Universal Features of Tangent Bifurcation

R. Delbourgo ${ }^{\text {A }}$ and B. G. Kenny ${ }^{\text {B }}$
A Physics Department, University of Tasmania, Hobart, Tas. 7001.
${ }^{\text {B }}$ Physics Department, University of Western Australia, Nedlands, W.A. 6009.

Abstract

We exhibit certain universal characteristics of limit cycles pertaining to one-dimensional maps in the 'chaotic' region beyond the point of accumulation connected with period doubling. Universal, Feigenbaum-type numbers emerge for different sequences, such as triplication. More significantly we have established the existence of different classes of universal functions which satisfy the same renormalization group equations, with the same parameters, as the appropriate accumulation point is reached.

1. Introduction

Considerable progress has been achieved during the last few years in our understanding of turbulent or chaotic behaviour in natural processes (Ruelle and Takens 1971; Ott 1981; Eckmann 1981; Hu 1982). Much of the insight has come from a study of one-dimensional nonlinear mappings, both in qualitative and quantitative terms (May 1976; Collet and Eckmann 1980). Experimental evidence from diverse scientific fields ranging from physics through chemistry to biology has accumulated, which provides substantial support to the scenario based upon the period-doubling route to chaos, not only in the regime before the onset of chaos, but in the regime beyond where turbulence has developed. However, in that chaotic domain there exist certain windows of stability connected with low period cycle structures and in their vicinity one may observe the phenomenon of intermittent periodicity (Manneville and Pomeau 1980; Hirsch et al. 1982; Hu and Rudnick 1982).

Most of the theoretical studies (Feigenbaum 1983) have been focussed on the neighbourhood of the accumulation point of the first pitchfork bifurcation sequence and many of the characteristic universal properties have been thoroughly investigated there. In this paper we wish to highlight a number of universal properties that lie beyond this region and pertain to tangent bifurcations. These properties are partly implied in the paper by Derrida et al. (1979) which described the self-similarity of chaotic bands and cycles in that regime, but they are not widely known. We will exhibit what we believe are several new features associated with windows of stability to the right of the onset of chaos. Apart from demonstrating the occurrence of universal numbers connected with period multiplications in a 'forward' and reverse' sense (see Sections 2-4), we also show that the solution of the corresponding renormalization group equations near the accumulation points is by no means unique,
despite the scaling parameters being the same. This provides the necessary graphic support to McCarthy's (1983) mathematical analysis which also proposed a multiplicity of such solutions.

We have attempted to make this paper self-contained by providing all the numerical and other evidence needed. Sometimes we have not been able to avoid covering familiar ground; still, we believe that the various tables and figures will be of real value to the expert and nonexpert alike by exposing, at a glance, all the numerical details* about the attainment of the various limits for two typical mappings. In Section 2 we summarize the well-known properties of pitchfork sequences, and in Section 3 we show that another 'reverse' period-doubling sequence in the chaotic region is governed by the same universal constants, subject to one important proviso: namely, the occurrence of families of solutions of the (duplication) functional equation. Sections 3 and 4 generalize the work to period triplings; again we demonstrate the existence of many solutions to the (triplication) functional equation by examining the reverse sequences of functions as one approaches the period-tripling accumulation point. We conclude in Section 5 with a number of comments about fractional universal functions by tracking other function sequences.

2. Windows of Stability

It has long been established (Metropolis et al. 1973) that for smooth maps of the real axis onto itself of the type

$$
x \rightarrow F(\lambda, x) ; \quad a \leqslant x \leqslant b,
$$

where F has a unique maximum $x=X$ in the interval $[a, b]$ and λ is constrained to lie in some specified range, there is a universal sequence of limit cycles. This sequence is independent of the detailed form of the mapping F beyond the conditions stated. For example, it applies to the typical maps

$$
\begin{array}{ll}
x \rightarrow \lambda x(1-x), \quad 0<x<1,1<\lambda<4 & \text { with } X=\frac{1}{2} \\
x \rightarrow x \mathrm{e}^{\lambda(1-x)}, \quad 0<x<\infty, 0<\lambda<\infty & \text { with } X=1 / \lambda \tag{B}
\end{array}
$$

(In fact, for these two examples F possesses a quadratic maximum and we will largely be restricting our attention to this class of functions.) In the chaotic region, beyond some critical value of λ (see equations 2 below), there exist infinitely many parameter values characterized by stable limit cycles of finite order; 'windows of stability', as May (1976) has phrased the regions in their vicinity. The order in which these windows succeed one another is independent of the map (even the character of the F maximum) within the constraints. This is the content of structural universality.

As they appear in order, the low period cycles up to 8 are listed in Table 1 for the reader's convenience. There we specify the 'superstable' λ-parameter values for which $x=X$ is one of the fixed points of the cycle for maps A and B. In what follows we shall denote by $\lambda_{2}{ }^{n}$ that value of λ for which the 2^{n} cycle is superstable. As the cycle period increases, so does the multiplicity of cycle structures as has been fully documented by Metropolis et al. (1973). We have followed May (1976) in Table 1 by

[^0]appending a lower case letter to distinguish between different cycles of the same order, although this labelling is not of much value except for the low order cycles: already at period 9 there occur 28 different cycles and not enough letters in the alphabet to accommodate them.

Table 1. Superstable parameter values (up to 8 cycles) for mappings A and B

Cycle	Map A	Map B	Cycle	Map A	Map B
2	$3 \cdot 23606798$	$2 \cdot 25643121$	8 h	$3 \cdot 94421350$	$3 \cdot 48286345$
4a	$3 \cdot 49856170$	$2 \cdot 59351893$	7 e	$3 \cdot 95103216$	$3 \cdot 50943386$
8a	$3 \cdot 55464086$	$2 \cdot 67100426$	4 b	$3 \cdot 96027013$	$3 \cdot 59011302$
6a	$3 \cdot 62755753$	$2 \cdot 77263994$	8 i	$3 \cdot 96093370$	$3 \cdot 60907717$
8b	$3 \cdot 66219250$	$2 \cdot 81656251$	7 f	$3 \cdot 96897686$	$3 \cdot 70138725$
7a	$3 \cdot 70176915$	$2 \cdot 85991838$	8 i	$3 \cdot 97372426$	$3 \cdot 73428947$
5a	$3 \cdot 73891491$	$2 \cdot 91759985$	6 d	$3 \cdot 97776642$	$3 \cdot 77387587$
7b	$3 \cdot 77421419$	$2 \cdot 98514113$	8 k	$3 \cdot 98140895$	$3 \cdot 80592983$
8c	$3 \cdot 80077094$	$3 \cdot 03277660$	7 g	$3 \cdot 98474762$	$3 \cdot 82392739$
3	$3 \cdot 83187406$	$3 \cdot 11670045$	8 l	$3 \cdot 98774550$	$3 \cdot 85101848$
6b	$3 \cdot 84456879$	$3 \cdot 17360416$	5 c	$3 \cdot 99026705$	$3 \cdot 92280940$
8d	$3 \cdot 87054098$	$3 \cdot 25777911$	8 m	$3 \cdot 99251952$	$4 \cdot 02352830$
7c	$3 \cdot 88604588$	$3 \cdot 29362781$	7 h	$3 \cdot 99453781$	$4 \cdot 07007407$
8e	$3 \cdot 89946895$	$3 \cdot 33449413$	8 n	$3 \cdot 99621960$	$4 \cdot 10314846$
5b	$3 \cdot 90570647$	$3 \cdot 36398510$	6 e	$3 \cdot 99758312$	$4 \cdot 18096812$
8f	$3 \cdot 91204662$	$3 \cdot 39276769$	8 o	$3 \cdot 99864115$	$4 \cdot 30421131$
7d	$3 \cdot 92219340$	$3 \cdot 41870460$	7 i	$3 \cdot 99939706$	$4 \cdot 39226269$
8g	$3 \cdot 93047300$	$3 \cdot 43427458$	8 p	$3 \cdot 99984936$	$4 \cdot 57119266$
6c	$3 \cdot 93753644$	$3 \cdot 45595376$			

