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The dynamic interaction between an initially uniform vertical magnetic field and a Rayleigh-Benard 
type layer of convecting fluid is investigated under steady-state conditions. Particular attention is 
given to the roles of the dtffusivities in determining the extent to which a magnetic field is induced 
and convective motions inhibited. The model demonstrates how the perturbed magnetic field is 
generated at the base of the convection zone, which is a region of converging fluid flow, and is 
expelled from regions of divergent flow. 

1. Introduction 

Theoretical investigation of the interaction between magnetic fields and buoyancy
driven thermal convection in electrical conducting fluids has attracted a great deal 
of interest and attention over the past couple of decades, due in the main to the 
phenomena of sunspots and other large scale magnetic activities in the Sun. More 
recently additional interest has been generated due to the ability of solar observers, 
employing new techniques, to resolve features on the scale of a few hundred kilometres, 
revealing previously undetected small scale magnetic structures interacting with 
granular convection. 

Initial studies (Chandrasekhar 1961; Danielson 1961) were restricted to the 
linear case, and experimental studies (Nakagawa 1957, 1959) only dealt with 
establishing parameter values at the marginal states, which are described also by 
the linear theory. Undoubtedly, such investigations have led to a fuller understanding 
of the interaction between magnetic fields and convection in the laboratory, but in 
order to explain, for example, many of the observed characteristics in the solar 
photosphere and convection zone one must clearly look to the nonlinear problem 
which takes fully into account this interaction via the nonlinear coupling terms. 

Early two-dimensional linear studies in hydro magnetic convection by Weiss (1966) 
were undertaken in the limit of a small magnetic field, with the investigation being 
restricted to the kinematic effects of the flow on the magnetic field, while the effect 
of the magnetic forces on the flow was neglected. Recently, Galloway and Proctor 
(1983) extended this kinematic study to a three-dimensional hexagonal geometry. 
The dynamic extension of the two-dimensional case has been thoroughly studied by 
Weiss (1981a, 1981b, 1981c). The nonlinear dynamical investigation of the hexagonal 
system presented in the present paper did not follow on from the earlier equivalent 
kinematic studies (e.g. Galloway and Proctor 1983), but rather developed from the 
modal approach for ordinary nonlinear Rayleigh-Benard convection. 
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Another approach utilized has been to expand the variables in terms of their 
linear horizontal eigenfunctions, and then take horizontal averages. This method was 
pioneered by Roberts (1966) for ordinary Rayleigh-Benard convection, and has been 
extensively developed by other authors (Gough et al. 1975; Toomre et al. 1982; 
Murphy and Lopez 1984; Lopez and Murphy 1984). Authors employing this method 
in the past to study the magnetoconvection problem have chosen the eigenfunctions, 
which determine the cellular planforms, in such a way that the equations reduce 
to the so-called mean-field equations. An equivalent formulation may also be 
obtained from a Galerkin-type method (Van der Borght et al. 1972). 

The modal method together with an appropriate choice of eigenfunction can also 
be used to model three-dimensional hexagonal cellular convection, which incorporates 
the effects of interactions between neighbouring cells. This approach has been adopted 
here to establish the global characteristics of convective heat transport in hexagonal 
cells under the effect of an imposed magnetic field. Proctor and Galloway (1979) 
have indicated that: 'It would also be most desirable to extend the theory of a 
hexagonal convective pattern so as to model the convection zone more closely, but 
this appears to require significant computational effort.' Galloway and Weiss (1981) 
further designated the need for three-dimensional solutions by presenting an argument 
suggesting that the two-dimensional flux sheet solutions should be unstable in the 
dynamic regime of the problem. 

