/(1- t,2)} 
-1 t' - t . 

In terms of these integrals, HM (23) with HM (24) reduce to 

4 J(t ) 
S(O)(k) = -A L ~, 

i=1 P 

S(1)(k) = A~ ± 1]/(tj,p) , 
op j=1 P 

02 4 J' 
s(2)(k) = -A-" (tioP) 

~ 2 L... --, 
up i=1 P 

(5) 

(6a) 

(6b) 

(6c) 
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with l1i = 1 for i = 1,2 and l1i = -1 for i = 3,4 and where the Ii are given by 
HM(A26). 

The expressions (6) may be rewritten in terms of the relativistic plasma dispersion 
function 

T(v;,p) = dv' exp{ _p(l_v,Z)-t} f +1 

-1 V'-Vi ' , 

introduced by Godfrey el al. (1975). If we relate Ii and Vi by 

Ii± = {I ±(I-v;)t}/vi' 

then, as shown in Appendix 1, we have 

I(ti+,p)+I(ti-,p) = T(vj,p), 

1 OT(Vi,P) 
I(ti+,p)-I(tj_,p) = - - a ' 

Yi P 

with Yi = (l-v;)-t as usual. 

(7) 

(8) 

(9a) 

(9b) 

We may relate the t1± and ta to the t1 to t4 defined by HM (A26) by equating 
(1 - v;)t to (1 - t[)/O + t;). The relevant identifications are 

t1 = t 1-, t z = tz-, t3 = -t1+, t4 = -Iz+· (10) 

However, hy implication (1- v;)t [= (1- ti~)/(1 + ti~)] is positive in (8), whereas 
(1- t;)/(1 + liZ) has the same sign as the resonant energy. We may correct for this 
by including the relevant sign in the factor Y i in (9b). Let us define 

(fi = (-1)j+1, 

= w/I wi, 

W Z < Iklz; 

W Z > 4mz+lklz; 

(lla) 

(llb) 

in accord with HM (A26). In the intervening region I k IZ < W Z < 4mz + I k IZ, 
(1- vi)t and (1 - v~)t are complex conjugates of each other, and we are free to choose 
(fi = 1. With these identifications the V1,2 are given by 

with 

w Bo ±lklZj2w 
v1,z = WI Bo±1W 

BO = C _;~lkIZ +!'k,zf· 

Henceforth, the Y j are positive by definition. 
The functions (6) now become 

S(O)(k) = A ± .!!!:.. oT(vj,p) 
j=1PYi op , 

S(1)(k) = A ± .!..-(T(Vj,P») 
i=10P p , 

(12) 

(13) 

(14a) 

(14b) 



642 D. B. Melrose and L. M. Hayes 

S(2)(k) = A t ~ ij22(~ 8T(Vi'P») . 
;=1 Yi 8p P 8p 

(14c) 

These may be written in terms of T(Vi, p) and 8T(vi, P)/8Vi using equations (AS) 
and (AlO) of Appendix 1: 

S(O)(k) = ~ f .!.i...(I-vf 8T(v;,p) +2K1(P»), 
P i=1 YiVi P GVi 

(l5a) 

(1) A 2 { 1 1 (l-vf8T(Vi,P) )} S (k)=-L --T(vi,p)+--- +2Kl(P), 
P i= 1 P Vi P 8Vi 

(15b) 

S(2)(k) = ~ f ~{(22 +Yf) (I-vf 8T(Vi,P) +2K1(P») 
P i=1 YiVi P P 8vi 

-2y;v; Kl(P) - ~ viy;{T(vi,p) +2ViKO(P)}}' (15c) 

When these are inserted in the plasma dispersion functions [cf. HM (20)] 

e2ii w2 e2mw2 
rxL(k) = _0_ + __ {1{W2 _I k 12)S(O)(k)- mwSOl(k) + m2S(2)(k)} (16a) 

mlkl2 2nlkl3 4 , 

T __ e2iio(w2+lkI2) _ e2m(w2-lkI2){(_E6+tw2+tlkI2)S(0)(k) 
rx (k) - 2mi k 12 4n2 j k 12 

-mwS(1l(k) + m2S(2)(k)} , (16b) 

they give expressions for the response of a relativistic quantum electron gas in terms 
of the functions T (v, p) which are characteristic of dispersion in a relativistic 
non-quantum gas. 

