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Abstract 

A cold plasma model which takes into account finite ion cyclotron frequency effects and multiple 
ion species has been developed for wave propagation in arbitrary magnetic field geometries. This 
model has been used to derive an elegant system of normal mode equations for a 10w-fJ diffuse 
linear pinch. From a soluble model, general features of the spectrum are discussed up to and 
including the ion cyclotron range of frequencies. It is indicated that in the vicinity of the ion-ion 
hybrid cutoff frequency, there could exist global eigenmodes which might be useful for supplementary 
heating of diffuse linear pinches. 

1. Introduction 

Studies of wave propagation in diffuse pinches are valuable in the development 
and evaluation of radio-frequency (r.f.) heating schemes and novel diagnostic 
techniques for magnetically confined fusion plasmas. Promising r.f. heating results 
have been obtained experimentally from the exploitation of the ion-ion hybrid 
resonance in tokamak plasmas (Hosea et al. 1982; Equipe TFR 1982). In the ion 
cyclotron range of frequencies, as well as at lower frequencies in the Alfven wave 
heating schemes (Appert et al. 1982a; de Chambrier et al. 1982; Ross et al. 1982), 
the geometry of the magnetic field configuration is important in determining eigenmode 
structures, a correct description of which is necessary for accurate antenna-plasma 
coupling calculations in various heating schemes. The ideal magnetohydrodynamic 
(MHD) model, which has been extensively applied in plasma stability studies, lends 
itself conveniently to the consideration of geometric effects. Unfortunately, this model 
is limited to plasmas with only one ion species and is restricted to cases of very low 
frequencies, compared with the ion cyclotron frequencies. It is the purpose of the 
present paper to develop new plasma models which are more suitable for wave 
propagation and r.f. heating studies at higher frequencies. 

In the next section, a model forlow-p plasmas, which includes finite ion cyclotron 
frequency effects and multiple ion species, is constructed from multi-fluid equations. 
Linearized equations are obtained for arbitrary geometry of the magnetic field 
configuration. The model developed is essentially a cold plasma model where plasma 
pressure is considered unimportant in determining the structure of higher frequency 
eigenmodes in a low-p plasma. 
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In Section 3, the linearized equations are reduced, in normal mode analysis of 
a diffuse linear pinch, to an elegant system of two coupled first order ordinary 
differential equations. This system is an extension of the corresponding pressureless 
system for ideal MHD (Appert et al. 1974). 

A spectral analysis is carried out in Section 4 for a soluble model of a diffuse 
linear pinch with two ion species. The new features which emerge are discussed in 
relation to the existing literature. The final section is a discussion of the significance 
of the new plasma model and its possible further developments. 

2. Plasma Model and Basic Equations 

In stable magnetically confined plasmas, the plasma gas pressure is usually much 
smaller than the total magnetic pressure. For such 10w-f3 plasmas, it is the magnetic 
pressure rather than the plasma pressure which is responsible for the propagation 
of shear A1fven waves and fast magnetosonic waves. Hence, as has been justified 
in many previous studies on r.f. heating (Adam and Jacquinot 1977; Messiaen et al. 
1978; Appert and Vaclavik 1982), a pressureless cold plasma model will provide 
a good approximate description of these modes of propagation. In the construction 
of a plasma model which extends the 10w-f3 ideal MHD model, many of the 
assumptions made in justifying the ideal MHD model will be made here. The 
important exceptions are (1) the low frequency assumption is relaxed by the inclusion 
of finite ion cyclotron frequency effects, and (2) the plasma is allowed to be composed 
of multiple ion species. The latter feature requires the development of an equation 
to replace the conventional Ohm law, which is appropriate only in a one fluid 
description. 