In another recent paper, Knobloch (1981) called for a magnetoconvective model 
which simulates the observed different scales of magnetic flux tubes arising as a result 
of the different scales of motion present in the Sun. The models which are presently 
available (Proctor and Galloway 1979; Weiss 1981a, 1981b, 1981c) do not provide 
an explanation of the observed spectrum. Galloway and Weiss (1981) also suggested 
the use of a two scale analysis-one associated with the cellular convection and the 
other with the small scale eddies representing turbulence. It is anticipated that the 
modal approach employed here can be extended to include many more scales of 
motion, so as to model the interactions observed between the different scales of 
motion (Golub et al. 1981; Knobloch and Rosner 1981). Multi-mode solutions using 
the modal approach have already been presented for the ordinary Rayleigh-Benard 
problem by Toomre et al. (1982). 

It is well known, from the linear theory, that when the ratio of magnetic diffusivity 
rJ to thermal diffusivity K is sufficiently small, or when the applied magnetic field 
is large enough, instabilities set in as oscillatory modes, giving rise to time-dependent 
solutions in the nonlinear regime. In this study we only set out to establish steady-state 
solutions, but at the same time provide a basis from which to solve and understand 
the more complicated time-dependent problem in future studies involving magnetic 
fields. 

2. Basic Equations and Numerical Technique 

The model problem investigated is the interaction between a uniform vertical 
magnetic field and a horizontal layer of fluid, between two isothermal stress-free 
boundaries, and which is heated from below. The equations describing the physical 
processes present are the momentum equation 

ou J1* (1) 
p ot +pu. \1u +\1P -pG -IN2u + 4nH x (\1 x H) = 0, 
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together with the continuity equation 

apjat + \1. (pu) = 0, (2) 

as well as the induction equation 

aHjat +1]\1 x (\1 x H) -\1 x (u x H) = 0, (3) 

and the heat equation 

(4) 

where 11, K, Cv and Jl* are respectively the viscosity, the thermal conductivity, the 
specific heat at constant volume, and the magnetic permeability, and Gis (0, O,g), g 
being the acceleration due to gravity. For the purposes of this study the Boussinesq 
approximation will be utilized, viscous dissipation effects neglected and only steady
state solutions considered. 

The basic equations may be derived by following the procedure of Van der Borght 
and Murphy (1973), or alternatively by a Galerkin procedure similar to that used 
by Gough et al. (1975). After appropriate rescaling (Van der Borght and Murphy 
1973), the basic equations may be written in their non-dimensional form: 

D2TO-D(FW) = 0, 

(D2-a2)F- WDTo-C(2WDF+FDW) = 0, 

- (C/(J){ W(D2 - a2)D W + 2(D2 - a2) WD W + 3Z DZ} 

+QrC{H(D2-a2)DW+2(D2-a2)HDH+3XDX} = 0, 

(5) 

(6) 

(7) 

r(D2-a2)x+DZ-C(2XDW-2ZDH-HDZ+ WDX) = 0, (9) 

(D2-a2)Z+QrDx-(Cj(J)(WDZ-ZDW)-QrC(xDH-HDX) = 0, (10) 

where D == djdz. 

The temperature, velocity, vorticity, magnetic field and current density are given by 

T = To(z)+F(z)J, (11) 

u = {~(DW(Z): +Z(Z)~)' :2(DW(Z)~ -Z(Z)ix) , W(Z)f} , (12) 
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C!) = {:2(DZ(Z) rx -(D2-a2)W(z) ~) , :2 (DZ(Z) ~ +(D2-a2)W(z) rx) , Z(Z)J} , 

(13) 

H= Ho{~(DH(Z)~{ +X(Z)~), 

1 ( oj oJ) } ;;z DH(z) oy - X(z) ox ' 1 + H(z)J , 

~ = Ho{~(DX(Z) ~{ _(D2-a2)H(z) ~), 

~(DX(Z)~ +(D2-a2)H(z) rx), X(Z)J} , 

(14) 

(15) 

Z and X being the scaled vertical components of vorticity and current density, while 
W, F and H define the vertical velocity, the temperature fluctuation and the induced 
vertical magnetic field; To is the mean temperature across the layer and Ho the 
strength of the externally applied vertical magnetic field. The temperature difference 
across the layer is denoted by !1T and a is the horizontal wave number, while J is 
the planform function which satisfies the Helmholtz equation 

(16) 

and C, the interaction constant, takes the value of .J! in the case where 

J(x,y) = (t)t{2cosCta.J3x)cos(!ay) +cos(ay)} 

describes a hexagonal planform. If C = 0, then the basic equations reduce to the 
mean-field equations. 