3. Dissipation and the Dissipation-free Region 

As discussed in HM, Landau damping occurs for w < 1 k I. There is no dissipation 
for 1 k 12 < w 2 < 4m2 + 1 k 12, which we refer to as the dissipation-free region. In 
this region, Eo (cf. equation 13) is imaginary and hence VI and V2 are complex. By 
implication the s(n)(k) should have imaginary parts (which describe dissipation) when 
VI and V2 are real, and the s(n)(k) should be real when VI and V2 are complex. In this 
section we show how these properties are implied by the known properties of T(v,p). 

Godfrey et al. (1975) pointed out that T (v, p) satisfies 

T(v*,p) = T*(v,p), (17) 

for complex v. Moreover, the definition (7) is for 1m V > 0, whereas we are actually 
concerned with its analytic continuation into the lower half of the v-plane. Godfrey 
et al. also gave the alternative form 

T(v,p) = eXP(_PY)ln(I-V) + J+l dv,exp(-PY')-exp(-PY) 
l+v -1 V' -V ' 

(IS) 
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with y = (l_v2)-t and y' = (I-V,2)-t. Hence for v infinitesimally below the real 
axis we have, for I v I < 1, 

1m T(v, p) = 1t exp( - py). (19) 

This result is consistent with the conventional procedure of giving w an infinitesimal 
imaginary part (v --+ v + i 0 here) and using the Pleme1j formula in (7). 

Unlike the non-quantum case where v = w/l k I can be in the range I v I > 1 and 
be real, in our case VI and V2 are either real with I VI,2 I :::;; I, or they are complex 
with V2 = vi. In the cases where VI,2 are real the imaginary parts of s(n)(k) follow 
directly from (15) and (19). It is also instructive to derive these imaginary parts 
from the general formulas HM (27) by inserting the distribution (3) and carrying out 
the integrals. The contribution to LD from i = 2 involves a negative sign in (lla); 
recall that we artificially define Y2 to be positive, and given by 

Yl,2 = 801m ± wl2m, (20) 

and introduce a i to take account of the fact that i = 4 is actually the relevant 
resonance in this case. 

In the dissipation-free region, V2 = vi are off the real axis and the contribution 
(19) is not present. With a i chosen such that Y2 = yi, the s(n)(k) are all real and equal 
to twice the real parts of their values when only the contribution from i = 1 is retained. 

4. Non-quantum Limit and First Quantum Corrections 

The non-quantum limit may be treated in a straightforward manner by inserting 
the distribution (3) into HM (23) and HM (37), and expressing the integrals in terms 
of T (v, p). The same result may also be derived by starting from (15). 

In taking the non-quantum limit we exclude the region w2 > 4m2 + I k 12 where 
the intrinsically quantum effect of pair creation occurs. In the region w < I k I, the 
VI ,2 are real and it is straightforward to expand in powers of h. The natural expansion 
parameter is wl2my, with Y = (1 _w2/1 k 12)-t and v = w/l k I: 

{ wI ( w ) 2 1 ( w ) 3 1 - 2v2 } 
V I,2 = v ± 2my y2v2 - 2my y2v2 =+= 2my 2y2v4 + .... (21) 

The expansion of (15) then involves a Taylor series expansion using (21). After 
re-expressing iJ2T(v,p)liJv2 in terms of T(v,p) and its first derivative using (AI2), 
we obtain 

(0) 2wA (. w2 2 3 4 ~ 
S (k) = - Ko(p) +!vT(v,p) + 2 2 4{P v y T(v,p) +3iJT(v,p)/ov 

mv 48m v y 

+2p2v2y4KO(p)+2py2KI(P)} + ... ), 

2A(2K (p) 1 S(1)Ck) = - __ 1_ - "2{vT(v,p) -(1-v2)iJT(v,p)/iJv} 
v p p 

(22a) 