The first truly chaotic place is the accumulation point of the 2^{n} cycles

$$
\begin{align*}
\lambda_{2} \infty=\lim _{n \rightarrow \infty} \lambda_{2}{ }^{n} & =3 \cdot 569945671, \quad \operatorname{map} A ; \tag{2a}\\
& =2 \cdot 692368853, \quad \operatorname{map} B ; \tag{2b}
\end{align*}
$$

associated with 'pitchfork' or 'forward' bifurcations, and the passage to it from smaller parameter values λ is known as the 'period-doubling route to chaos'. Feigenbaum (1978, 1979) noticed that when the chaotic point was approached from below, the ratios of the relative differences between successive $\lambda_{2}{ }^{n}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{D \lambda_{2}{ }^{n}}{D \lambda_{2}{ }^{n+1}}\left(\equiv \frac{\lambda_{2}{ }^{n}-\lambda_{2}{ }^{n-1}}{\lambda_{2}{ }^{n+1}-\lambda_{2}{ }^{n}}\right)=\delta, \tag{3a}
\end{equation*}
$$

as well as the ratios of the relative spacings,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{D x_{2}{ }^{n}}{D x_{2}{ }^{n+1}}\left(\equiv \frac{x_{2}^{*_{n}}-X}{x_{2}^{*_{n+1}}-X}\right)=-\alpha, \tag{3b}
\end{equation*}
$$

between the central fixed point X and the nearest fixed point

$$
\begin{equation*}
x_{2}^{*_{n}}=[F]^{2^{n-1}}\left(\lambda_{2}^{n}, X\right) \tag{4}
\end{equation*}
$$

tended geometrically to two universal constants δ and α respectively, independently of mapping details (see Table 2). \dagger This is termed metric universality. When the functions possess a quadratic maximum as in (1a) or (1b) the universal constants turn out to be

$$
\begin{equation*}
\delta=4 \cdot 6692 \ldots, \quad \alpha=2 \cdot 5029 \ldots \tag{5}
\end{equation*}
$$

To simplify the notation it proves useful to shift origin and rescale x by a factor a,

$$
x \rightarrow X+a x
$$

whereupon

$$
F(x) \rightarrow f(x)
$$

with an a-dependent normalization $f(0)$. Often a is chosen so that $f(0)=1$. For instance, with our two mappings, we have

$$
\begin{align*}
f(x) & =-1 / 2 a+\lambda\left(1 / 4 a-a x^{2}\right) \tag{A}\\
a & =\frac{1}{4} \lambda-\frac{1}{2} \text { ensures } f(0)=1 \tag{6a}\\
f(x) & =-1 / \lambda a+(1 / \lambda a+x) \mathrm{e}^{\lambda-1-a \lambda x} \tag{B}\\
a & =\left(\mathrm{e}^{\lambda-1}-1\right) / \lambda \text { fixes } f(0)=1 \tag{6b}
\end{align*}
$$

In this way the spacing between the centremost fixed points may be reinterpreted as

$$
D x_{2}^{n}=[f]^{2^{n-1}}\left(\lambda_{2^{n}}, 0\right)
$$

As noted, there exist windows of stability to the right of $\lambda_{2} \infty$ and it is on these windows that we wish to exclusively focus attention. In any given window of period k, it is well known (Feigenbaum 1978, 1979) that if one studies harmonics of period $k \cdot 2^{n}$ which arise by pitchfork bifurcation, the sequences of

$$
\begin{align*}
& D x_{k \cdot 2}^{n}=x_{k \cdot 2^{n}}^{*}-X=[f]^{c \cdot 2^{n-1}}\left(\lambda_{k \cdot 2^{n}}^{n}, 0\right), \tag{7a}\\
& D \lambda_{k \cdot 2}=\lambda_{k \cdot 2^{n}}-\lambda_{k \cdot 2^{n-1}} \tag{7b}
\end{align*}
$$

are again characterized by the same universal constants α and δ (see Table 3):

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{D x_{k \cdot 2} 2^{n}}{D x_{k \cdot 2^{n+1}}}=-\alpha, \quad \lim _{n \rightarrow \infty} \frac{D \lambda_{k \cdot 2^{n}}}{D \lambda_{k \cdot 2^{n+1}}}=\delta . \tag{8a,b}
\end{equation*}
$$

In (7a) the integer c is determined by the precise details of the k-cycle structure. For the 3 -cycle we have $c=2$.

The most noticeable window in the chaotic region, because it is the widest, is connected with the 3-cycle; that cycle is born (May 1976; Collet and Eckmann (1980)
\dagger A few notational points: Feigenbaum $(1978,1979)$ used d_{n} in place of our $D x_{2} n$, and λ_{n} instead of our $\lambda_{2} n$. Our more explicit formulae are necessary later. Also, N-iterates of F, as in (4), will be written as $[F]^{N}$ rather than as F^{N} to avoid subsequent confusion when a host of universal functions are introduced.

Table 2a. Forward bifurcations $1 \cdot 2^{n}$ for mappings A and B

Cycle	Map A		Map B	
	λ	$D x$	λ	$D x$
2	$3 \cdot 236067978$	$-0 \cdot 310016994$	$2 \cdot 256431209$	$-1 \cdot 113644594$
4a	$3 \cdot 498561699$	$0 \cdot 116401770$	$2 \cdot 593518933$	$0 \cdot 200505017$
8a	$3 \cdot 554640863$	$-0 \cdot 045975211$	$2 \cdot 671004264$	$-0 \cdot 107148265$
16a	$3 \cdot 566667380$	$0 \cdot 018326176$	$2 \cdot 687782643$	$0 \cdot 037739867$
32a	$3 \cdot 569243532$	$-0 \cdot 007318431$	$2 \cdot 691386189$	$-0 \cdot 015822652$
64a	$3 \cdot 569795294$	$0 \cdot 002923675$	$2 \cdot 692158376$	$0 \cdot 006197856$
128a	$3 \cdot 569913465$	$-0 \cdot 001168087$	$2 \cdot 692323776$	$-0 \cdot 002495613$
256a	$3 \cdot 569938774$	$0 \cdot 000466690$	$2 \cdot 692359200$	$0 \cdot 000993953$
512a	$3 \cdot 569944195$	$-0 \cdot 000186459$	$2 \cdot 69236787$	$-0 \cdot 000397622$

Table 2b. Ratios of successive $D \lambda$ and $D x$ for mappings A and B

Cycle	Map A		Map B	
	$R \lambda$	$R x$	$R \lambda$	$R x$
4 a	4.681	-2.663	4.350	-5.554
8a	4.663	-2.532	4.618	-1.871
16a	4.668	-2.509	4.656	-2.839
32a	4.669	-2.504	4.667	-2.385
64a	4.669	-2.503	4.669	-2.553
128a	4.669	-2.503	4.669	-2.484
256a	4.669	-2.503	4.669	-2.511
512a	-	-2.503	-	-2.500