The other parameters in the basic equations are the Rayleigh number 
R = grxd 3 !1T/KV (d being the depth of the layer, rx the coefficient of volume expansion 
and v the viscous diffusivity), the Chandrasekhar number Q = Jl*d 2 H~/41CJlY/, the 
Prandtl number (j = V/K, and the magnetic Prandtl number 1" = y//K. 

Equation (5) has a first integral in which the constant of integration is the Nusselt 
number 

N = FW-DTo. (17) 

The Nusselt number is the ratio of heat transported by the convective regime to 
that which would have been transported if the fluid were immobilized, thus defining 
a non-dimensional heat flux. 

Equations (5)-(10) have been solved together with the free-surface boundary 
conditions, which are widely used in stellar applications. The boundaries are taken 
to be isothermal, with 

F(z=O) = F(z= 1) = 0, 

To(z= 1) = -1. 

(18) 

(19) 
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Also, there is no overshooting at the boundaries, and no tangential stresses on them; 
hence 

(20) 

on z = 0 and z = 1, and the boundaries are taken to be non-conducting and current
free, implying that 

DB = X = 0 (21) 

on z = 0 and z = 1. 
Due to the highly nonlinear nature of the equations, numerical solutions are 

necessary. A collocation procedure was employed using truncated Fourier expansions, 
an approach which has been successfully used in a number of convection problems 
(Roberts 1966; Murphy 1971; Van der Borght et al. 1972; Van der Borght and 
Murphy 1973; Van der Borght et al. 1974; Murphy and Lopez 1984; Lopez and 
Murphy 1984). 
, The variables are expanded in the following manner (where M is the number of 
:vertical modes): 

M M 

W(z) = L Wn sin(nnz) , F(z) = L in sin(nnz) , (22a, b) 
n=1 n=1 

M M 

To(z) = - z + L tn sin(nnz) , H(z) = ho + L hn cos(nnz) , (22c,d) 
n=1 n= 1 

M M 

X(Z) = L Xn sin(nnz) , Z(Z) = LO + L Ln cos(nnz) , (22e, f) 
n=1 n= 1. 

which clearly satisfy the boundary conditions adopted. 
Substitution of the above Fourier expansions into equations (5)-(10), where the 

notation 

1, n > 0 
R1 = R/n4 , Wn = Wn/n 4 , rt 2 = a2/n 2 , Yen) = 0, n = 0 (23) 

-1, n < 0 

has been used, gives the following system of nonlinear algebraic equations for the 
unknown coefficients in these expansions: 

( 2 2)2 2 Q, 2 2 CQ, 2 2 
n +rt Wn-R1rtfn+'3n(n +rt)hn+-3-n(n +3rt)ho hn 

n n 
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(24) 

ntn -!n L wp{fn+p+ Y(p-n)!ln-pl} = 0, (25) 
p 

(n 2+1X2)fn- wn-!n L wp{(n+ P)tn+p -/ n- p / tin-pi} 
p 

-!Cn I wp{(2n+ p)fn+p+ Y(n- p)(p-2n)fln-pl} = 0, (26) 
p 

( 2 2' h nn Cnn n + IX) - - W - -- ho w n -r n -r n 

(27) 

(28) 

( 2 2) Q-r Cn CQ-r 
n +IX Ln - -nXn - -nLOwn - --nhoXn n (J' n 

(29) 

(30) 

( 2 2) nLn 2C h C h n + IX Xn + - + - nLo n + - n 0 Ln n-r n-r n-r 

(31) 

The system of equations (24)-(31) was solved on an iterative basis by using the 
generalized Newton-Raphson procedure. The number of vertical modes M is chosen 
so that in any particular solution the Nusselt number remains constant over the entire 
layer. In physical terms, this means that enough modes have to be included to properly 
resolve the boundary layers numerically. 