W 2 2 2 2 ) + _ 2 2 2{(1+v )y T(v,p) +viJT(v,p)/iJv +4vy Ko(p)} + ... , (22b) 
m v y 
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2WA( v 
S(2)(k) = mv Kz(p) + "fi2J2vKo(p)+ T(v,p)} 

W 2 
+._ 2 2 4{2v1'4(3+v2 +p2v21'2)T(v, p) +1'2(3+4v2) aT(v, p)lav 

m v l' 

+ 41'4(1 + 2v2)Ko(p) + l' 6v2(1 + V2)p2 Ko(p) + ~1'2 pK 1 (p) 

+1'2(p2v21'2_2)Kz(p)+t1'2pK 3(P)} + ... ). (22c) 

The leading terms in (22) have been written in a form which, when inserted in equations 
(16) reproduce the known non-quantum results (cf. Melrose 1982). The explicit 
quantum terms in (16) must also be omitted; this involves replacing the coefficients 
of S(°l(k) by zero and m2IkI 2J(w2_lkI2) respectively. 

The result (22) has been derived for w 2 < 1 k 12. For w 2 > 1 k 12, in the dissipation
free region, the parameter Bo becomes imaginary. Nevertheless, an expansion of the 
form (22) applies, and on repeating the derivation of (22) one obtains the same 
final result. As v2 (> 1) increases, the expansion parameter w( v2 - l)t 12m also 
increases, and the expansion ceases to be justified as the threshold for pair production 
is approached. 

Note that there are no quantum corrections of first order in h to the real parts of 
exL(k) and ex T(k), but there are first order corrections to the imaginary parts. 

5. Nearly Non-degenerate and Nearly Degenerate Limits 

Nearly Non-degenerate Limit 

The nearly non-degenerate limit corresponds to the electron chemical potential 
Jllarge and negative, so we may use the expansion (2) for the distribution function, i.e. 

OCJ 

nCB) = L (_1)r-1 Ar exp( - rBIT), (23) 
r= 1 

where A = exp(JlIT). 
The lowest order term in this expansion reduces to a Boltzmann distribution and 

higher order terms involve integrals which are essentially the same as the ones we 
evaluated in Section 2. Substituting (23) into the expressions for the proper and 
actual number densities, and the plasma dispersion functions s(n)(k) given by HM (23), 
we find 

(no, n) = ~3 I: (_1)r-1 exp(rJl1T\K1(rp), K2(rp») , 
n r=l rp 

(24) 

S(O)(k) = I: Ar I !!.!....(1-vf aT(vi,rp) +2K1(rp») , 
r= 1 rp i= 1 1'i Vi rp aVi 

(25a) 

DO Ar 2 { 1 1(1-v?aT(v.rp) )} 
S(l\k)=L-L --T(vi,rp)+---' a': +2K1(rp) , 

r=l rp i=l rp Vi rp Vi 

(25b) 
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S(2)(k) = I Ar f ..!!..!....{( 222 +Yf) (l-Vf OT(Vi,rp) +2K1(rp») 
r=1 rp i=1 YiVi r P rp OVi 

-2yf vf K1(rp) - .3.. viyf{T(v;, rp) +2ViKo(r~)}}. (25c) 
rp 

Nearly Degenerate Limit 

In obtaining the nearly degenerate limit we make use of a standard expansion 
(see e.g. Landau and Lifshitz 1959; §57), which enables one to approximate the 
integral of a differentiable function F(e) multiplied by the electron thermal dis

. tribution function [exp{(e-,u)/T} + 1]-1 by 

tXl deF(e)[exp{(e-,u)/T}+lr 1 = J~ deF(e)+in2T 2F'(,u)+ ... , (26) 

where a prime denotes a derivative with respect to B. This expansion converges 
rapidly for T ~ ,u. 