In a pressureless plasma, the equation of motion for particles of species (J( with 
mass rna. and charge qa. is 

(1) 

where v'" is the macroscopic fluid velocity. This set of equations is coupled to 
Maxwell's equations, 

v x E = -aBjat, v x B = J-LoU.x +aDjat) , (2a, b) 

where i.x is the extraneous current density and D is the electric displacement related 
in the usual way to the induced current density iin, which is defined by 

iin == L qa. n", v'" , 
'" 

(3) 

where na. is the number density of particles of species (J(. Total mass density Po and 
averaged macroscopic fluid velocity v may be introduced by the definitions 

(4a, b) 

To obtain a set of one fluid equations it is helpful, for clarity, to recapitulate what 
is normally done for the case of a plasma with one ion species. Multiplication of 
equation (1) by n"" followed by summation over the particle species, leads to the usual 
momentum transport equation. Linearization of this equation about a plasma 
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equilibrium with current density io and magnetic field Bo leads to an averaged 
linearized equation of motion 

Poov/ot =i x Bo +io x B, (5) 

where, here and below, vectors without the zero subscript denote perturbed 
quantities. We note that this equation is identical to the linearized equation of motion 
for the pressureless ideal MHD model. It is obtained when one makes the usual 
assumption that terms such as v. 'V'vo are small in comparison with ov/ot; that is, 
the equilibrium drift velocity Vo associated with io is small. The set of one-fluid 
equations of motion and Maxwell's equations is usually closed by a form of Ohm's 
law, which may be obtained from equation (1) by multiplying it by q"n"/m,, and 
summing over particle species. For the case of the ideal MHD model, some terms 
in this equation are then dropped, following physical arguments, to give the linearized 
equation 

E+v x Bo = O. (6) 

This procedure of closing the set of one-fluid equations fails for the case of a plasma 
with more than one ion species, because the quasi-neutrality condition, ~"q"n" = 0, 
is not sufficient to allow an elimination of variables giving the usual forms of a 
generalized Ohm law. In the following discussion, a linearized equation is derived 
which will fulfil the same function in closing the set of equations as a linearized 
Ohm law. 

A local orthonormal coordinate system (r, .1, II), based on a magnetic field line, 
may be introduced and the perturbed electric field may be written as 

E = Erer +El.(b x er) +Ellb, (7) 

where b = Bo/ Bo, er is a unit vector normal to the magnetic surface r constant, and 
b x er , orthonormal to b, is tangential to the surface. Consistent with the assumptions 
made in obtaining (5), the plasma equilibrium is regarded as stationary and the 
linearized equations of (1), Fourier analysed in time according to exp( -iwt), are 
solved individually in this system of coordinates in the guiding centre approximation 
(see Appendix 1). Appropriate summations of these solutions give 

-iwpov = T.E, (8) 

where 

T = eowBo{D(I-bb) +iSb xl}. (9) 

Here I is the unit matrix and, without confusion with the electric dIsplacement D in (2), 

(lOa, b) 

In the expression (1Oa), a unit constant has been dropped from S, since it is significant 
only in a very low density plasma. The plasma frequencies wp" and cyclotron 
frequencies Q" are defined in the usual ways: 

(lla, b) 
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We note that equations (8) and (9) together indicate that v. Bo = 0, which is 
consistent with (5) if io x Bo = 0, which is the pressureless approximation adopted 
in this paper. Equation (8) will be seen to be a suitable generalization ofthe linearized 
Ohm law. Indeed, noting that as 0) ~ 0, then S ~ Po/80 B ~ and D ~ 0, one finds 
v = E x Bol B~ which is equivalent to (6) when v. Bo = 0. Just as the linearized 
Ohm law (6) is not simply another version of the linearized equation of motion (5), 
even though they are derived from the same initial set of equations (1), we also note 
that equation (8), being obtained from a different summation (averaging) procedure, 
is an equation independent from (5) and contains additional information despite its 
rather deceptive appearance. Equation (8) allows the set of linearized equations to 
be closed. 