Table 3a. Forward bifurcations $3 \cdot 2^{n}$ for mappings A and B

Cycle	Map A		Map B	
	λ	$D x$	λ	$D x$
3	$3 \cdot 831874055$	$-0 \cdot 457968514$	$3 \cdot 116700451$	$-2 \cdot 343057612$
6b	$3 \cdot 844568792$	$0 \cdot 027235706$	$3 \cdot 173604163$	$0 \cdot 081983089$
12b	$3 \cdot 848344657$	$-0 \cdot 011051342$	$3 \cdot 190739426$	$-0 \cdot 037885476$
24b	$3 \cdot 849198054$	$0 \cdot 004430880$	$3 \cdot 194602580$	$0 \cdot 014375982$
48b	$3 \cdot 849383110$	$-0 \cdot 001771810$	$3 \cdot 195440367$	$-0 \cdot 005874092$
96b	$3 \cdot 849422845$	$0 \cdot 000708039$	$3 \cdot 195620245$	$0 \cdot 002326936$
192b	$3 \cdot 849431360$	$-0 \cdot 000282899$	$3 \cdot 195658791$	$-0 \cdot 000932966$
384b	$3 \cdot 849433184$	$0 \cdot 000113019$	$3 \cdot 195667047$	$0 \cdot 000372242$
768b	$3 \cdot 849433575$	$-0 \cdot 000045159$	$3 \cdot 195668815$	$-0 \cdot 000148815$

Table 3b. Ratios of successive $D \lambda$ and $D x$ for mappings A and B

Cycle	Map A		Map B	
	$R \lambda$	$R x$	$R \lambda$	$R x$
6b	3.362	-16.815	3.321	-28.580
12b	4.419	-2.464	4.436	-2.164
24b	4.617	-2.494	4.611	-2.635
48b	4.657	-2.501	4.658	-2.447
96b	4.667	-2.502	4.667	-2.524
192b	4.669	-2.503	4.669	-2.494
384b	4.669	-2.503	4.669	-2.506
768b	-	-2.503	-	-2.501

Fig. 1. Sequence of functions tending to
(a) $g_{0}(x)$,
(b) $g_{1}(x)$,
(c) $g(x)$,
with the integers denoting the orders of iteration.

Fig. 2. Forward sequence of functions tending to (scaled)
(a) $g_{0}(x)$,
(b) $g_{1}(x)$,
(c) $g(x)$,
for iterations $3 \cdot 2^{n}$.

Fig. 3. The iterate
(a) $[F]^{3}$,
(b) $[F]^{6}$,
(c) $[F]^{12}$,
evaluated at $\lambda_{3}, \lambda_{2 \cdot 3}$ and $\lambda_{2^{2} \cdot 3}$ respectively.

Fig. 4. Iterate $(a)[F]^{4},(b)[F]^{8},(c)[F]^{5}$ and (d) $[F]^{10}$ evaluated at $\lambda_{4}, \lambda_{2.4}, \lambda_{5 \mathrm{a}}$ and $\lambda_{2.5 \mathrm{a}}$ respectively.
by 'tangent bifurcation' in the region to the right of $\lambda_{2} \infty$. [Just below this window there is an almost stable triplication pattern giving rise to the 'intermittency' phenomenon (see Manneville and Pomeau 1980; Hirsch et al. 1982; Hu and Rudnick 1982).] For this particular case we shall term the tangent bifurcation a 'trifurcation', recognizing it as a mathematical misdemeanour-thus period tripling $N \rightarrow 3 N$ does not happen as λ varies continuously. Likewise, there are possibilities of fourfold, fivefold period multiplications as we keep on increasing λ.

Our investigations are primarily concerned with the sequences $k \cdot 2^{n}$ and $k \cdot 3^{n}$ in the forward and backward sense (see Section 3), and we have discovered that for such period doublings and triplings properties analogous to Feigenbaum's metric universality prevail. Specifically we have studied these sequences for the two popular maps A and B. It should be clear that any conclusions we draw from both mappings almost certainly apply to other maps with the same general characteristics; namely, one-dimensional non-invertible maps with a unique quadratic maximum.

By comparing the shapes of iterated maps $[f]^{2 n}$ in the central region, using computer techniques, Feigenbaum $(1978,1979)$ was able to demonstrate the existence of a universal function

$$
g_{1}(x)=\lim _{n \rightarrow \infty}(-\alpha)^{n}[f]^{2^{n}}\left(\lambda_{2^{n+1}}, x /(-\alpha)^{n}\right)
$$

He also showed that one could define a whole sequence of functions

$$
\begin{equation*}
g_{r}(x)=\lim _{n \rightarrow \infty}(-\alpha)^{n}[f]^{2^{n}}\left(\lambda_{2^{n+r}}, x /(-\alpha)^{n}\right) \tag{9}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
g_{r-1}(x)=-\alpha g_{r}\left(g_{r}(-x / \alpha)\right) . \tag{10}
\end{equation*}
$$

Feigenbaum then conjectured that this sequence of functions converged to a unique limit

$$
\begin{equation*}
g(x)=\lim _{r \rightarrow \infty} g_{r}(x)=\lim _{n \rightarrow \infty}(-\alpha)^{n}[f]^{2^{n}}\left(\lambda_{2} \infty, x /(-\alpha)^{n}\right) \tag{11}
\end{equation*}
$$

which satisfied the fixed point Feigenbaum-Cvitanovic relation

$$
\begin{equation*}
g(x)=-\alpha g(g(-x / \alpha)) . \tag{12}
\end{equation*}
$$

[The existence of g in certain cases was in fact proved by Collet et al. (1980) and Lanford (1982), who also proved existence and uniqueness for the mappings $x \rightarrow$ $1-\mu x^{1+\varepsilon}$, with ε small.] The scale of g is arbitrary and is set through the normalization condition $g(0)=1$. In an effort to make the present paper self-contained, as well as for later comparison with other universal functions, we give g_{0}, g_{1} and g in Fig. 1.

Associated with the cycles k born by tangent bifurcation is a cascade of harmonics $k \cdot 2^{n}$ emerging by subsequent period doubling (forward bifurcation). One may again abstract the same universal function $g_{1}(x)$-and indeed the entire sequence $g_{r}(x)$ culminating in $g(x)$-by approaching the accumulation point $\lambda_{k \cdot 2} \infty$. This is shown

Table 4a. Backward bifurcations $2^{\boldsymbol{n}} \cdot 3$ for mappings A and B

Cycle	Map A		Map B	
	λ	$D x$	λ	$D x$
3	$3 \cdot 831874056$	$0 \cdot 345710203$	$3 \cdot 116700451$	$-2 \cdot 343057611$
6a	$3 \cdot 627557530$	$-0 \cdot 140860795$	$2 \cdot 772639937$	$0 \cdot 266331112$
12a	$3 \cdot 582229836$	$0 \cdot 056600411$	$2 \cdot 709628054$	$-0 \cdot 189584964$
24a	$3 \cdot 572577293$	$-0 \cdot 022642507$	$2 \cdot 696053119$	$0 \cdot 061965036$
48a	$3 \cdot 570509238$	$0 \cdot 009049220$	$2 \cdot 693157769$	$-0 \cdot 026946032$
96a	$3 \cdot 570066370$	$-0 \cdot 003615723$	$2 \cdot 692537798$	$0 \cdot 010418610$
192a	$3 \cdot 569971522$	$0 \cdot 001444641$	$2 \cdot 692405037$	$-0 \cdot 004218240$
384a	$3 \cdot 569951208$	$-0 \cdot 000577183$	$2 \cdot 692376604$	$0 \cdot 001676493$
768a	$3 \cdot 569946858$	$0 \cdot 000230607$	$2 \cdot 692370514$	$-0 \cdot 000671228$

Table 4b. Ratios of successive $D \lambda$ and $D x$ for mappings A and B

Cycle	Map A		Map B	
	$R \lambda$	$R x$	$R \lambda$	$R x$
6a	4.508	-2.454	5.460	-8.798
12a	4.696	-2.498	4.642	-1.405
24a	4.667	-2.500	4.689	-3.060
48 a	4.700	-2.502	4.670	-2.300
96a	4.669	-2.503	4.670	-2.586
192a	4.669	-2.503	4.669	-2.470
384a	4.669	-2.503	4.669	-2.516
768a	-	-2.503	-	-2.498

