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Abstract 

Aust. J. Phys., 1985,38, 33-9 

The double hypernucleus llsi has been considered as a three-body system A-A-29Si and its binding 
energy calculated by a variational method using a trial wavefunction of the form F(rCl) F(rC2) G(r12), 

where the r are interparticle triangular coordinates and F and G are of the form z exp( - rxr 2) + 
exp( - pr 2 ). These wavefunctions allow the description of strong A-A spatial correlations which 
are found to be quite significant. The parameters z, rx, p for the two-body wavefunctions F and G 
are obtained by a variational procedure in order to find the binding energies of the two-body systems 
A_29Si and A-A. The parameters of the A-A wavefunction are adjusted so as to produce just a 
zero-energy A-A system. For the A __ 29Si system the interaction potential between A and 29Si is 
generated by folding a gaussian A-N potential into the density distribution of 29Si. Parameters 
for the A_29Si system are used in the three-body calculation, but those for the A-A system are kept 
free in the three-body variational calculation. In the first stage, our calculated value of the binding 
energy is 41· 54 MeV, where we have used a gaussian A-A interaction having a volume integral 
of 610'8 MeVfm3 • This volume integral is calculated from the two-body A-A system. In the second 
stage we have taken the volume integral as a free parameter also, and calculated the binding energy 
of j~Si to be 39·7 MeV, for a volume integral of 356· 5 MeVfm3 for the A-A potential. This value 
is compared with the experimental value of 38·2±6·3 MeV found by Mondal et al. (1975). The 
dependence of the binding energy on the depth of the A-A interaction has also been investigated. 

1. Introduction 

The discovery (Danysz et al. 1963) of the double hypernucleus l~Be (or l!Be) 
aroused a considerable amount of interest in AA hypernuclei. This is because the study 
of AA hypernuclei is expected to lead to significant information about the A-A 
interaction in the ISO state. 

The double hypernucleus l~Be has already been analysed by Bodmer and Ali (1965) 
and Dalitz and Rajasekaran (1964) using a three-body model. Bodmer and Ali (1965) 
and Tang and Herndon (1965) also analysed l~Be, taking it to be a four-body system 
consisting of two IX and two A particles. Another double hypernucleus, A1He, was 
studied by Ali and Bodmer (1967) with a A-A-4He model. 

More recently Mondal et al. (1975) reported an event in nuclear emulsion, 
identified as evidence of a very heavy hypernucleus. They predicted it to be l!Si 
and calculated its binding energy from range measurements to be 38'2±6'3 MeV. 
Since the number of double hypernuclei is very small, it seems worth while to 

0004-9506/85/010033$02.00 



34 M. H. Ahsan and S. Ali 

calculate the A-A binding energy in 11si and compare the result with that of the 
experimental investigation. 

Az 

Fig. 1. Triangular coordinate system: 
rCI and rC2 are A-core separations; 
r12 is the A-A separation. 

With this aim in view a three-body A-A-29Si model is assumed for ~~Si. Our 
calculations are based on the use of the three-body s-state wavefunction of the 
product form 

(1) 

Here rC1 ' rC2 and r12 are triangular coordinates as shown in Fig. 1. It is essential to 
include the function G(r12) in order to allow for the effect of the A-A interaction. 
Convenient analytic forms for the functions F and G are assumed as follows: 

F(r) = xexp( -ar 2) +exp( - f3r2) , 

G(r) = yexp( - yr2) +exp( _(jr 2). 

(2a) 

(2b) 

In these functions, assuming that a ~ 13 and y ~ (j, the first terms represent the form 
of the wavefunction for the two-body systems A_29Si and A-A in the region of close 
approach, while the second terms are related to the long-range part of the wave­
function. 