Employing the Newton-Raphson technique requires the first derivatives of these 
equations, and the problem reduces to that of solving a (6M + 2) x (6M + 3) augmented 
matrix at each iteration. For R = 105, at least 80 vertical modes were required to 
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obtain the necessary resolution, which clearly gives a very large system of equations 
to be solved. 

3. Results 
In an earlier study of the non-magnetic case (Murphy and Lopez 1984), it was 

found that two distinct types of solutions exist in certain parameter ranges and are 
distinguished by their components of vertical vorticity. For one type the vertical 
vorticity is zero, whereas for the other it is nonzero, and consequently significant 
features of the flow differ between the two solutions. Here we have restricted our 
study to a close examination of the steady-state solutions which possess zero 
components of vertical vorticity and current density in order to establish the effects 
of a hexagonal geometry and the influences of the Prandtl and magnetic Prandtl 
numbers. There is, however, an apparently strong association between the nonzero 
vertical component of vorticity and time-dependent behaviour (Lopez and Murphy 
1983), and presumably the vertical component of current density is also related. 

The system is now determined by six parameters: the Rayleigh number Rand 
the Chandrasekhar number Q which describe the external influences acting on the 
system, the Prandtl and magnetic Prandtl numbers (J and 'r which describe physical 
characteristics of the fluid, and finally a and C which describe the geometry of the 
flow. A complete scan of the available parameter space is quite impractical, hence 
certain parameters will remain fixed, while others, which are felt to demonstrate a 
significant varying behaviour of the convective solutions under the presence of a 
magnetic field, are scanned thoroughly. The geometry of the flow is described 
throughout by a hexagonal cell pattern, for which C = J! with a non-dimensional 
horizontal wave number a = 2·63. Two values of the Rayleigh number have been 
investigated, a moderate value of 3 x 104 and a larger value of 3 x 105 . The highest 
value of the Rayleigh number utilized in two-dimensional nonlinear magneto
convection results, published to date, is 105 (Weiss 1981c). The Chandrasekhar number 
has been varied from 1 to 104 , while the Prandtl and magnetic Prandtl numbers have 
both been extensively varied within the range 10- 2_103 • 

The flow and magnetic field structures in this three-dimensional hexagonal system 
are quite different from those found in two-dimensional studies. The concepts of 
two-dimensional flux sheets and flux expulsion do not relate directly to our present 
system. Typically, what has been found is that a perturbed magnetic field is induced 
at the bottom of the layer and concentrated around the centre of the cell base, which 
is a region of convergent flow. Further, near the top of the vertical boundaries of the 
cell, as the field is swept around, there is considerable field dispersion in these regions 
of divergent flow-a manifestation of the tendency of the magnetic field lines to align 
with the streamlines of the flow. This behaviour is reminiscent of the solar situation, 
where it is expected that the magnetic field is generated and anchored at the base of 
the convective zone (the effects of differential rotation tend to support this idea), and 
where intense magnetic fields are seen to be concentrated at the boundaries of 
supergranules (Priest 1982). 

From our selection of parameter values, extensive numerical results have been 
obtained which present a global picture of three-dimensional flow inside hexagonal 
cells. The following discussion is a description of the flow characteristics as the 
magnetic Prandtl number 'r is varied, with R = 3 X 105, (J = 1 and Q = 100. These 
features are graphically shown in Figs la-c where the velocity (top) and magnetic 
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field (middle) vectors are projected onto the x-z plane at y = 0, together with 
contours of their strength, as well as plots of the isotherms (bottom). 