Table 5. Backward bifurcations for mapping A

Cycle	λ	$D x$	$R \lambda$	$R x$
		$(a) 2^{n} \cdot 4$		
4	$3 \cdot 960270127$	$0 \cdot 351775477$	-	-
8 b	$3 \cdot 662192504$	$-0 \cdot 146589904$	$4 \cdot 095$	$-2 \cdot 400$
16 b	$3 \cdot 589399844$	$0 \cdot 059085959$	$4 \cdot 763$	$-2 \cdot 481$
32b	$3 \cdot 574118089$	$-0 \cdot 023662325$	$4 \cdot 660$	$-2 \cdot 497$
64 b	$3 \cdot 570839054$	$0 \cdot 009458540$	-	$-2 \cdot 502$
		$(b) 2^{n} \cdot 5 \mathrm{a}$		
5 a	$3 \cdot 738914930$	$-0 \cdot 158342067$	-	-
10	$3 \cdot 605385838$	$0 \cdot 064326385$	$4 \cdot 797$	$-2 \cdot 462$
20	$3 \cdot 577549811$	$-0 \cdot 025819307$	$4 \cdot 658$	$-2 \cdot 491$
40	$3 \cdot 571573647$	$0 \cdot 010325161$	$4 \cdot 671$	$-2 \cdot 501$
80	$3 \cdot 570294339$	$-0 \cdot 004126144$	-	$-2 \cdot 502$
		$(c) 2^{n} \cdot 5 \mathrm{~b}$		
5 b	$3 \cdot 905706470$	$0 \cdot 180442003$	-	-
10	$3 \cdot 647048802$	$-0 \cdot 076515812$	$4 \cdot 257$	$-2 \cdot 358$
20	$3 \cdot 586281315$	$0 \cdot 030775652$	$4 \cdot 735$	$-2 \cdot 486$
40	$3 \cdot 573447578$	$-0 \cdot 012325970$	$4 \cdot 663$	$-2 \cdot 497$
80	$3 \cdot 570695539$	$0 \cdot 004926708$	-	$-2 \cdot 502$
		$(d) 2^{n} \cdot 5 \mathrm{c}$		
5 c	$3 \cdot 990267047$	$0 \cdot 353121938$	-	-
10	$3 \cdot 673008246$	$-0 \cdot 148321143$	$3 \cdot 894$	$-2 \cdot 381$
20	$3 \cdot 591544528$	$0 \cdot 059811996$	$4 \cdot 802$	$-2 \cdot 480$
40	$3 \cdot 574581219$	$-0 \cdot 023962174$	$4 \cdot 656$	$-2 \cdot 496$
80	$3 \cdot 570938128$	$0 \cdot 009578873$	-	$-2 \cdot 502$

in Fig. 2 for the particular case of $3 \cdot 2^{n}$ cycles and is fairly well understood; thus (the existence of g for $\varepsilon=1$ has been proved by Campanino and Epstein 1981)

$$
g_{1}(\mu x)=\mu \lim _{n \rightarrow \infty}(-\alpha)^{n}[f]^{k \cdot 2^{n}}\left(\lambda_{k \cdot 2^{n+1}}, x /(-\alpha)^{n}\right)
$$

with the magnification μ being the only k-dependent ingredient. An appreciation of the scale μ may be gained by comparing Figs 1 and 2 .

3. Reverse Bifurcations

In this paper we wish to draw attention to quite distinct limiting sequences in which 2^{n} multiples of the k cycle occur to the left of the basic k cycle, i.e. they are not harmonics of that cycle but are instead born by tangent bifurcation. For any $k>2$ these sequences also approach $\lambda_{2}{ }^{\infty}$ but in the reverse order

$$
2^{\infty} \cdot k \leftarrow \ldots \leftarrow 4 \cdot k \leftarrow 2 \cdot k \leftarrow k
$$

We call this the 'reverse' or 'backward' bifurcation sequence (Feigenbaum 1980; Kopylov and Sivac 1982). Tables 4 and 5 provide the superstable λ values for various low order cycles, mainly for map A. If one examines the $2^{n} \cdot 3$ order iterates of F (Fig. 3) one can pick out a copy, reduced in scale, of the basic 3 cycle in the vicinity of X. Fig. 4 shows that a similar pattern prevails for other cycles. Moreover one can establish numerically, beyond reasonable doubt (see Tables 4 and 5), that for this backward sequence the usual Feigenbaum constants arise:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} R \lambda_{2^{n}} \cdot k\left(\equiv D \lambda_{2}^{n} \cdot k / D \lambda_{2^{n+1} \cdot k}\right)=\delta=4 \cdot 6692 \ldots \tag{13a}\\
& \lim _{n \rightarrow \infty} R x_{2}^{n} \cdot k\left(\equiv D x_{2}^{n-1} \cdot k / D x_{2}{ }^{n} \cdot k\right)=-\alpha=-2 \cdot 5029 \ldots \tag{13b}
\end{align*}
$$

This suggests that a universal function of the type g_{0} or g_{1} may exist for each of the 'reverse bifurcation' sequences connected with a particular k cycle. Indeed, we see strong indications of this in Figs 3 and 4 by observing that a copy of the fundamental $[f]^{k}$ occurs in the vicinity of the central fixed point for the various iterates as the period doubles up in the reverse order.

By appropriate computational procedures (enlarging and inverting the central region at each stage) we have established that the limiting function

$$
g_{0}^{k}(x)=\lim _{n \rightarrow \infty}(-\alpha)^{n}[f]^{2^{n} \cdot k}\left(\lambda_{2^{n} \cdot k}, x j(-\alpha)^{n}\right)
$$

exists and is distinct for every cycle. This is a totally new phenomenon and is quite different from what happens when the pitchfork sequence is studied.* It is in fact possible to define a whole sequence of functions

$$
\begin{equation*}
g_{r}^{k}(x)=\lim _{r \rightarrow \infty}(-\alpha)^{n}[f]^{2^{n} \cdot k}\left(\hat{\lambda}_{2}^{n+r} \cdot k, x j(-\alpha)^{n}\right) \tag{14}
\end{equation*}
$$

[^1]

Fig. 5. Reverse sequence of functions tending to
(a) g_{0}^{3},
(b) g_{1}^{3},
(c) g^{3},
for $2^{n} \cdot 3$ iterates. In (a) the fixed points nearest the origin occur where the $y= \pm x$ lines intersect the extrema.

Fig. 6. Reverse sequence of functions tending to (a) g_{0}^{4}, (b) $g_{0}^{5 \mathrm{a}}$, (c) $g_{0}^{5 \mathrm{~b}}$ and (d) $g_{0}^{5 \mathrm{c}}$ for $2^{n} \cdot 4,2^{n} \cdot 5 \mathrm{a}$, $2^{n} \cdot 5 \mathrm{~b}$ and $2^{n} \cdot 5 \mathrm{c}$ iterates respectively. The fixed points are displayed similarly to Fig. $5 a$.
such that

$$
\begin{equation*}
g_{r-1}^{k}(x)=-\alpha g_{r}^{k}\left(g_{r}^{k}(-x / \alpha)\right) \tag{15}
\end{equation*}
$$

Figs $5 a$ and $5 b$ evidently point to convergence toward a limit function

$$
g^{k}(x)=\lim _{r \rightarrow \infty} g_{r}^{k}(x)
$$

and it is clear that $g^{k}(x)$ obeys the standard fixed point equation

$$
\begin{equation*}
g^{k}(x)=-\alpha g^{k}\left(g^{k}(-x / \alpha)\right) \tag{16}
\end{equation*}
$$

where again we have the freedom to set the scale through $g^{k}(0)=1$.
Thus it appears that we have an infinite class of universal functions (McCarthy 1983) satisfying the standard fixed point equation. In order to distinguish between these functions we may utilize the characteristic structures of the universal functions g_{0}^{k}. It is obvious that even when k is specified, there is a variety of functions associated with the classification of Metropolis et al. (1973). This is illustrated by the four distinct universal functions corresponding to the $4,5 \mathrm{a}, 5 \mathrm{~b}$ and 5 c cycles as shown in Figs $6 a-6 d$.