In the completely degenerate limit we have T = 0 and,u = eF' so the lowest order 
term in (26) reproduces the completely degenerate expressions given by HM (41). 
Subsequent terms give thermal corrections to these expressions. To lowest order 
these thermal corrections are 

bS(O)(k) = n2T 24eF(ai - i k 12) 
3mpF 

( PF+tikl PF-tlkl) 
x 4e;co2 _(co2 -lkl2 -2PFlk1)2 - 4e;co2 _(co2 -lkl2 +2PFlk1)2 ' 

(27a) 

bS(l)(k) = -- InA2F + -n2T2{ 8eF 
6m2 PF 

x ( (eFCO + PF 1 k l)(eF I kl + PFCO) _ (eFco -PFI kl)(eF 1 k 1 + PFW) )} 
4(eFco + PF 1 k 1)2_(C02 -I k 12)2 4(eFco - PF 1 k 1)2_(co2-1 k 12)2 ' 

(27b) 

bs(2)(k) = _n2_T_2{2e 1 A 8e~(co2 -I k 12) 
6m3 F n 1F+-----.:.....:.. 

mpF 

( PF+!lkl PF-tlkl)} 
x 4e;co2 _(co2 _I k 12 -2PF 1 k 1)2 - 4e;co2 _(co2 -I k 12 +2PF I k 1)2 . 

(27c) 

6. Discussion 

A particularly notable feature of the results we derive in this paper is that 
dispersion in a non-degenerate or partially degenerate relativistic electron gas may 
be expressed in terms of functions which have already been introduced in connection 
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with the non-quantum limit. We choose to use the function T(v, p) defined by Godfrey 
et al. (1975); the relation of this function to several others has been discussed by 
Melrose (1982). One would anticipate that known properties of T(v, p) could be used 
to treat a variety of different limiting cases. However, we have encountered 
difficulties in treating two important limiting cases: the long-wavelength and the 
ultra-relativistic limits. We now comment on these two cases. 

In the non-quantum case the long-wavelength limit may be treated by expanding 
T(v,p) in a power series for V-i. The relevant expansion is (Godfrey et al. 1975) 

co 

T(v,p) = L a.(p)jv2s+1, (28) 
s= 1 

with 

ao(p) = -2Kiip), a1(p) = .,..HKo(p)-pK1(p)} +!(3-p2)ao(P) , 

a2(p) = --1oPK1(p)- /oao(p)+fo(27-p2)a1(p) , 

an(P) = [{3(2n-l)2 - p2 }an_l(p)-6(n-l)(2n- 3)an- 2(P) 

+(2n-3)(2n-5)an_3(P)]/2n(2n+l), n > 2. (29) 

Although this expansion requires v = w/l k I > 1, the results obtained using (28) 
seem to be valid in larger parameter regions than expected. 

Now consider the quantum case. In the dissipation-free region, Vi and V2 
are complex conjugates of each other. However, as the threshold for pair 
production (w2 = 4m2 + I k 12) is approached, Vi and V2 approach I k I/w, so the 
condition I V1 ,2 I > 1 in (28) does not necessarily make this a small I k I expansion. 
In the LD and PC regimes we have I V1 ,21 < 1, so use of the expansion (28) is not 
justified. Godfrey et al. also gave an expansion of T (v, p) for I Vl,2 I < 1, but this 
condition is satisfied for all values of I k I, so this does not correspond to a small 
I k I expansion either. Hence, there is no obvious way to use the known properties 
of T(v, p) to obtain the long-wavelength expansion. 

However, we can use the small I k I expansions given by HM (28) and HM (29) 
for any isotropic particle distribution, and in the case of a Boltzmann distribution 
the regions of validity of the expansions are given by HM (34), where the maximum 
particle energy 8m is of the order of the thermal energy. 

In the ultra-relativistic limit p --+ 0, it would seem relatively straightforward to 
evaluate the functions T(v, p) [or /(t, p)] by expanding the exponentials in (7) (or 
equation 5) in a power series. The leading term gives a logarithm. However, the 
next order term contains divergent integrals, and hence this procedure is unacceptable. 
Godfrey et al. (1975) mentioned the difficulty of expanding T(v, p) for p --+ ° and 
did not give any expansion. Tsytovich (1961) presented a specific result in the limit 
of small p and we comment on this result in Appendix 2. 