To make the connection with the ideal MHD formulation more transparent, a 
linearized fluid displacement vector I; is introduced by v = 01;101. When the 
appropriate equations are collected together, a basic system of linearized equations in 
1;, E and B is obtained: 

-/loPo0)21; = (\1 x B) x Bo +(\1 x Bo) x B, 

- Po 0)21; = T. E, 

iO)B = \1x E. 

(12) 

(13) 

(14) 

The tensor T is .related to the 'cold' plasma dielectric tensor K (Stix 1962) by the 
equation 

T = i 8 0 O)Bo x K. (15) 

In fact, if the solutions of the linearized equations of (1) were added together in a 
different but more conventional way (see Appendix 1) and then substituted into (2), 
the resulting equation would be 

\1 x B = (-iO)lc2)K.E. (16) 

From the foregoing remark, the system of equations (14) and (16) is evidently 
equivalent to the system (12)-(14) adopted above. The first system may be regarded 
as a generalization of the cold plasma theory to include the structure of a helical 
magnetic field configuration, which leads to a geometrically modified form of the 
dielectric tensor. The second system may be regarded as a generalization of 
pressureless ideal MHD theory to include finite frequency effects and multiple ion 
species. In some antenna-plasma coupling calculations, it may be more straight
forward and natural to use the former system of equations. However, for the 
purposes of the present paper, the latter system is used in order to show a clear and 
unambiguous connection with ideal MHD theory and to extend the elegant formula
tion of that theory (Appert el al. 1974). 

3. Normal Mode Equations for a Diffuse Linear Pinch 

Within the limitations imposed by the simplifying assumptions made in the 
previous section, the plasma model developed is applicable to arbitrary magnetic 
field geometry. In this section, the model is used to derive normal mode equations 
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for a diffuse linear pinch. The cylindrical approximation for toroidal pinches has 
been shown (Appert et al. 1982b) to be adequate for the description oflow frequency 
Alfven wave propagation in 10w-f3 tokamaks. Also, on account of the shapes of the 
magnetic isobar surfaces, it is likely to be a good approximation for high-f3 toroidal 
plasmas, such as reverse field pinches, even at higher frequencies of wave propagation. 

In the most general and elegant ideal MHD formulation of a diffuse linear pinch 
(Appert et al. 1974), the normal mode equations have been reduced to a pair of 
coupled first order ordinary differential equations. The problem of high frequency 
wave propagation in helical magnetic field configurations, however, has been considered 
only approximately by using special cases of the system of equations equivalent to 
(14) and (16) (Adam and Jacquinot 1977; Messiaen et al. 1978; Sy and Cotsaftis 
1979) or by using the pressureless ideal MHD equations with Ohm's law augmented 
perturbatively by a Hall term (Appert and Vaclavik 1982). In the present section, 
this problem is treated in a more general way and the elegant formulation for the 
ideal MHD model (Appert et al. 1974) is shown to be extendable to the case of high 
frequency wave propagation in a diffuse linear pinch with multiple ion species. 

On account of the helical structure of the equilibrium magnetic field Bo, given 
in cylindrical coordinates (r, 9, z) by 

(17) 

the components of a vector in (r, 9, z) coordinates are related to the components in 
local field line coordinates (r, _L II) by a transformation matrix M given by 

(18) 

It is convenient to introduce the new dependent variables 

Q == -E.l./iwBo, R == Er/i wBo . (l9a, b) 

These variables are related to the displacement vector ~ through equation (13), from 
which it may be deduced that 

er = (eoB~/po)(SQ -iDR), (20a, b) 

At low frequencies, when I wiD" I -+ 0, it may be shown from equations (10) that 
S = poleo B~ and D = 0 and hence er = Q and e.l. = R. That is, Q may be regarded 
as a finite frequency generalization of the radial displacement e" which is an important 
variable in ideal MHD theory. The introduction of another variable, which is the 
magnetic pressure perturbation along Bo, 