Fig. 7. Third iterate of the standard Feigenbaum universal function $g(x)$. (Compare this with Fig. 5c.)

Note, however, that from equation (14), if we go to the limit $r \rightarrow \infty$, then an alternative definition is

$$
\begin{equation*}
g^{k}(x)=\lim _{n \rightarrow \infty}(-\alpha)^{n}[f]^{2^{n} \cdot k}\left(\lambda_{2} \infty, x /(-\alpha)^{n}\right) \tag{17}
\end{equation*}
$$

assuming as always that the orders of limits can be reliably interchanged. This indicates that the different function sequences for fixed k all converge to the same limit g^{k} which depends only on the order k of the cycle and not on its structure! Further, since the standard universal function is defined by equation (11), we infer that

$$
\begin{equation*}
g^{k}(\mu x)=\mu[g]^{k}(x) \tag{18}
\end{equation*}
$$

(This receives numerical support in Fig. 7 for the case $k=3$.) Certainly when $g(g(x))=-g(-\alpha x) / \alpha$, it is straightforward to verify that

$$
\begin{equation*}
[g]^{k}[g]^{k}=-[g]^{k}(-\alpha x) / \alpha . \tag{19}
\end{equation*}
$$

It is worth observing, though, that for every k we are allowed independently to set the scale* by $g^{k}(0)=1$, which means that $g^{k}(x)$ cannot simply be the k th iterate of the standard function $g(x)$ scaled to $g(0)=1$; indeed, (18) is only correct up to a scaling μ. In any event, each of these g^{k} satisfies the familiar fixed point relation (16), indicating that an infinite number of solutions to that renormalization group equation exists.

4. Triplications

We now turn to a systematic study of cycle sequences of the type $k \cdot 3^{n}$, where the basic cycle has period k. We call these triplications of the k cycle and they correspond to a particular type of tangent bifurcation. First, we shall distinguish between two distinct sequences which we denote by $k \cdot 3^{n}$ and $3^{n} \cdot k$ associated with forward and backward (or reverse) triplications. The forward sequence arises to the right of every k cycle and converges to an accumulation point which depends on k and its cycle structure-in many ways it is analogous to the pitchfork sequence $k \cdot 2^{n}$. (As a special instance the 3 cycle spawns the sequence 3^{n}.) Such cycles may be identified by studying the three bands associated with the chaotic region to the right of the pitchfork accumulation point $\lambda_{3 \cdot 2}$. As far as $k=3$ is concerned, there is the distinct point of accumulation

$$
\begin{aligned}
\lambda_{3^{\infty}} & =3 \cdot 854077963591, & & \text { map A; } \\
& =3 \cdot 216164774983, & & \text { map B. }
\end{aligned}
$$

Fig. 8. Repeating triplication pattern as $\lambda_{3^{\infty}}$ is approached (see text). The density of points along the vertical axis thins out since the total number of iterations is fixed as λ varies along the horizontal axis.

The backward or reverse sequence, which we have denoted by $3^{n} \cdot k$, is characterized by the fact that it always converges to $\lambda_{3 \infty}$, irrespective of k; indeed, this sequence is very similar to the reverse bifurcations discussed in the previous section. However, whether these triplings converge to $\lambda_{3 \infty}$ from the left or right depends upon whether or not the basic k cycle lies to the left or right of the 3 cycle. Thus 3^{n}. 5 a converges from the left-so the terminology 'backward' is rather a misnomer for it- whereas $3^{n} \cdot 5 \mathrm{~b}$ and $3^{n} \cdot 5 \mathrm{c}$ converge from the right. This triplication pattern is exhibited in Fig. 8 for $x\left(\lambda-\lambda_{3}\right)^{-\ln A / \ln A}$ against $\log \left(\lambda-\lambda_{3 \infty}\right)$ with the constants Δ and A in (21a) and (21b) already anticipated.

* One must be careful not to confuse $g^{k}(0)$ with the related quantity $D x_{2^{n \cdot k}}=[f]^{2^{n \cdot c}}\left(\lambda_{2^{n \cdot k}}, 0\right)$, where C is the number of iterations needed to bring x to X for $n=0$.

Table 6a. Forward trifurcations $1 \cdot 3^{n}$ for mappings A and B

Cycle	Map A		$D x$	Map B	
	λ	λ	$D x$		
3	$3 \cdot 831874055283$	$0 \cdot 3457102029$	$3 \cdot 116700451066$	$-2 \cdot 343405761$	
9	$3 \cdot 853675276839$	$-0 \cdot 0356580611$	$3 \cdot 214601114697$	$0 \cdot 129432449$	
27	$3 \cdot 854070677510$	$0 \cdot 0038524177$	$3 \cdot 216136205149$	$-0 \cdot 015927717$	
81	$3 \cdot 854077831706$	$-0 \cdot 0004151813$	$3 \cdot 216164258172$	$0 \cdot 001690728$	
243	$3 \cdot 854077961203$	$0 \cdot 0000447527$	$3 \cdot 216164765631$	$-0 \cdot 000182565$	

Table $6 b$. Ratios of successive $D \lambda$ and $D x$ for mappings A and B

Cycle	Map A		Map B	
	$R \lambda$	$R x$	$R \lambda$	$R x$
9	$55 \cdot 13$	-9.695	$63 \cdot 78$	$-18 \cdot 105$
27	55.27	$-9 \cdot 256$	54.72	$-8 \cdot 126$
81	55.25	-9.279	55.28	-9.421
243	-	-9.277	-	-9.261

Table 7. Forward trifurcations for mapping A

Cycle	λ	$D x$	$R \lambda$	$R x$
		$(a) 4 \cdot 3^{n}$		
4	$3 \cdot 9602701272212$	$0 \cdot 3517754767$	-	-
12	$3 \cdot 9614314419566$	$-0 \cdot 0084164470$	$56 \cdot 00$	$-41 \cdot 796$
36	$3 \cdot 9614521815369$	$0 \cdot 0008811366$	$54 \cdot 99$	$-9 \cdot 552$
108	$3 \cdot 9614525586728$	$-0 \cdot 0000951532$	$55 \cdot 26$	$-9 \cdot 260$
324	$3 \cdot 9614525654981$	$0 \cdot 0000102551$	-	$-9 \cdot 279$
		$(b) 5 a \cdot 3^{n}$		
5 a	$3 \cdot 738914912970$	$-0 \cdot 1583420673$	-	-
15	$3 \cdot 744016873483$	$0 \cdot 0232593167$	$58 \cdot 05$	$-6 \cdot 808$
45	$3 \cdot 744104768920$	$-0 \cdot 0024341389$	$54 \cdot 93$	$-9 \cdot 556$
135	$3 \cdot 744106369092$	$0 \cdot 0002628481$	$55 \cdot 27$	$-9 \cdot 261$
405	$3 \cdot 744106398046$	$-0 \cdot 0000283256$	-	$-9 \cdot 280$
		$(c) 5 b \cdot 3^{n}$		
5 b	$3 \cdot 905706469831$	$0 \cdot 1804420034$	-	-
15	$3 \cdot 906641328957$	$-0 \cdot 0097690137$	$56 \cdot 51$	$-18 \cdot 471$
45	$3 \cdot 906657872652$	$0 \cdot 0010263518$	$54 \cdot 96$	$-9 \cdot 518$
135	$3 \cdot 906658173687$	$-0 \cdot 0001108003$	$55 \cdot 26$	$-9 \cdot 263$
405	$3 \cdot 906658179135$	$0 \cdot 0000119443$	-	$-9 \cdot 276$
		$(d) 5 c \cdot 3^{n}$		
5 c	$3 \cdot 990267046974$	$0 \cdot 3531219383$	-	-
15	$3 \cdot 990335169048$	$-0 \cdot 0020549297$	$56 \cdot 45$	$-17 \cdot 184$
45	$3 \cdot 990336375733$	$0 \cdot 0002136359$	$54 \cdot 94$	$-9 \cdot 619$
135	$3 \cdot 990336397698$	$-0 \cdot 0000230798$	$55 \cdot 19$	$-9 \cdot 256$
405	$3 \cdot 990336398096$	$0 \cdot 0000024874$	-	$-9 \cdot 279$