At large T (Fig. 1a), the flow is essentially restricted to the top 10% of the layer, 
while the field, as shown by the contours of field strength, is concentrated at the 
bottom centre of the cells in spite of the relatively low fluid velocity in this region. 
Clearly, stronger fields are induced in regions of convergent fluid flow within the 
hexagonal cell, and there is a weak or no perturbed field generated in regions of 
divergent flow. An investigation of the isotherms reveals the existence of extensive 
isothermal regions in the central part of the layer with rapid temperature changes 
occurring near both the top and bottom of the cell, that at the top being much more 
pronounced. 

As T is reduced, the convective flow, although its speed is considerably reduced, 
extends more uniformly throughout the layer (see Fig. Ie) but is still not symmetric 
about the mid-plane z = O· 5. The structure of the magnetic field is such that it is 
more concentrated towards the centre of the cell with the isotherms designating a 
smoothing of the temperature variations across the layer. 

The flow characteristics also vary dramatically as the Prandtl number (J is varied. 
This is illustrated in Figs 2a-/ where R = 3 X 104, T = 10 and Q = 10. At low (J 

(Figs 2a and 2b), the fluid is nearly stagnant over most of the layer, except for about 
the top 5-10% where there is relatively vigorous boundary layer activity. The 
associated field is essentially uniform throughout the layer, with the induced field 
being virtually non-existent. The isotherms display the monotonic nature of the mean 
temperature. 

As (J increases, the boundary layer is relaxed as the flow now extends deeper into 
the layer, with the stagnant regions being restricted to the vertical boundaries of the 
cells (see Figs 2e and 2d). The magnetic field is now swept with the fluid to a greater 
extent so that it is concentrated into regions of convergent fluid flow. Fig. 2/ shows 
that at the bottom of the layer it is concentrated in the central cell region, and at the 
top, towards the vertical cell boundaries. The isotherms show the development of 
hot plumes rising in the centre and cold plumes descending at the boundaries of the 
cells. 

As (J becomes larger, a field interaction between neighbouring cells is evident near 
the vertical boundaries at the top of the layer, as the field is swept horizontally because 
of the high fluid velocities. Reduced field strength at the centre of the cell at the 
top of the layer again corresponds to regions of divergent flow. When (J = 100 
(Fig. 2/), the fluid flow is very nearly symmetric about the middle of the layer 
z = O· 5, as established for the mean-field situation, yet the magnetic field structure 
is completely different to that corresponding to the mean-field solutions (cf. Van der 
Borght et al. 1972). Whereas in the mean-field model the magnetic field is 
symmetric about the mid-plane z = o· 5, with most of the field concentrated near 
the top and bottom of the layer, the field in the hexagonal situation is concentrated 
deep at the base of the cell and is swept around considerably in the upper part of 
the layer causing diminished strength. 

Figs 3 and 4 summarize three basic regions in T space with different types of 
behaviour: 

(i) For large T (<: 102), N is found to be constant with respect to T and behaves 
as previously determined in the mean-field case with respect to Q. The induced 
field is smaller as T increases and is independent of Q, when Q is not too large. 
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(ii) For intermediate T (10- 1 ;;;; T ;;;; 102) there is a very marked variation in N 
over a small region of T. This demonstrates the existence of a critical balance 
between the diffusivities, which determines whether a magnetic field is to 
inhibit convection or not. In this range of T, we find that the extent to which 
the field is induced depends strongly on Q. Overall the smaller the value of Q, 
the greater the induced field relative to the impressed field. 

(iii) For small T (;;;; 10- 2) the Nusselt number now tends towards one, irrespective 
of 0', R or Q, so that any convective motions have been almost completely 
inhibited by the field, and Hmax tends towards an upper limit as T tends to 
zero. In particular, these results establish, for the range of Rayleigh numbers 
considered here, that the effect of 0' on these regions appears to be only 
quantitative. 

(a) r = 5 (b)r=\O 

0, <; 

n.o LL-'---'--.-L_...l. 

