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Abstract 

It is shown that the value of the d.c. current driven in a plasma cylinder by means of a rotating 
magnetic field (RMF) is not unique for R/o ;;:; 6 and eB",/vel m ~ R/o, where R is the radius of the 
plasma cylinder, a is the classical skin depth, Vel is the electron-ion momentum transfer collision 
frequency, B", is the magnitude of the rotating magnetic field, e is the electron charge and m is the 
electron mass. This effect is predicted using three distinct approaches: (i) a steady state analysis 
which ignores the second and higher harmonics of the fields and currents; (ii) a qualitative model 
which utilizes the analogy between the RMF current drive technique and the operation of the 
induction motor; (iii) a solution of the initial boundary value equations describing the RMF current 
drive in cylindrical plasmas. 

1. Introduction 

The rotating magnetic field (RMF) current drive technique is described in a number 
of theoretical and experimental papers (see Jones 1984 and the references therein). 
The purpose of this work is to report an interesting phenomenon that has not been 
recognized in earlier papers, namely that the value of the steady state d.c. current 
driven in a given plasma cylinder is not unique for RI(j ;:;:; 6 and eBw/Vei m ~ RI(j, 
where R is the radius of the plasma cylinder, (j is the classical skin depth, Vei is the 
electron-ion momentum transfer collision frequency, Bro is the magnitude of the 
rotating magnetic field, e is the electron charge and m is the electron mass. This effect 
is more pronounced for large values of RI(j; the findings of this work may, therefore, 
be useful in the design of future experiments (which will have larger values of RI(j). 

In Section 2 we present the simplest model that can be adopted to study the RMF 
current drive: an infinitely long plasma cylinder with a massless cold electron fluid 
and a uniform distribution of immobile ions. An approximate steady state analysis 
of this model is given in Section 3. In this steady state analysis, the effects of the 
second and higher harmonics of the fields and currents are neglected. The 
approximate equations are much simpler than the general equations and the 
simplicity of the analysis allows one to obtain a deeper insight into the physical 
mechanism of the RMF current drive. It is also possible to obtain solutions for 
large values of RI(j in a reasonable amount of computing time. The solutions 
presented in Section 3 reveal the fact that the value of the d.c. current driven in the 
plasma is not unique for RI(j ;:;:; 6 and wce/vei (= eB,,,/vei m) ~ RI(j. 
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The analogy between the RMF current drive technique and the operation of the 
induction motor (Hugrass 1984) is briefly reviewed in Section 4. Here it is shown that 
the predictions of an analysis which examines the operation of a simple induction 
motor are in agreement with the results presented in Section 3. 

The analysis presented in Sections 3 and 4 indicates the existence of three different 
steady state solutions for a certain range of wee/Vei' Only two of these are stable 
solutions which can be obtained using an initial value analysis. This conclusion is 
confirmed in Section 5 where the initial boundary value equations are solved for 
R/tJ values of 4 and 7. It is found that, for R/tJ = 7 and in the region wee/Vei ~ 7, 
the steady state value of the d.c. driven current depends on whether the RMF 
approaches its final steady state value from a higher or a lower initial value. 

The results and conclusions are given in Section 6 where the relevance of this 
effect to the interpretation of some early experimental results and to the design of 
future experiments is discussed. The limitations of the analysis are also identified. 

2. Physical Model 

For the purpose of the analysis presented in Sections 3 and 5 we consider the 
simplest physical model of the RMF current drive (Jones and Hugrass 1981; Hugrass 
and Grimm 1981). In this model the infinitely long cylindrical plasma is composed 
of a massless cold electron fluid and a uniform immobile ion population. The 
resistivity 11 is uniform and isotropic and is related to the number density n and the 
electron-ion momentum transfer collision frequency Vei through the classical formula 

11 = mveJne2 • (1) 

The externally applied magnetic field is given by 

B = BwcoS(Wf-e)r +Bwsin(wt-e)G +BaZ, (2) 

where Ba is a uniform axial magnetic field. The fields and currents satisfy Maxwell's 
equations 

V xE = -oB/ot, v x B = flo J (3,4) 

and the appropriate form of the generalized Ohm law (see Jones and Hugrass 1981) 

E -(l/ne)J x B = I1J. (5) 