(21) 

leads to a form of equation (12) given by 

(22) 
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The aim of the subsequent elimination is to show that, in close analogy to ideal MHO 
theory, equations (14) and (22) may be reduced to an elegant system of coupled first 
order ordinary differential equations in P and Q. For this purpose, a Fourier analysis 
in the ignorable coordinates e and z is made by taking a perturbed field component 
to vary as exp(i me + i kz). It is then convenient to introduce the functions 

F == mBoe/r + kBoz , G == kBoe-mBoz/r. (23a, b) 

From the condition of a pressureless equilibrium, 

dB~/dr = - 2B~e/r, (24) 

it may be shown from the definition (21) that 

. B~ d . Bo~Q 
floP = 1GBoR - r d/rQ) + -r-' (25) 

In an algebra which closely parallels that for the ideal MHO equation (Appert et al. 
1974), it may be shown (Appendix 2) from (14) and (22) that 

ABoR = -iGP _ :J2FB~eBoz + B6 ~2D)Q, (26) 

and the desired system of coupled equations is 

where 

4:,crQ) = C1Q-C2P, 

AdP/dr = C 3 Q -C1P, 

A == flol{(B~w2S/e2)-F2}, 

C = 2B~ew2S + Gw2BOD 2mFBoe 
1 - flo re2 flo e2 - flo r2 ' 

(27) 

(28) 

(29a) 

(29b) 

C2 == (W2S/c2)_{k2 + (m 2/r2)) , (29c) 

C3 == A{A + ~(2B~i)2 + ~~(Boe)2}_ (B~~22D + 2Boe Boz F) 2 
, (29d) 

flo rBo flo dr r flo e flo rBo 

with F and G given by equations (23), and Sand D by (10). At low frequencies 
we have B ~ w2 S/ flo e2 = Po w 2 , Q = ~r etc.; these equations reduce to the correspond
ing equations of pressureless ideal MHO theory (Appert et al. 1974). The equations 
derived by previous authors, including finite ion cyclotron frequency effects (Adam 
and Jacquinot 1977; Messiaen et al. 1978; Sy and Cotsaftis 1979; Appert and 
Vaclavik 1982), may be obtained as special cases of the present system. 

Equations (27) and (28) may be combined to give a single equation having the 
formal structure of a Sturm-Liouville equation: 

(30) 
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where N == (C2 C3 - Ci)/A. Such an equation is useful for calculation of the detailed 
structures of the eigenmodes. However, the coefficients in the equation are rather 
complicated, with the possibilities of zeros and infinities corresponding to the 
existence of cutoffs and resonances. Attempts to obtain general spectral properties 
directly from this equation can lead to incorrect results, as has been shown, for 
example, in the discussion of the continuous spectra of the ideal MHD case by Appert 
et al. (1974), who have also indicated that the system of coupled equations such as 
(27) and (28) is much more reliable for such purposes. 

4. Spectrum of a Soluble Model 

A spectral problem, which is of practical significance for r.f. heating of a diffuse 
linear pinch, may be posed as follows. Given a magnetic field configuration and 
a set of mode numbers (m, k), what sorts of waves can propagate as the driving 
frequency w is varied over a range validly covered by the plasma model described 
by equations (27) and (28)? Such a question is meaningful, strictly speaking, only 
for a specific magnetic field configuration. General statements could perhaps be made 
for certain classes of equilibria, which are generically similar in some restricted sense. 
In this section, the problem is discussed for a simple analytically soluble model, which 
will give insight into the solutions of more realistic and complicated cases. 