In Tables 6-8 the numerical results for both trifurcating sequences are presented, chiefly for map A, in a similar way to the tabulation for bifurcations. For the forward sequence we define the relevant superstable values by $\lambda_{k \cdot 3^{n}}$ and for the backward sequence by $\lambda_{3^{n} \cdot k}$. As pointed out, we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \lambda_{k \cdot 3^{n}} \equiv \lambda_{k \cdot 3^{\infty}} \neq \lambda_{3^{\infty}}, \quad \text { except for } k=3 \tag{20a}\\
& \lim _{n \rightarrow \infty} \lambda_{3^{n} \cdot k}=\lambda_{3^{\infty}} . \tag{20b}
\end{align*}
$$

Table 8. Backward trifurcations for mapping \mathbf{A}

Cycle	λ	$D x$	$R \lambda$	$R x$
		$(a) 3^{n} \cdot 4$		
4	$3 \cdot 960270127221$	$0 \cdot 3517754767$	-	-
12	$3 \cdot 855993729675$	$-0 \cdot 0374971999$	$55 \cdot 43$	$-9 \cdot 381$
36	$3 \cdot 854112685005$	$0 \cdot 0040525443$	$55 \cdot 17$	$-9 \cdot 253$
108	$3 \cdot 854078592024$	$-0 \cdot 0004367589$	$55 \cdot 25$	$-9 \cdot 279$
324	$3 \cdot 854077974966$	$0 \cdot 0000470753$	-	$-9 \cdot 278$
		$(b) 3^{n} \cdot 5 \mathrm{a}$		
5 a	$3 \cdot 738914912971$	$0 \cdot 158342067319$		
15	$3 \cdot 852099410353$	$-0 \cdot 015978208764$	$58 \cdot 21$	$-9 \cdot 910$
45	$3 \cdot 854042076559$	$0 \cdot 001725644420$	$55 \cdot 13$	$-9 \cdot 259$
135	$3 \cdot 854077314123$	$-0 \cdot 000185974316$	$55 \cdot 26$	$-9 \cdot 279$
405	$3 \cdot 854077951835$	$0 \cdot 000020045340$	$55 \cdot 25$	$-9 \cdot 278$
		$(c) 3^{n} \cdot 5 b$		
5 b	$3 \cdot 905706469831$	$0 \cdot 1804420034$	-	-
15	$3 \cdot 854991046674$	$-0 \cdot 0190731288$	$56 \cdot 57$	$-9 \cdot 461$
45	$3 \cdot 854094524136$	$0 \cdot 0020604249$	$55 \cdot 13$	$-9 \cdot 257$
135	$3 \cdot 854078263307$	$-0 \cdot 0002220630$	$55 \cdot 25$	$-9 \cdot 279$
405	$3 \cdot 854077969016$	$0 \cdot 0000239337$	-	$-9 \cdot 278$
		$(d) 3^{n} \cdot 5 \mathrm{c}$		
5 c	$3 \cdot 990267046974$	$0 \cdot 3531219383$	-	-
15	$3 \cdot 856587276680$	$-0 \cdot 0379534384$	$54 \cdot 26$	$-9 \cdot 304$
45	$3 \cdot 854123393250$	$0 \cdot 0041020168$	$55 \cdot 23$	$-9 \cdot 252$
135	$3 \cdot 854078785902$	$-0 \cdot 0004420946$	$55 \cdot 25$	$-9 \cdot 279$
405	$3 \cdot 854077978475$	$0 \cdot 0000476519$	-	$-9 \cdot 278$

With both sequences we find that there is a scaling law determining the relative window sizes, analogous to (8b),

$$
\begin{align*}
& \lim _{n \rightarrow \infty} R \lambda_{k \cdot 3^{n}}\left(\equiv \frac{D \lambda_{k \cdot 3^{n}}}{D \lambda_{k \cdot 3^{n+1}}}=\frac{\left.\lambda_{k \cdot 3^{n}}-\lambda_{k \cdot 3^{n-1}}^{\lambda_{k \cdot 3^{n+1}}-\lambda_{k \cdot 3}{ }^{n}}\right)}{=}\right. \\
&=\lim _{n \rightarrow \infty} R \lambda_{3^{n} \cdot k}\left(\equiv \frac{D \lambda_{3^{n} \cdot k}^{D \lambda_{3}{ }^{n+1} \cdot k}}{}=\frac{\lambda_{3^{n} \cdot k}-\lambda_{3^{n-1} \cdot k}}{\lambda_{3^{n+1} \cdot k}-\lambda_{3^{n} \cdot k}^{n}}\right)==55 \cdot 26, \tag{21a}
\end{align*}
$$

with a universal constant Δ that is map-independent, apart from the quadratic maximum requirement. As well, there is a second scaling law determining the trident sizes, analogous to (8a),

$$
\begin{align*}
& \lim _{n \rightarrow \infty} R x_{k \cdot 3}{ }^{n}\left(\equiv \frac{\left.D x_{k \cdot 3^{n-1}}^{D x_{k \cdot 3}{ }^{n}} \cdot \frac{x_{k \cdot 3}^{*}{ }^{n-1}-X}{x_{k \cdot 3}^{*}-X}\right)}{=}\right. \\
& \lim _{n \rightarrow \infty} R x_{3^{n} \cdot k}\left(\equiv \frac{D x_{3}{ }^{n-1} \cdot k}{D x_{3^{n} \cdot k}^{n}}=\frac{x_{3}^{* n-1} \cdot k-X}{x_{3}^{* n} \cdot k}\right)=-A=-9 \cdot 277, \tag{21b}
\end{align*}
$$

governed by another universal constant $A \cdot \dagger$
There is a striking resemblance between pitchfork bifurcations and the forward triplications-both converge to separate points of accumulation $\lambda_{k \cdot 2 \infty}$ and $\lambda_{k \cdot 3 \infty}$
\dagger After determining values for Δ and A, we realized that Derrida et al. (1979) had determined them for the first class of sequences. However, it is not entirely obvious that their work extends to the second class or that the numbers are truly universal (map-independent).

Fig. 9. Forward triplication sequence of functions tending to
(a) G_{0},
(b) G_{1},
(c) G.

The order of iteration is indicated by the integers. In (a) the fixed points nearest the origin occur where the $y= \pm x$ lines intersect the extrema.

Fig. 10. Forward sequence of functions tending to G_{0} for (a) $4 \cdot 3^{n}$, (b) $5 \mathrm{a} \cdot 3^{n}$, (c) $5 \mathrm{~b} \cdot 3^{n}$ and (d) $5 \mathrm{c} \cdot 3^{n}$ iterates. Observe how (a) is a scaled version of Fig. $9 a$. The fixed points in each case are displayed similarly to Fig. $9 a$.
respectively-as well as between reverse bifurcations and trifurcations-both converge to the same point of accumulation $\lambda_{2 \infty}$ and $\lambda_{3 \infty}$ respectively. These analogies suggest that we should pursue the idea of universal trifurcation functions as we have already done for both kinds of cycle doublings.