3. Steady State Analysis 

In this section, we develop an approximate steady state analysis for the model 
described in Section 2. It has been shown that, in the steady state, all the physical 
quantities (i.e. scalar quantities or components of vector quantities in cylindrical 
coordinates) are functions of wt - e (Hugrass 1982). It follows that any such quantity 
Q can be represented as a sum of harmonics: 

Q(r,e,t) = Qo(r) + I Qm(r)exp{im(wt-e)}. 
m 

It has also been shown that each physical quantity can have either even harmonics 
(including a d.c. part) or odd harmonics. For the given applied fields, the field and 
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current components which have a d.c. part and even harmonics are Bz , Eo, EY' Jo 
and Jr' The field and current components which have only odd harmonics are BY' 
Bo, Ez and Jz. In the following analysis, the second and higher harmonics will be 
neglected. The equations will relate either steady components or the complex 
amplitudes of first harmonic components. The steady components are denoted by 
symbols with the subscript zero, e.g. Eoo,]oo, ... etc., while the first harmonic parts 
are denoted by the subscript one, e.g. Ezl , Jzl ,'" etc. The standard phasor notation 
is followed, for example, 

Ez = Rel[Ezl exp{i(wt-8)}]. 

Using Faraday's law (3) one obtains 

Eoo = 0, 

The 8 and z components of Ohm's law (5) are 

(6,7) 

(8) 

(9) 

where the asterisk denotes the complex conjugate. Using equations (7) and (9) we 
conclude that Ezl and Jzl are in phase. It follows that 

(10) 

(11) 

The other equation relating Jzl to Ezl is obtained by using Maxwell's equations (3) 
and (4): 

(12) 

It follows that 

(13b) 

The solution to equation (I3b) which matches the externally applied field (2) for 
r ~ R is given by 

(14) 

where Cl is an arbitrary constant. The value of Cl is obtained by invoking the 
continuity of Bd and BOl at the boundary surface r = R; it follows that both Ezl 
and oEzIior are continuous at r = R. The solution to (13a) in the region ° ::::; r ::::; R 
should, therefore, satisfy the boundary condition 

(15) 
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The analysis is made more transparent by normalizing equations (13a) and (15). 
We define the dimensionless quantities: 

x = r/R. 

The normalized axial electric field satisfies the equation 

d2E 1 dE (1 2iA.2) 
dX2 + X dX - X2 + 1 +!y~ EE */X2 E = 0 

in the region 0 .:::;; X:::;; 1, and 

E+dE/dX= 2 

(16a, b) 

(16c) 

(16d,e) 

(17) 

(18) 

at X = 1. The field and current components can be obtained in terms of E: 

1 Ezl 

= 1+!y2(r) ti' 

1 
- 1 + 2jy2(r) newr . 

(19a) 

(19b) 

(19c) 

(19d) 

It is clear from equation (17) that the system is completely specified in terms of 
two dimensionless parameters. These are the ratio of the plasma radius R to the 
classical skin depth b, A. = R/b, and the ratio of the electron cyclotron frequency 
Wee to the electron-ion momentum transfer collision frequency Vei, yO) = eBO)/mvei = 
Wee/Vei. It is not possible to obtain a general analytical solution to equation (17) 
for arbitrary values of A. and yO). However, we will consider here two limiting cases 
where equation (17) is approximately linear and an analytical solution can be obtained. 

Linear limit yO) --+ O. In this limit, equation (17) is simplified to 

d2E 1 dE (1 . 2) 
dx 2 + XdX - X2 +2iA. E = O. (20) 

The solution that satisfies the boundary condition (18) is 

(21) 
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In this linear limit, the field and current components are given by 

2wRBro ((1') , ) 
Ezl = (1 +i)Uo((1 +i)A.) 11 +1 AX , (22a) 

Bro 2/1((1+ i)A.X) 
riB = 10((1+i)A.) (1+i)A.X ' (22b) 

Joo = O. (22c,d) 

Fig. 1 shows bo and br (i.e. I BOll/Bro and I Brll/Bro) plotted against rlR for A. values 
of 4 and 7, which illustrates the classical skin effect. 
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Fig.t. Normalized azimuthal and radial components of the magnetic 
field plotted against rJ R for A values of (a) 4 and (b) 1. 