Our procedure is to determine the function F(r) by a variational method to 
fit the information on the A-29Si system. Since the A-A system is not bound, the 
function G(r) is determined by considering a purely attractive potential of shape 
(Ali and Bodmer 1967; Dalitz and Downs 1958) 

(3) 

where 2 = 0·935 fm- 2 corresponding to the two-pion exchange process, and by 
arbitrarily adjusting the A-A potential strength to give a bound state at zero energy. 
However, a purely attractive potential for the A-A system is somewhat unrealistic, 
since the presence of a short-range repulsion in the nucleon-nucleon potential, usually 
represented by a hard core, suggests that a hard core of similar size may also be present 
in the A-A potential (deSwart 1963). Thus, the parameters a and y provide an 
excellent approximation, while 13 and (j provide a good first approximation for the 
parameters appropriate to the 11Si system. 
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2. The A-Core Interaction 

The A-'-Core potential VAC is obtained by folding a gaussian A-N interaction 
(Dalitz and Downs 1958) 

(4) 

into the core density distribution, where b = 1·03366 fm is. appropriate to the two­
pion exchange mechanism. For this purpose, a harmonic oscillator density distribu­
tion for the configuration Is2 1 pj/2 IPi/2 Id~/2 2S1 of 29Si is calculated to be 

(5) 

where a = 1·873 fm is the oscillator size parameter, chosen so that it yields 
<r2)1/2 = 3 ·14 fm for the r.m.s. radius of the 29Si nucleus. 

A 

29Si core 

Fig. 2. Triangular coordinate system for A-29Si: " is the position 
of a nucleon relative to the centre-of-mass of the 29Si core, , is the 
A-N separation and R is the position of the A relative to the centre 
of the core. 

A schematic diagram of the folding-model calculation is shown in Fig. 2. The 
A_29Si potential can be written as 

(6) 

where r1 and R are related by r1 +r = R. After using equations (4) and (5) in (6) 
and evaluating the integral, the potential is found to be 

x {(1 +9/4a2A,z +29/8a4A,4) 

+ (3/2a2b4A,4 +29/6a4b4A,6)R2 + (29/30a4b8A,8)R4} 

(7) 

where A, = {l/a2 + l/b2}t and UAC is the potential depth. 
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3. Two-body Systems 

For the A_29Si system a variational calculation for UAC is carried out with the 
A-29Si potential (7) and the wavefunction (2a). The variational principle takes the 
form 

(8) 

where BA is the A_29Si separation energy. From the curve of BA against A- 2 / 3 

(Bhaduri et al. 1968), the separation energy for A in 3JSi is found to be about 
19·5 MeV. After calculation, the individual terms in (8) take the form 

3/2( x2 2x 1) 
<F I F) = n (2a)3/2 + (a+ fJ)3/2 + (2fJ?/2 ' 

, 3/2 (lX2 2lx 1 
<FI VAcIF) = n (2a+p)3/2 + (a+fJ+p)3/2 + (2fJ+p?/2 

3mx2 3mx 3m 
+ + . +---~ 2(2a+p)5/2 (a+fJ+p)5/2 2(2fJ+p)5/2 

15nx2 15nx 15n) + + +---~ 
4(2a+p?/2 2(a+fJ+p?/2 4(2fJ+p?/2' 

where I, m, nand p are given by 

m = 3/2a2b4 ).4 + 29/6a4b4 ).6 = 0·2881 fm- 2 , 

n = 29/30a4 b8 ).8 = 0·00218fm- 4 , 

p = l/b2 _1/b4 ).2 = 0·88574fm- 2 . 

Table 1. Two-body parameters for the A_29Si and A-A systems 

Separation energies: A_29Si, 19·5 MeV; A-A,O 

Parameter Value Parameter Value 

A_29Si A-A 

x 5·275 y 2·9 
IX 0·6 fm- 2 y 0·4 fm- 2 

p 0·2 fm- 2 0 0·027 fm- 2 

UAC 2320·0 MeVfm3 UAA 610·8 MeVfm3 

(9) 

(10) 

(11) 

(l2a) 

(l2b) 

(12c) 

(l2d) 

In equation (10), Jl denotes the A_29Si reduced mass and has a value of 
1071·1335 MeV c- 2 • The optimum parameters a, fJ, x and the corresponding value 
of UAC are given in Table 1. 
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For the A-A system, with the gaussian potential (3), we used the variational 
principle (8) to estimate the potential strength necessary to just bind the A-A system 
(i.e. B = 0). Values of the parameters y, y, fJ and the corresponding value of UAA 
thus determined are also given in Table 1. 