Let us consider a 'feeble' diffuse linear pinch with uniform density, a uniform axial 
magnetic field and a small uniform axial current density such that 

(31) 

where a is the plasma radius. To order 8 2, the equilibrium has negligible plasma 
pressure, the magnetic field strength Bo is uniform and hence S, D, F, A and C3 

in equations (29) are all constants independent of the radius. In this case, to order 
81, the model is analytically soluble and further calculations show that (30) can be 
reduced to a standard Bessel differential equation 

1 d (dP) (2 m2) - - r- + k - - P = 0 
r dr dr r r2 ' 

(32) 

where the radial wavenumber is defined by 

(33) 

which is independent of the radius. The physical solutions to (32), which are finite on 
the axis r = 0, are Jm(1 kr I r) when k; > 0 corresponding to oscillatory eigenmodes and 
Im(1 kr Ir) when k; < 0 corresponding to evanescent eigenmodes. The precise discrete 
set of eigenvalues k; depends on the actual boundary conditions. For example, for 
the case of a perfectly conducting cylinder at the plasma surface we have k; a2 = ,~ 
(n = 1,2,3, ... ), where en are the zeros of the Jm Bessel function. Otherwise, k; is 
determined from more complicated boundary equations. Nevertheless, it is possible 
to obtain a general picture of the positive w 2 spectrum and to predict the types of 
eigenmodes that may be excited at a given frequency by simply plotting k; given 
by (33) as a function of w. 
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Consider a plasma with two ion species where, for definiteness, a == QdQ2 ~ 1. 
In the computation of (33), it is convenient to normalize the frequencies with respect 
to the cyclotron frequency of the first ion species Q1 by introducing v == wlQl' 
Similarly, the wavenumbers may be normalized with respect to lla, the reciprocal 
of the plasma radius, by defining K == ka and Kr == kr a. It follows from equations 
(10) and the quasi-neutrality condition that 

a2w 2S 
-;;r= 

r2 2 (I] + a -al])(v2 -V~B) 
-Kc V (v2-1)(v2-a2) , (34) 

a2w2 D 
~= 

22 v(v 2-1+I]-a21]) 
-Kc v (v2-1)(v2-a2) (35) 

In these expressions, I] is the charge concentration of the first ion species, 

and VHB is the dimensionless Buchsbaum ion-ion hybrid frequency defined by 

(36) 

where Vc is its associated cutoff frequency. A characteristic normalized wavenumber 
Kc has been introduced, in convenient units, by 

(37) 

where Zl and Al are respectively the charge and atomic number of the first ion species, 
ne is the electron number density in units of 1021 m - 3 and a (cm) is the plasma radius. 

Since for a given K, Kr generally increases with v, apart from regions of cutoffs 
and resonances, it is convenient for clarity of illustration to plot K; Iv2 K; against v. 
Application of expressions (34) and (35) to equation (33) leads to the radial dispersion 
relation, 

(38) 

where 

.;V == - v2 K~(V2 -v~) +2K(K + em)(1] + a-al])(v2 - V~B) 

+ 28Kv(v2 -1 +1] _a21]) + K 3(K + 2em)(v2 -1)(v2 _a2)/v2 K; , (39a) 

!!J == - v2 K;(IJ +a-al])(v2 - V~B)- K(K + 28m)(v2 -1)(v2 _a2). (39b) 