Strongly nonlinear limit Yro ~ A.. In the limit Yro ~ A. the system is strongly 
nonlinear since the (nonlinear) Hall term in Ohm's law (5) is much larger than the 
(linear) resistive term. It is surprising that equation (17) becomes linear in this limit: 

d 2E 1 dE 1 
dX2 + X dX- X2E = O. (23) 
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The solution to this equation is 

E=X 

and the field and current components are given by 

J80 = - newr . 

(24) 

(25a, b) 

(25c, d) 

This solution corresponds to a perfect penetration of the RMF into the plasma 
(equation 25b) and to the electron fluid rotating synchronously with the magnetic 
field (equation 25d). 
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Fig. 2. Normalized steady azimuthal current IX. plotted against Yeo For 
the three values of A indicated. 

It is thus seen that analytical solutions to equation (17) can be obtained for Ym ~ 1 
and for Ym ~ A. In the intermediate region, where 1 :::;; Ym :::;; A, the solution is obtained 
numerically. The numerical method for solving equation (17) for general Ym and A 
is described in the Appendix. Fig. 2 shows the variation of the normalized steady 
azimuthal current 0(. with Ym for different values of A. Here 0(. = 180/I~, where the 
total azimuthal current per unit length is 

and 

I~ = f: newr dr = !newR2. 

It is seen that for Ym ~ A, 0(. is much smaller than 1, while for Ym ~ A, 0(. is very nearly 
equal to its maximum possible value of 1. In the region Ym '" A, 0(. is a very sensitive 
function of Ym' It is also seen that for A ~ 6 the curve has a region of negative slopes 
In this region, 0(. can have one of three possible values for the same Ym' This mean. 
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that it is possible to drive three different values of the steady state d.c. azimuthal 
current in a given plasma cylinder for the same value of the applied RMF. The 
three possible steady states are characterized by different degrees of the penetration 
of the RMF in the plasma. Fig. 3 shows br plotted against rlR for Rio = 10 and 
wee/vei = 12 and for the three steady states IX, of o· 26, 0·83 and 0·85. It is clear that 
the higher values of IX, correspond to steady states with deeper penetration of the 
RMF in the plasma. 
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Fig.3. Plot of br against r/R for Rio = 10 and wee/Vel = 12. The three 
curves correspond to the three possible values of 0(, indicated. 

4. Induction Motor Model 

In the RMF current drive technique, the RMF continually imparts angular 
momentum to the electron fluid. The electron fluid rotates under the influence of 
this electromagnetic torque and, in the steady state, the electromagnetic torque is 
exactly balanced by a retarding frictional (collisional) torque due to the relative 
rotation between the electron fluid and the ion fluid. The ion fluid is essentially 
stationary and relaxes the angular momentum, which is imparted to it collisionally 
(from the electron fluid), to the surrounding environment. 

In a previous paper (Hugrass 1984) it has been shown that the RMF current drive 
technique is analogous to the operation of the induction motor. In both systems, 
the medium for the transfer of power and angular momentum is an RMF generated 
by means of a polyphase winding. The electron fluid is analogous to the rotor and 
the ion fluid to the mechanical load. The analogy, although qualitative in nature, 
proved useful in understanding the physics of the RMF current drive. It will be 
shown now that this simple model confirms the findings obtained by the steady state 
analysis in Section 3. 

Fig. 4 shows a conceptual induction motor. The magnetic field, which has a 
magnitude Bro and rotates about the axis at an angular frequency w, is generated by 
means of a polyphase stator winding (not shown). The rotor consists of a rectangular 
coil of resistance Re and inductance Le. In the steady state the rotor rotates at an 
angular frequency Wm ~ wand the electromagnetic torque T is exactly equal to the 
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Fig. 4. A conceptual induction motor. 