5. Universal Triplication Functions

We begin by focussing on the analogue of the pitchfork sequence, namely forward period tripling $k \cdot 3^{n}$. By standard computational techniques we have shown that the limiting function

$$
G_{0}(x)=\lim _{n \rightarrow \infty}(-A)^{n}[f]^{3^{n}}\left(\lambda_{3^{n}}, x /(-A)^{n}\right)
$$

exists; it is depicted in Fig. 9a. Of course one can also define a series of functions via

$$
\begin{equation*}
G_{r}(x)=\lim _{n \rightarrow \infty}(-A)^{n}[f]^{3^{n}}\left(\lambda_{3^{n+r}}, x /(-A)^{n}\right), \tag{22}
\end{equation*}
$$

whereupon

$$
\begin{equation*}
G_{r-1}(x)=-A G_{r}\left(G_{r}\left(G_{r}(-x / A)\right)\right) \tag{23}
\end{equation*}
$$

Computations (see Figs $9 b$ and $9 c$) suppport the expectation that this sequence G_{r} converges to a limit function

$$
\begin{equation*}
G(x)=\lim _{r \rightarrow \infty} G_{r}(x)=\lim _{n \rightarrow \infty}(-A)^{n}[f]^{3^{n}}\left(\lambda_{3^{\infty}}, x /(-A)^{n}\right) \tag{24}
\end{equation*}
$$

such that

$$
\begin{equation*}
G(x)=-A G(G(G(-x / A))) \tag{25}
\end{equation*}
$$

Again we may fix the scale through $G(0)=1$. (Actually more is necessary, as shown in the following section.) Equation (25) is in direct analogy to the FeigenbaumCvitanovic equation (12).

A study of the first sequence $k \cdot 3^{n}$ produces the same universal function (see Fig. 10). Thus, if

$$
G_{0}(\mu x)=\mu \operatorname{iim}_{n \rightarrow \infty}(-A)^{n}[f]^{k \cdot 3^{n}}\left(\lambda_{k \cdot 3^{n}}, x /(-A)^{n}\right)
$$

we find that $G(x)$ emerges (again up to some magnification) when we go to the accumulation point directly:

$$
\begin{equation*}
G(\mu x)=\mu \lim _{n \rightarrow \infty}(-A)^{n}[f]^{k \cdot 3^{n}}\left(\lambda_{k \cdot 3^{\infty}}, x /(-A)^{n}\right) \tag{26}
\end{equation*}
$$

This is shown for the case $k=4$ in Fig. 11.
However, a study of the second reverse class of sequences $3^{n} \cdot k$ leads to different universal functions which we denote by G_{0}^{k} :

$$
G_{0}^{k}(x)=\lim _{n \rightarrow \infty}(-A)^{n}[f]^{3^{n} \cdot k}\left(\lambda_{3^{n} \cdot k}, x /(-A)^{n}\right)
$$

Fig. 11. Forward triplicating sequence $4 \cdot 3^{n}$ tending to scaled G.

Fig. 12. Reverse sequence of functions
(a) $3^{n} \cdot 4$,
(b) $3^{n} \cdot 5 \mathrm{~b}$,
(c) $3^{n} \cdot 5 \mathrm{c}$,
tending to $G_{0}^{4}, G_{0}^{5 \mathrm{~b}}$ and $G_{0}^{5 \mathrm{c}}$ respectively.
In each part the fixed points are displayed similarly to Fig. $9 a$.

Fig. 13. Reverse sequences G^{4} associated with $3^{n} .4$ cycles. We know this to be the fourth iterate of G, up to a scaling.

Figs $12 a-12 c$ show how this happens for $k=4,5 b$ and $5 c$ respectively. Again one may define a sequence of functions

$$
\begin{equation*}
G_{r}^{k}(x)=\lim _{n \rightarrow \infty}(-A)^{n}[f]^{3^{n} \cdot k}\left(\lambda_{3^{n+r} \cdot k}, x /(-A)^{n}\right) \tag{27}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
G_{r-1}^{k}(x)=-A G_{r}^{k}\left(G_{r}^{k}\left(G_{r}^{k}(-x / A)\right)\right) \tag{28}
\end{equation*}
$$

There is graphic support (see Fig. 13) for the assumption that this sequence converges to a limit function

$$
G^{k}(x)=\lim _{r \rightarrow \infty} G_{r}^{k}(x),
$$

obeying the triplication equation

$$
\begin{equation*}
G^{k}(x)=-A G^{k}\left(G^{k}\left(G^{k}(-x / A)\right)\right) \tag{29}
\end{equation*}
$$

Alternatively, if we allow r to tend to infinity in (27) we see that formally

$$
\begin{equation*}
G^{k}(x)=\lim _{n \rightarrow \infty}(-A)^{n}[f]^{3^{n} \cdot k}\left(\lambda_{3} \infty, x /(-A)^{n}\right) \tag{30}
\end{equation*}
$$

Once more we come across an infinite class of functions obeying the same fixed point triplication equation (25). It would seem from (30) that one can identify

$$
\begin{equation*}
G^{k}(\mu x)=\mu[G]^{k}(x) \tag{31}
\end{equation*}
$$

up to a magnification μ. Nonetheless, it is important to realize that, as was the case for $g^{k}(x)$ in Section 3, it is admissible to set the normalization $G^{k}(0)=1$ for each k a priori. It is certainly true that when $G(x)$ obeys (25) so does $[G]^{k}(x)$.

The examination of these universal functions and sequences reinforces the parallel between the 2^{n} and 3^{n} harmonics. We have little doubt that these considerations apply to other kinds of period multiplications; for instance, the fourfold sequences associated with the 4 -cycle window born by tangent bifurcation.

6. Fractional Universal Functions

The fact that the sequence

$$
(-\alpha)^{n} f^{k \cdot 2^{n}}\left(\lambda_{k \cdot 2^{\infty}}, x /(-\alpha)^{n}\right)
$$

converges to $g(x)$ as $n \rightarrow \infty$ suggests that the related sequence

$$
g_{n}^{1 / k}(x) \equiv(-\alpha)^{n} f^{2^{n}}\left(\lambda_{k \cdot 2^{\infty}}, x /(-\alpha)^{n}\right)
$$

may converge in the limit $n \rightarrow \infty$ to some 'fractional' universal function which we denote by $g^{1 / k}(x)$. Even if $g^{1 / k}(x)$ is not unique, the k th iterate clearly is unique and
it would be very surprising if no sort of convergence occurred as $n \rightarrow \infty$. If $g^{1 / k}$ exists, obviously

$$
\begin{equation*}
\left[g^{1 / k}\right]^{k}=g(x), \quad g^{1 / k}\left(g^{1 / k}(x)\right)=-g^{1 / k}(-\alpha x) / \alpha . \tag{32a,b}
\end{equation*}
$$

When $k=4$ there are solid grounds for anticipating such convergence because, up to a scaling, we know that

$$
g(x)=\lim _{n \rightarrow \infty}(-\alpha)^{n} f^{4 \cdot 2^{n}}\left(\lambda_{4 \cdot 2^{\infty}}, x /(-\alpha)^{n}\right),
$$

and therefore

$$
\begin{align*}
g^{1 / 4}(x) & =\lim _{n \rightarrow \infty}(-\alpha)^{n} f^{2^{n}}\left(\lambda_{4 \cdot 2^{\infty}}, x /(-\alpha)^{n}\right) \\
& =\lim _{n \rightarrow \infty}(-\alpha)^{n+2} f^{4 \cdot 2^{n}}\left(\lambda_{4 \cdot 2^{\infty}}, x /(-\alpha)^{n+2}\right) \\
& =\alpha^{2} g\left(x / \alpha^{2}\right) \tag{33}
\end{align*}
$$

evidently exists. Direct computation (see Fig. 14) bears out this assertion. Contrary to what is commonly believed (Feigenbaum 1983), this argument shows that there are other points of accumulation besides $\lambda=\lambda_{2}{ }^{\infty}$ at which

$$
\lim _{n \rightarrow \infty}(-\alpha)^{n} f^{2^{n}}\left(\lambda, x /(-\alpha)^{n}\right)
$$

exists. More generally, we would expect convergence of this function sequence for all $k=2^{m}$ (m integer >1) provided we fix $\lambda=\lambda_{2^{m} \cdot 2^{\infty}}$, in which case the limit function is of the type

$$
\begin{equation*}
g^{2^{-m}}=(-\alpha)^{m} g\left(x /(-\alpha)^{m}\right), \tag{34}
\end{equation*}
$$

and satisfies (32).