In the absence of a current (8 = 0), the radial dispersion relation is degenerate in 
the sense that it is· independent of the azimuthal mode number m; this case is 
illustrated in Fig. 1. The presence of a current (8 -# 0) removes this degeneracy as 
shown in Fig. 2. It is evident from these plots that the frequency spectrum generally 
has a resonance (singular point)-cutoff (turning point) doublet around the ion 
cyclotron frequencies and a cutoff-resonance-cutoff triplet at much lower frequencies. 
The components of the higher frequency doublet VBR and vBC (Fig. 1) are respectively 
the ion-ion hybrid resonance frequency and its associated cutoff. Exploitation of 
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Fig. 1. Dispersion curves for a two ion species, currentless plasma (8 = 0). The 
parameters are the electron density no = 1020 m - 3, plasma radius a = 10 em, 
IX = 0'5, 11 = 0·3 and k = 0·1 cm-1• 
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Fig. 2. Modification of the dispersion curves due to the presence of an axial current 
with 8 = 0'2; other parameters are as in Fig. 1. 
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such a structure in the frequency spectrum has led to successful r.f. heating of 
magnetically confined plasmas in the ion cyclotron range of frequencies (Hosea et al. 
1982; Equipe TFR 1982). In the case of the lower frequency triplet, VAR is the shear 
Alfven resonance frequency, v AC is its associated cutoff and VFC is the usual fast 
magneto sonic wave cutoff. This spectral structure has recently been intensively 
investigated for application in the Alfven wave heating schemes (de Chambrier et al. 
1982; Ross et al. 1982). 
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The eigenmodes in the frequency range v AC < V < V AR, which could exist even in 
a plasma with only one ion species, have been variously called global Alfven waves 
(Appert et al. 1982a) or discrete Alfven waves (de Chambrier et al. 1982). In the 
absence of current (8 = 0), they have been discussed by Stix (1957), who called them 
ion cyclotron waves and called their associated resonance v AR' the perpendicular ion 
cyclotron resonance. However, it follows from equations (39) that it is only in the 
limit K ~ 1 that the eigenfrequencies approach the ion cyclotron frequency (Stix 
1957); otherwise, the finite ion cyclotron effect is only one of a number of possible 
effects which determine the dispersive properties of this branch of eigenmodes (Appert 
and Vaclavik 1982). For cases where Kis finite and of order unity, the eigenfrequencies 
are normally much less than the ion cyclotron frequency, and it is therefore preferable 
to call these modes global or discrete Alfven waves. 

For typical densities of magnetically confined plasmas, the eigenmodes in the 
branch VFC ~ v < VBR have very large radial wavenumbers K" with many nodes in 
the eigenfunctions. Coupling of r.f. energy to these high order eigenmodes from an 
external antenna is usually much less efficient than coupling to low order eigenmodes. 
Excitation of low order eigenmodes in the vicinity of VBR and VBC has recently been 
shown to be possible (Kieu and Sy 1983) for currentless non-uniform plasmas. The 
study of eigenmodes in a current-carrying plasma column using the system of 
equations (28) and (29) has recently been carried out by Cramer and Donnelly (1984). 
These eigenmodes might be useful for supplementary heating of plasma ions in diffuse 
linear pinches. 

5. Discussion 

A plasma model has been developed which includes finite ion cyclotron frequency 
effects and the possibility of multiple ion species. This model, which may be regarded 
as an extension of the pressureless ideal MHD model, has been shown to be 
equivalent to the cold plasma model with an arbitrary magnetic field structure. 
Although the model is still incomplete in the sense that a number of physical effects 
has been neglected, it is believed nevertheless that it will be a useful approximate 
model for the study of certain aspects of r.f. heating schemes for magnetically confined 
plasmas. 

The pressureless approximation, which has been made in nearly all previous studies 
on r.f. heating in the literature, is justifiable for 10w-f3 plasmas, particularly at higher 
frequencies. The normal mode equations generally possess spatial singularities, which 
are associated with the existence of continuous spectra in a nonuniform plasma. 
Among many possibilities, such singularities may be removed by dissipative processes 
or finite Larmor radius effects. Exactly which effects are dominant will depend on 
the specific physical situation considered and a general discussion on the regularization 
problem is not appropriate at this stage. Nevertheless, despite the mathematical 
problems associated with the presence of the singularities, useful estimates on energy 
absorption by the plasma in an r.f. heating situation may be obtained (Chen and 
Hasegawa 1974; Tataronis 1975), since the continuous spectra themselves lead to 
'phase-mix' dissipation even in a conservative system. Such problems will be 
discussed elsewhere. 