-2.15 0.00 Z. /6 -2.76 Il.no 7..76 

x x 
Fig. 5. Projections onto the x-z plane at y = 0 of the velocity vectors together with contours of 
I u I (top), magnetic field vectors with contours of I HI (middle), and corresponding isotherms (bottom) 
for R = 3 X 105, a = 1, a = 2'63, Q = 10 and T as indicated. 

In the T regions classified in (i) and (ii), two new types of solutions were found. 
It is felt that even though these are mathematically valid solutions of the system of 
equations in both cases, they do not, however, represent the model as the results are 
physically unacceptable. The non-physical properties of the two new solutions are 
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evident from the vector field projections in Figs 5a and 5b which show that at the 
bottom boundary, the field is directed downwards whereas just outside the layer the 
uniform applied field is directed upwards, hence presenting a discontinuity at the 
boundary. 

Sample profiles of two of the new solutions, together with that of a 'normal' 
physical solution for the same parameter values, have been plotted in Figs 6a-c. 
The most striking feature of these is that for the two new solutions H is negative, 
whereas for the normal solution it is always positive. It should be pointed out that 
these three solutions are not related by any symmetry relationships, such as 

W(z) ~ - W(1-z), 

To(z) ~ -1- To(1-z), 

H(z) ~ H(l-z), 

Z(z) ~ -Z(l-z), 

F(z) ~ -F(1-z), 

x(z) ~ X(1-z), 

which exist for the system of equations (5)-(10); nor are they the magnetic equivalent 
of the type II solutions found in other convection studies (see e.g. Murphy and Lopez 
1984). 

N 

o 

i 

(a) 

1~-~I.~O~-~0-.~~--~0--~-0~.5--~~I.~0~--~I.-5~~2.0 

1·0 (b) 

0.9( 
0·8 

0·4 ~-:---::-l':---I---l:--=:::~~~:r:~~~~~ 
-1·0 -0·5 a 0·5 1.0 1.5 2·0 

loglO 0' 

Fig. 7. Variation with 0' of (a) 
Nusselt number N and (b) 
maximum vertical induced 
magnetic field 1 Hmox I, for the 
high heat flux-low induced field 
solutions [upper branch in (a), 
lower branch in (b)] and the low 
heat flux-high induced field 
solutions [lower branch in (a), 
upper branch in (b)], for 
R = 3 x 104, 7: = 1, a = 2·63 
and Q as indicated. 

On comparison, the two new solutions have very distinctive differences. One 
specifically corresponds to a high heat flux-low induced field, and the other to a 
low heat flux-high induced field, with the two solutions tending to coalesce at low 
Prandtl number as shown in Fig. 7. The numerical method employed was unable 
to isolate the point at which the two coincide. As this point is approached the 
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Fig. 8. Variation with (f of (a) Nusselt 
number N and (b) maximum vertical 

induced magnetic field Hma .. for 
R = 3 x 104, T = 1, a = 2· 63 and Q as 

indicated. 
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Fig. 9. Variation with (f of (a) Nusselt 
number N and (b) maximum vertical 
induced magnetic field Hma .. for 
R = 3 x 104, T = 100, a = 2·63 and Q 
as indicated. 
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difference between the two solutions is so small that the numerical system oscillated 
between the two, never converging onto one or the other. 

The low heat flux solutions have a particularly non-physical feature in that N 
increases with Q, which is certainly not a dependence predicted by kinematic models, 
nor the mean-field model (Van der Borght et al. 1972). 

The N-Iog 0" curves of the 'normal' solutions for low Q, given in Fig. 8a, fit 
underneath those of the low heat flux branch of the alternative solutions from Fig. 7 a. 
Whenever the 'non-physical' solutions exist mathematically, the 'normal' solutions 
corresponding to the same parameter set always have a lower Nusselt number, which 
means that the 'normal' solutions present a less efficient means of convective heat 
transport. This evident non-uniqueness of steady-state solutions can possibly be 
removed by considering the time-dependent solutions. 