Fig. 5. Normalized torque TIT mox plotted against normalized angular 
frequency wm/w for the three values of Am indicated. The load linecor responds 
to a mechanical load torque proportional to the angular frequency. 
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Fig. 6. Plot of wm/w against Bw for an induction motor for 
the three values of Am indicated. 
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retarding torque of the mechanical load Tm. The performance of the motor depends 
on the value of the dimensionless parameter Am = wLe/ Re. This parameter is 
analogous to the parameter A = R/fJ defined in Section 3 for the RMF current drive. 
Fig. 5 shows the normalized torque T/Tmax plotted against the normalized angular 
frequency wm/w for Am values of 5, 10 and 20. A load line is also shown, corresponding 
to T proportional to Wm' The operating point is defined by the intersection of the 
load line and the motor characteristics since it must satisfy both. It is seen that 
there is a unique operating point for Am = 5. For Am values of 10 and 20, there are 
three possible operating points. As explained in Hugrass (1984), the curves of wm/w 
against Bm for the induction motor are analogous to the curves of I/ir against wee/ve; 
for the RMF current drive system. Fig. 6 shows these curves for Am values of 5, 10 
and 20. These curves correspond to RMF current drive systems with different R/fJ 
(one should again stress the qualitative nature of this argument). It is seen that the 
value of the driven current is not unique for systems with large R/fJ, in complete 
qualitative agreement with the results obtained in Section 3. 

5. Initial Value Problem 

In this section we study the physical model presented in Section 2 as a mixed 
initial boundary value problem. It has been shown (Jones and Hugrass 1981; Hugrass 
and Grimm 1981) that all the field and current components can be expressed in terms 
of the axial component of the vector potential A z and the axial component of the 
magnetic field Bz (with A defined by B = V x A). These two components satisfy 
the equations 

oAz = ..!L '12 A + _1_(OAz oBz _ oAz OBz) 
ot J.lo Z J.lo ner or o(} 00 or ' 

(26) 

oB. = ..!L '12 B + _1_(0'12 Az oAz _ 0'12 Az OAz) . 
ot J.lo z J.lo ner or o(} 00 or 

(27) 

The physical significance of equations (26) and (27) becomes more apparent if they 
are written in a dimensionless form. This transformation is defined by the equations 

T = wt, x= r/R, '1'2 = R2V 2 , 

B = 2Bz / J.lo newR2 . 

The dimensionless equations are 

oA 1 12 1 (OA oB oA OB) 
oT = 2A 2 V A + 2X oX 0(} - o(} oX ' 

oR 1 1 (0'112 A oR 0'1,2 A OR) 
oT = 2A2 V,2R + 2A4X 2 --ax- o(} - ---ae oX . 

(28a, b,c) 

(28d, e) 

(29) 

(30) 

The boundary condition for A is given in terms of its harmonics (Am' m = 1,2, ... ) 
defined by 

A = L Am exp(i m(}) . (31) 
m 
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Each harmonic satisfies the condition 

where 

Amex = 0, for m =1= 1. 

The boundary condition for B is 

a 
?-
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Fig. 7. Modes of time variation of the parameter ),,,,. 
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Fig. 8. Plot of IXs against l'oo for A. values of 4 and 7. 
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(32) 

(33) 

(34) 

(35) 

where Ba is the value of the externally applied steady axial field. We note that the 
value of Ba merely introduces an additive constant since only derivatives of B appear 
in equations (29) and (30). 

It is clear from equations (29), (30) and (33) that the system is completely defined 
in terms of two dimensionless parameters, namely A = R/b and y", = eBw/mvej • The 
equations are solved numerically using the finite difference method for a certain value 
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of.A.. (Details of the numerical method are given in Hugrass and Grimm 1981.) The 
value of the parameter Q(s (= 1801I~ in the steady state) is obtained from the solution 
using the equation 

Q(s = 1 B(X=O)-B(X= 1) I· (36) 