4. Three-body System 

The binding energy of ~~Si, where it is considered to be the three-body system 
A-A-29Si, is determined by the variational principle as 

BAA ~ «l/I I T I l/I> - UAC<l/I I VAIC I l/I> - UAC<l/I I VA2C I l/I> 
- UAA<l/I I VAA I l/I»/<l/I I l/I>, (13) 

where the individual terms are given by 

(15) 

(16) 

In these integrals the volume element d-r = 8n2rC1 re2 r 12 drc1 drc2 dr12, as obtained 
in the triangular coordinate system, has been used. 

Table 2. Three-body parameters for the A-A_29Si system 

Variational Y y 0 UAA X IX P UAC BAA 

parameters (fm- 2) (fm-2) (MeVfm3) (fm- 2 ) (fm- 2) (MeVfm3) (MeV) 

y,y,o 3'5 0·928 0·046 610·8 5·275 0·6 0·2 2320·0 41·54 
y,y,o, UAA 2·8 0·469 0·037 356·5 5·275 0·6 0·2 2320·0 39·70 

5. Results and Discussion 

In the first stage, for computational simplicity, we have in fact kept only the three 
parameters y, y and fJ free for variation and in the second stage we have taken UAA 
as a free parameter in addition to y, y and fJ. The best values of the parameters 
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X, ex, p,y, y, b and the maximum values of BAA obtained from the two calculations, 
along with other parameters, are shown in Table 2. The value of the binding energy 
BAA from the second calculation deviates from the first by about 5 %. In this way we 
have derived the maximum values of BAA as a function of the strength of the A-A 
interaction. Fig. 3 shows the variation of BAA with UAA' 

Fig. 3. Plot of BAA versus 
UAA for values of the 

parameters of x = 5'275, 
0( = Q'6fm- 2, p = 0·2fm- 2, 

UAC = 2320 MeVfm3 , y = 2'8, 
l' = 0·469 fm- 2 and 

0= 0·037 fm-2. 

41 

39Lo----L----4Loo----L---~8~OO~--~--~1~20~O~ 

If BA is the A-29Si separation energy, then for a rigid core the additional binding 
energy 

.1BAAG~Si) = BAA(]lSi)-2BAe~Si) 

may be directly related to the strength of the A-A interaction. In the present case 
we have BAA = 39·7 MeV, BA = 19·5 MeV and, thus .1BAAC11Si) = 0·7 MeV, 
while the corresponding experimental value is -0' 8±6· 3 MeV. Our result for .1BAA 
is not inconsistent with the reported value, however, the experimental uncertainties 
in BAAC11Si) are rather too large to make any definite conclusion about the depen­
dence of .1BAA on the mass number. For l~Be, from the experimental values of 
Danysz et al. (1963), the additional binding energy is 4·5±0·5 MeV, while for A~He 
it is 5·0±0·6 MeV, as calculated by Dalitz and Rajasekaran (1964), and 5·1 ±0'6 
MeV as calculated by Ali and Bodmer (1967). Thus one can easily conclude that the 
additional binding energy is not sensitive to the mass number of the hypernucleus. 
Since 11si is very heavy in comparison with these two hypernuclei, the value of .1BAA 
is too small. However, before any definite conclusion can be arrived at, other 
methods of calculation should be tested. 

On the other hand, the present calculation shows that for UAA = 0 we have 
BAA = 39·1 MeV with .1BAAC11Si) = 0·1 MeV. This is not inconsistent with the 
observation that if the core is infinitely massive then one has, as expected, the relation 
BAA = 2B A for U AA = 0, i.e. the total binding energy of the three-body system must 
be just twice the binding energy of a A to an infinitely heavy core. 

We conclude that, although our present variational calculations on the three-body 
model of 11Si are commensurate with the results from the single experimentally 
observed event, the experimental uncertainties so far are still somewhat too large 
to extract more detailed information on the A-A interaction. In any case, more 
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events, when available, will be helpful in linking information on the lighter hypernuc1ei 
with that on heavy hypernuc1ear matter. Moreover, the four-body model 
A-A-n-z8Si for 11Si is still to be tested. 
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