In the case of a diffuse linear pinch with multiple ion species, it has been shown 
(Section 3) that the new plasma model admits a system of normal mode equations 
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which have the same elegant structure as that for ideal MHD theory (Appert et al. 
1974). Such a formulation will facilitate the numerical solution of the problem for 
a given plasma equilibrium, since a number of computing codes already exist for 
the ideal MHD case. The case of a soluble model with uniform density and a small 
uniform current has been used (Section 4) to illustrate some new features in the 
spectrum at higher frequencies. The presence of another ion species has led to 
ion-ion hybrid resonances and associated cutoffs in the ion cyclotron range of 
frequencies. The similarities and differences between the spectral structure in the ion 
cyclotron range of frequencies and the spectral structure at the lower frequencies of 
the Alfven wave heating schemes have been made evident. The simple illustrative 
model used has led only to degenerate 'point-like' characteristic frequencies. In more 
realistic plasmas with non-uniform densities and magnetic field strengths, these 
characteristic frequencies form continuous frequency bands, corresponding to the shear 
Alfven continuum v AR, the ion-ion hybrid continuum VBR and their associated cutoff 
continua v AC, VFC and VBC• 

Since the ion-ion hybrid global eigenmodes can have frequencies close to an ion 
cyclotron frequency by a suitable choice of relative ion charge concentrations, it might 
be possible to combine good plasma-antenna coupling from eigenmode excitations 
with a significant wave-particle absorption mechanism to produce optimal ion heating 
in a diffuse pinch. Such problems appear to be worth while subjects for further 
investigation. 
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Appendix 1. Guiding Centre Motion in a Helical Magnetic Field 

The linearized equations of motion of (1) are 

-iwmv = q(E +v x Bo), 

W. N-C. Sy 

(AI) 

where the subscript IX has been omitted, without confusion, for the moment. 
Equation (AI) is solved locally, in the small Larmor radius approximation, along 
a helical magnetic field line in the orthonormal coordinate system with unit vectors 
e" e.l == b x er as b = Bol Bo as introduced in (7). If one writes 

(A2) 

where B = qll q I, then equation (AI) has the solution 

(A3) 

where Q = qBo I m. Written in the orthonormal coordinate system with 

and so on, and summed over particle species IX, the solution for the one fluid velocity 
vas defined by (4) is given by 

-iwPov=T.E, (A4) 

where the quasi-neutrality condition has been used and, in the localized field line 
coordinates, 

(AS) 

with Sand D as defined in equations (10). This result, written in a coordinate 
invariant form, is equation (9). 

If on the other hand, instead of summing for the one fluid velocity by 
Po v = ~~ m~ n~ v~ as done above, we sum for the induced current by j = ~~ q~ n~ v~, 
then we have 

j = -iwBoK.E, (A6) 

where K is the cold plasma dielectric tensor (Stix 1962), when j and E are expressed 
in localized field line coordinates. Substitution of this result into (2) gives equation 
(16) as stated in Section 2. Equations (A6) and (A4) are consistent if E . Bo = 0, which 
is the case when the frequencies are much less than the plasma frequencies. 

Appendix 2. Derivation of the Normal Mode Equations 

From Faraday's law \l x E = - oBlot and the definitions (19), it follows that 

Br = iFQ, (A7a) 
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Bo = i kBo R - d(Bo9 Q)jdr , 

Bz = -imBoRjr -(ljr)d(rBozQ)jdr, 
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(A7b) 

(A7c) 

where Fis defined in equation (23a). Application of these expressions to (22), together 
with the observations that 

gives, after a little algebra, 

iG d( ) 1 (W2S k2 m2) i (W2BOD 2kBoo) --rQ---- -~BoR=---+--Q 
f.Lo r dr f.Lo c2 r2 f.Lo c2 r ' 

(A8) 

(A9) 

Combinations of equation (A9) with (25) give (26) and (27) in Section 3, where it is 
useful to note the following simple identities: 

(A lOa, b) 

(AlOe) 

Finally, the radial component of (22), together with equations (26), (27), (A7) and 
(AlO) after some calculation, gives (28). 
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