In view of these difficulties, further progress requires a more detailed examination 
of the properties of the plasma dispersion function T(v, p). 
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Appendix 1 

The function J(t,p), defined by (5), has the following properties: 

with 

given by 

oI(t, p) 
--= 

ot 

oI(t,p) 

op 

J(-t,p) = -J(t,p), 

4t 2 2(1 + t2) 

(l_t 2)2 PI(t,p) -1_t2PD2(p) + (1_t 2)2PD1(p), 

1+/2 . 2t 
-1_t2I(t,p) + I_t2D1(p), 

Dn(P) = J + 1 dt exp{ - p(l + t2)/(1- t2)} 
-1 (t-1Y 

(AI) 

(A2) 

(A3) 

(A4) 

D1(p) = -Ko(p) , DzCp) = K1(P) , D3(p) = -HK2(p)+K1(p)}, 

. ) _oDn(p) () 1 (ODn- 1(P) .. ) 
Dn + 1(p - ---a;;- -Dn p +2 Op -Dn - 1(p)· (A5) 

The function T(v,p) defined by (7), when rewritten in terms of t and t', through 

v = 2t/(l + t 2) , v' = 2t'/(l+t,2), (A6a, b) 

becomes 

Tv --- dt'-- -----
1 + t2 J + 1 1- t,2, 1 l) 

(,p) - 1-t2 -1 1+t,2(t'-t t'-t- 1 

x exp{ - p(l + t,2)/(I-· t,2)}. (A7) 

On differentiating with respect to p and using 

oT(v,p) = ~(l-V2 oT(v,p) +2K1(P)) ' 
op v P OV 

(AS) 

one finds 

, -1 (l-v2}1-(1-v2 0T(V,P) ) 
IU,p)-I(t ,p) = - -v-- -p- OV +2Kl(P)' (A9) 
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On differentiating (A9) with respect to P and using (AS) with 

82T(v,p) = ~{T{v,p)+2vKo{p)}, 
'p2 I-v 

(AlO) 

and (A3) with (AS), one finds 

I{t,p)+I{t-l,p) = T{v,p). (All) 

Now writing t = t+ and t -1 = L, in accord with (S), (All) and (A9) give (9a) 
and (9b) respectively. 

A result we require in Section 4 involves using (Godfrey et al. 1975) 

82~{~,p) = (y2Jv)(1+2v2)8T~v,p) +p2V2y6T{V,p) 

+2vy6p2Ko{p) +2{y4JV)pK1{p) (AI2) 

to derive 

8 {~(1-V2 oT(v, p) +2K1(P»)} = py3{vT{v, p)+ 2Ko{p)}, 
8v yv p 8v 

(A13) 

We also use 

82KO{p)/Op2 = !{Kz(p)+K1{P)} , (A14) 

which follows from standard properties for the modified Bessel functions. 

Appendix 2 

Tsytovich (1961) quoted an expression for the longitudinal part of the dielectric 
tensor in the ultra-relativistic limit. Using the identities 

w2 m2 +81,2{]k]2- w2)/2w w 
(w2-]k]2)(81-82) 8i,2-m2 - 2Ik]' 

(AI5) 

Tsytovich's expression (44) simplifies in our notation to 

rxL{k) = e2piiw:(1_~ f 1nI8i+{8f-m2)tl), 
m]k] 21k] i=1 m 

(A16) 

where the 8 i are given by HM (A27) and ii is the actual number density. We have 
attempted to derive (A16) in three ways, two of which reproduce (A16); the third 
method highlights difficulties with the limit p ~ o. 

Method 1 

We wish to evaluate (16a) with equations (6) in the limit p ~ O. Setting 
Y = (l + t 2)/{1- t 2), the relevant integral (5) becomes 

I{ ) - ( 2 -l)t fOOd' exp{ - py') 
t,p - y 1 Y (y'2_1)t{y'_y)' (AI7) 
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After expanding (1"2_1)-t in powers of 1"-2 we find 

I( 2' (Xl r( l' 
t,p) = (1' _1)2 I _ n+ Z )1'-2n-l 

n~O n!Jn 

f w (1 2n+l 1'k- 1) 
x d1" exp( - p1") -,- - I -,-k ' 

1 l' -1' k~1 l' 
(AI8) 

which may be evaluated in terms of the exponential integral Ei(x) (Gradsteyn and 
Ryzhik 1980; §8.2). 