Unlike the non-magnetic case and the mean-field magnetic case, the normal 
N-log 0" relationship is no longer always monotonic. The local maximum, which 
is evident in Fig. 8a, develops at lower 0" as T is reduced (cf. Fig. 9a), and is most 
pronounced at low T and low Q. As 0" tends to infinity, the system becomes 
independent of 0" as is the case when Q = 0; and when 0" tends to zero, the system 
tends towards the conductive state with no induced field. 

In Figs 10 and 11, the profiles of W(z), H(z), F(z) and To(z) are illustrated varying 
with 10gT for R = 3 X 105, Q = 102, 0" = 1 and a = 2·63, and also with logO" for 
R = 3 X 104, Q = 10, T = 10 and a = 2·63. The W(z) profile, as T is decreased 
below a critical T value of '" 1 0, decreases rapidly to zero in a monotonic fashion, 
whereas, when 0" is decreased, the W(z) profile reaches a local maximum at 0" '" 1 
before it begins to decrease. The F(z) and To(z) profiles tend to behave similarly 
for both a decrease in 0" and a decrease in T. The main difference is that at low T, 
the profile of F(z) has almost completely vanished and the To(z) profile reaches 
its linear configuration denoting a conductive state (Figs lOe and 10d), whereas from 
Figs lIe and lId, the F(z) profile has the two maxima at high 0", which denote the 
existence of thermal boundary layers, coalescing to one maximum giving the profile 
a fundamental sinusoidal mode at low 0", and the To(z) profile displays small deviations 
from a linear profile when 0" is reduced, which are effects typical of mild convection. 

The variations of prime interest in this study are those of H(z). As 0" is lowered, 
the whole system tends closer to the conductive state, but does not reach it. However, 
as T is decreased, all the variables tend towards their configuration at the conductive 
state except for H(z) which grows quite markedly. This demonstrates the extent 
to which magnetic fields are amplified, and at the same time inhibit convective 
motions when the magnetic Prandtl number of the fluid is small. It should also be 
noted that at all times, the H(z) profile shows that the bulk of the perturbed magnetic 
field is induced at the bottom boundary; this lends support to the conjecture that 
magnetic fields are generated and anchored at the base of convective envelopes (Priest 
1982). 

4. Concluding Remarks 

The dynamic studies of steady hexagonal magnetoconvection, in a broad sense, 
agree with both the mean-field model (Van der Borght et al. 1972) and the kinematic 
model (Galloway and Proctor (983). However, relationships which were monotonic 
in the previous cases are no longer so; this is attributed to the fact that the 
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""",=...-0 
o 

(b) 

Fig. 10. Profiles over 0 .;; z .;; 1 showing the variation with r of the (a) vertical velocity W(z), 
(b) induced vertical magnetic field H(z), (c) temperature fluctuation F(z) and (d) mean temperature 
To(z), for R = 3 x lOS, Q = 100, (1 = 1 and a = 2·63. 
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Figs 10e and 10d. 
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(b) 

Fig. 11. Profiles over 0 :;;; z :;;; 1 showing the variation with a of the (a) vertical velocity W(z), 
(b) induced vertical magnetic field H(z), (c) temperature fluctuation F(z) and (d) mean temperature 
To(z), for R = 3 x 104, Q = 10, , = 10 and a = 2·63. 
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Figs He and Hd. 
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diffusivities play a much more significant role in the dynamic model presented, and 
it is the relative values of the diffusivities which determine the extent to which the 
dynamic terms (e.g. the Lorentz force) dominate in the system. 

From the linear theory (Chandrasekhar 1961) it is well known that, depending 
on the relative values of the diffusivities, the onset of magneto convective instabilities 
may be via an oscillatory bifurcation. It is apparent that a study of time-dependent 
hexagonal magnetoconvection is warranted as a natural extension of the model 
presented here. 

The question of non-uniqueness of the solution is one that is clearly very difficult 
to resolve, and the basis of which certainly requires further consideration. The nature 
of the boundary conditions chosen could also be significant in possibly eliminating 
the existence of these newly found solutions. 
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