Fig. 14. Sequence of functions leading to $g^{1 / 4}$ at the accumulation point $\lambda_{4.2^{\infty}}=3.96119824$.

The idea can be further generalized in a straightforward way to universal functions associated with period tripling. Thus, there must exist fractional functions such that

$$
\begin{equation*}
\left[G^{1 / k}\right]^{k}=G, \quad G^{1 / k}\left(G^{1 / k}\left(G^{1 / k}(x)\right)\right)=-G^{1 / k}(-A x) / A \tag{35a,b}
\end{equation*}
$$

for $k=3^{m}$ and $m>1$. For instance, when $m=2$ we must have

$$
\begin{align*}
G^{1 / 9}(x) & =A^{2} G\left(x / A^{2}\right) \\
& =\lim _{n \rightarrow \infty}(-A)^{n} f^{3^{n}}\left(\lambda_{\left.9 \cdot 3^{\infty}, x /(-A)^{n}\right),}\right. \tag{36}
\end{align*}
$$

where $\lambda_{9 \cdot 3^{\infty}}$ is a point of accumulation $\left(\neq \lambda_{3}{ }^{\infty}\right)$ associated with one of the many 9 cycles.

We conclude with some remarks on the normalization of the universal functions. The basic $G_{0}(x)$ has three superstable fixed points near the origin, one of which may be taken to be $x=0$; see Fig. $9 a$. The function $G_{1}(x)$ is, of course, related to $G_{0}(x)$ through

$$
G_{0}(x)=-A G_{1}\left(G_{1}\left(G_{1}(-x / A)\right)\right) .
$$

Now, in the case of pitchfork bifurcation, the curve associated with $g_{1}(x)$ supports a circulation square such that

$$
g_{1}(0)=1, \quad g_{1}(1)=0 .
$$

Alternatively we may regard $x=0,1$ as fixed points of the iterate $\left[g_{1}\right]^{2}$, i.e. $\left[g_{1}\right]^{2}(0)=0$ and $\left[g_{1}\right]^{2}(1)=1$. However, for period tripling the curve associated with $G_{1}(x)$ supports a circulation polygon, corresponding to three superstable fixed points of $\left[G_{1}\right]^{3}(x)$, which we may take to be 1,0 and γ_{1}; having set the scale with the first two fixed points, γ_{1} is some new universal constant \dagger lying between 0 and -1 . Here we have

$$
\begin{equation*}
G_{1}(0)=1, \quad G_{1}(1)=\gamma_{1}, \quad G_{1}\left(\gamma_{1}\right)=0 \tag{37a,b,c}
\end{equation*}
$$

thereby setting the scale for the first function in the sequence G_{r}. The limiting function G as $r \rightarrow \infty$ must then satisfy

$$
\begin{equation*}
G(0)=1, \quad G(1)=\gamma, \quad \dot{G}(\gamma)=-1 / A \tag{38a,b,c}
\end{equation*}
$$

in contrast to (37), because of the fixed point relation (29). The need for three boundary or normalization conditions (38) for G is dictated by G being a solution of a periodtripling functional equation. While the origin of the third boundary condition is clear, it is not obvious to us at present whether or not it is a truly independent condition.

Note added in proof: A good approximation to $G(x)$ in lowest order is given by

$$
G(x)=1-\mu_{3} \infty x^{2} .
$$

For curves with a quadratic maximum μ is related to λ via equation (6a), so the value $\lambda_{3} \infty=3.8541$ determines $\mu_{3 \infty}=1.7864$. To this order we find that equations (38) become approximately

$$
G(0)=1, \quad G(1)=\gamma=1-\mu_{3} \infty, \quad G(\gamma)=1-\mu_{3} \infty \gamma^{2}=-1 / A,
$$

[^2]which illustrates that the second boundary condition is not independent. In numerical terms this gives
$$
\gamma=-0 \cdot 7864, \quad A=9 \cdot 534
$$
yielding a value for A within 3% of the experimental value. Higher order (in x^{2}) approximations to $G(x)$ shift the above numerical value of γ by less than 1%, while A agrees with the experimental value to rather better than 1% already at second order.

References

Campanino, M., and Epstein, H. (1981). Commun. Math. Phys. 79, 261.

Collet, P., and Eckmann, J. P. (1980). 'Iterated maps on the interval as dynamical systems'. In 'Progress in Physics', Vol. 1 (Birkhauser: Boston).
Collet, P., Eckmann, J. P., and Lanford, O. E. (1980). Commun. Math. Phys. 76, 211.
Derrida, B., Gervois, A., and Pomeau, M. (1979). J. Phys. A 12, 269.
Eckmann, J. P. (1981). Rev. Mod. Phys. 53, 643.
Feigenbaum, M. J. (1978). J. Stat. Phys. 19, 25.
Feigenbaum, M. J. (1979). J. Stat. Phys. 21, 669.
Feigenbaum, M. J. (1980). Commun. Math. Phys. 77, 65.
Feigenbaum, M. J. (1983). Physica D 7, 16.
Hirsch, J., Nauenberg, M., and Scalapino, D. J. (1982). Phys. Lett. A 87, 391.
Hu, B. (1982). Phys. Rep. 91, 233.
Hu, B., and Rudnick, J. (1982). Phys. Rev. Lett. 48, 1645.
Kopylov, C. F., and Sivak, A. G. (1982). Ukr. Acad. Sci. 517, 53.
Lanford, O. E. (1982). Bull. Am. Phys. Soc. 6, 427.
McCarthy, P. J. (1983). Commun. Math. Phys. 91, 431.
Manneville, P., and Pomeau, Y. (1980). Commun. Math. Phys. 74, 189.
May, R. M. (1976). Nature 261, 459.
Metropolis, N., Stein, M. L., and Stein, P. R. (1973). J. Combinatorial Theory A 15, 25.
Ott, E. (1981). Rev. Mod. Phys. 53, 655.
Ruelle, D., and Takens, F. (1971). Commun. Math. Phys. 20, 167.

[^0]: * All our computations were carried out on TRS-80 microcomputers to double precision.

[^1]: * We are careful to distinguish between the forward superstable values $\lambda_{k \cdot 2}{ }^{n}$ and the backward superstable values $\lambda_{2}{ }^{n} \cdot k$ in what follows. Of course, as far as functional iterates are concerned, there is no difference between $[f]^{2 n \cdot k}(\lambda, x)$ and $[f]^{k \cdot 2 n}(\lambda, x)$ at the same λ-parameter value.

[^2]: \dagger In relation to this, and by examining our various universal curves which exhibit nontrivial local fixed point structure (Figs 5 and 6), we see that in every case one can choose the centremost fixed point to be $x^{*}=0$ and (by s'aling the horizontal axis) the rightmost fixed point to be $x^{*}=1$. The values x^{*} of all other fixed points are then determined to lie between -1 and 1 , at universal locations.