Hence, we get 

I(t,p) = -exp(-p1') Ei(p1'-p) +Ei(-p) _(1'2_l)t 

1 2n+l k-l 
( 

w (Xl r(n+z) -2n-l" l' 
x exp(-p) S~O (_p)S n~in~S)+1 n!Jn l' k~~2(k-l) ... (k-l-s) 

• (Xl _ k (p1'i- 1 ~ r(n+t) -2n--l) , (AI9) 
+El(-p) k~l( 1) (k-l)!n~i~(tk) n!Jn l' 

where int(tn) is the largest integer less than tn. We now insert (A19) in equations (6) 
and use (4) with Kip) -> 2/ p2 as p -> O. The lowest order terms in an expansion in 
p are then of order p-2 and we retain only terms of this order in approximating the 
transcendental functions. We find, after some lengthy algebra, 

S(O)(k) = 0, (A20a) 

n 2 pii 4 11 + ti 1 S(1)(k') = -, - I '1i ln -- , 
, 2m2 i~l I-ti 

(A20b) 

S(2)(k) = _ n2p: ± (- ~ln 1
1+ ti I-~) 

2m i~ 1 P 1- ti 1- tf ' 
(A20c) 

where we write (1'f -l)t = 2t;(1-- ti2) and 1'i = (1 + tf)/(l- tf). The sums follow from 
HM (A23) and HM (34a): 

4 11+ ti l' 2 Illi +(llf -m2)+1 I '1i In - = 2 I In , 
i~ 1 1- ti i~ 1 m 

(A21a) 

± In 11 + ti 1 = 0, ± 2ti 2 = 21 k i . 
i~1 I-Ii i~1 I-ti m 

(A21b,c) 

Then substituting equations (A20) into (16a) reproduces (A16). 

Method 2 

Alternatively we may evaluate (5) for small p by the following expansion: 

f 1 dt' ( 1 + t,2 ) -1 
I(t,p) = -, - 1 +P-l ,2 + ... 

-It-t -t 

- dt' +0 2 
1 f 1 1- t,2 

- l+p -1 (t'-t)(1-t,2a2) (p), 
(A22) 
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with a2 = (1- p )/(1 + p). The integral is elementary and gives 

. 1 (l-t2 
1 1- t 1 (l-a2)t 11- a I) 2 

l(t,p) = l+p l_a2t2ln l+t + a(l_a2t2)ln l+a +O(p). (A23) 

Now setting I = Ii' the zero and first order terms in an expansion in pare 

( l+t~) 11-t'1 2t· l(ti'p)~ I-P-l ~ In -1-'.+Pl_'2 In l!pl. 
-ti +ti ti 

(A24) 

Then using equations (6) we rederive (A20) and the result (A16) follows. 

Method 3 

This method highlights the formal difficulties we encounter in evaluating I(t,p)/p 
and its derivatives in the limit p --+ O. Bateman (1931), in introducing the functions 
kn(x) which bear his name, noted the generating function 

( 1 +t2) <Xl 

exp - p 1- t2 = n~o k2n(P )t2n . (A25) 

Using (A25), equation (5) gives 

<Xl 

l(t,p) = L k2n(P)12n(t) , (A26a) 
n=O 

with 

f 1 t,2n 
12nCt) = dt' -, - . 

-1 t -t 
(A26b) 

One may evaluate the first and second derivatives of l(t,p)/p as they appear in (6b) 
and (6c), either directly using (A26a) or by using the differential equation (A3) to 
evaluate 0I(t, p)/op and hence obtaining (%p){l(t, p)/p}. The results are not the 
same for the second derivative of I (t, p)/ p, and the reason is that the Bateman 
functions k2nCP) have discontinuous first derivatives and singular second derivatives 
at p = O. The function I (t, p) itself is defined only for positive p and the limit p --+ 0 
is obviously not well defined. 

We are unable to comment on the possible range of validity of Tsytovich's 
approximation (A16). We note that Godfrey et al. (1975) mentioned the difficulties 
with this limit and declined to present approximate expressions for small p. The 
limit p --+ 0 needs to be treated with considerably more care than we have exercised 
here. 
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