The parameter 1'", varies with time in either one of the two modes depicted 
schematically in Fig. 7. For mode A, 1'",(t) grows monotonically from the initial value, 
1'",(0) = 0, to its steady state value. For mode B, 1'",(t) grows initially to a high 
transient value then decays exponentially to a smaller steady state value. Fig. 8 shows 
Q(s plotted against 1'", for A. values of 4 and 7. Points obtained by using the 1'",(t) 
variation as in mode A are denoted by circles, whereas points obtained with the 
1'",(t) variation in mode B are denoted by stars. It is seen that, for A. = 4, Q(s does 
not depend on the mode of variation of 1'",(t) but only on the steady state value 1'"" 
and the curve is single valued. For A. = 7, the curve is not single valued in the region 
1'", ~ 7. It is seen that the value of Q(s obtained with 1'",(t) varying as in mode B is 
larger than that obtained for 1'",(t) in mode A (see Fig. 7). The dotted part of the 
curve in Fig. 8 corresponds to a third value of Q(s· which is not accessible using the 
initial boundary value approach. This part of the curve can only be obtained by 
using a steady state analysis as in Sections 3 and 4. It is worth while to mention 
here that this multi-valued nature of the characteristic curve of Q(s against 1'", was 
not recognized in the earlier work of Hugrass and Grimm (1981) since 1'",(t) was 
allowed to vary only as in mode A. As mentioned in Section 3, the non-uniqueness 
of the solution becomes more apparent for higher values of A.. Unfortunately the 
computing time increases very rapidly with A. and the value of 7 was chosen as a 
compromise. 

We also note that, although the results obtained in this section are qualitatively 
similar to those obtained in Section 3, there is a noticeable quantitative difference 
in the value of Q(s at the transition region where Q(s is very sensitive to 1'0>" This difference 
is attributed to the neglect of the second and higher harmonics in the analysis in 
Section 3. 

6. Discussion and Conclusions 

In this paper we report a new property of RMF current drive systems, namely 
that the steady state value of the d.c. current driven in a given plasma cylinder is 
not unique for Rib ~ 6 and wce/vei '" Rib. We note that future experiments will 
have larger dimensions and possibly higher electron temperatures, and consequently 
the value of Rib is expected to be very high. As stated in Section 3, the non-uniqueness 
of the solution becomes more apparent the higher the value of Rib. Guided by the 
results of this work, it may be advisable to design r.f. power sources capable of 
delivering high power for a short period followed by a lower power for a much longer 
period, i.e. the r.f. power varies in time as for mode B in Fig. 7. It may be possible 
to obtain steady state configurations which are not accessible if the r.f. power rises 
monotonically to the steady state value. There is already some experimental evidence 
supporting this conclusion (Ktihnapfel and Tuczek 1983). In this experiment, it was 
observed that the rotating field did not penetrate into the plasma unless its amplitude 
exceeded a certain threshold value. But once it penetrated, it continued to do so 
even though its magnitude was reduced to about one-tenth of the threshold value. 
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It must be admitted, however, that these results can be explained by a number of 
alternative arguments. For example, it is possible that the plasma temperature 
increases during the early phase of the discharge and hence the value of the threshold 
decreases. Unfortunately, there are not sufficient measurements to arrive at a definite 
conclusion. It is also recognized that the results were obtained by using very simplified 
models which are significantly different from the experimental situation. The models 
assume infinitely long plasma cylinders, whereas most of the experiments are carried 
out on compact toroidal plasmas. The interactions between the plasma and r.f. 
circuit, the energy and particle transport, and the motion of the ion fluid were not 
treated. These will be the subject of future work. 
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Appendix. Numerical Solution to the Steady State Equation 

It is shown in Section 3 that the normalized electric field E = EzdwRBw satisfies 
the equation 

(AI) 

for 0 ~ X ~ 1, together with the boundary condition 

E+dE/dX = 2 (A2) 

at the boundary surface X = 1. This is a one-dimensional nonlinear boundary value 
problem. Using a finite difference approximation, the problem can be reduced to a 
system of coupled nonlinear algebraic equations. In order to avoid the difficulty 
involved in solving such a system of nonlinear equations, we have obtained the 
solution for the equivalent equations governing the normalized field 

(A3) 

This normalized field satisfies the equations 

(A4) 
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for 0 ~ X ~ 1 and 

Y +dYjdX = 2y,vi'yo (A5) 

at X = 1, where 

(A6) 

The field Y satisfies the conditions 

dYjdX = 1, (A7,A8) 

at X = l. 
For given values of A and Yo, one can solve equation (A5) together with the initial 

condition (A7) as an initial value problem. [We note that the extra condition given 
in (A8) is needed since the equation is singular at r = 0.] The value of Yw corresponding 
to this solution is then evaluated using equation (A5). Thus, the set of solutions for 
a certain value of A and a range of values of Yw is obtained by solving the initial 
value problem for this value of A over the corresponding range of Yo. (The 
relationship between Yo and yO) is not known a priori.) 
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