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The main problem in deconvolution in the presence of noise is non-uniqueness. This problem 
is overcome in the present work by the application of the maximum entropy principle. The 
way in which noise enters the formulation of the problem is examined in some detail and 
the final equations are derived in such a way that the various assumptions are made explicit. 
Some examples of the use of maximum entropy deconvolution on both simulated and real X-ray 
diffraction data are given. 

1. Introduction 

The deconvolution problem in one or more dimensions is an old one, and has 
received much attention (see e.g. Jones and Misell1970). Use of the maximum entropy 
principle (MEP) has produced remarkable results (Gull and Daniell 1978; Bryan and 
Skilling 1980; Burch et al. 1983; Skilling and Gull 1984), especially in the context of 
digital picture restoration. 

The aim here is to present a slightly different viewpoint, bringing, it is believed, 
some of the assumptions and the underlying philosophy into a clearer light. The final 
equations to be solved turn out, fortunately, to be the same as those used earlier (see 
e.g. Burch et al. 1983). 

The plan of the work is as follows: in Section 2 some general results concerning 
information theory are listed, followed in Section 3 by a formulation of the problem, 
from which the basic equations are derived in Section· 4. In Section 5 a method of 
solution is presented and finally some one-dimensional examples are given using as a 
real case an X-ray energy dispersive diffraction spectrum. 

2. Information Theory 

In the application of information theory to data treatment at least two points need 
to be considered. One is the information content in a probability density function 
P(x) on a space E (P: E ---+ [0, 1]) relative to a function pO(x) given a priori on the 
same space. Kullback (1959), in extending the work of Shannon (1948) and Shannon 
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and Weaver (1949), showed that, based on a few reasonable axioms, there exists a 
unique and consistent measure of the relative i~formation content I of the probability 
density P(x) relative to pO(x): 

I[P, pO] = 1: P(x) In P(x)/ pO(x), (1) 
XEE 

where the sum is over the space E (becoming an integral if the variable x is con­
tinuous). 

The second point is to identify the basic variables x of the system under considera­
tion, the space E in which the variables x take values and to express ones lack of 
knowledge as to the actual value of x in terms of an a priori density pO(x). After an 
experiment, the remaining lack of knowledge about the system is expressed in terms 
of the density P(x) and the information gain in the experiment is given by (1). Once 
such a density P(x) is determined, an estimator of any quantity 9 depending on the 
basic variables x: 9 = G(x) is given by, say, the mean value of G(x): 

9 = < G(x» = 1: G(x) P(x). 
x 

Usually an experiment consists of the measurement, with random errors, of some 
quantities Ar, r = 1, ... , M, related by some functional form to the basic variables: 

Ar = ar(x) + en 

where er is the (unknown) error. Moreover, the number of unknown quantities x and 
er usually exceeds the number known, and only a probability statement can be made: 

Ar = < ar(x» + er = 1: ar(x) P(x) + er . (2) 
XEE 

Adoption of the MEP or the minimum information principle (MIP) for inference 
then involves the determination of P(x) by minimizing (1), while satisfying (2) in 
accordance with assumed statistical properties of the errors. One possible statistical 
property, which is easily incorporated, is to assume that the errors are gaussian with 
known standard deviations a-r' and that the square sum 

follows a chi-squared distribution. However, other possibilities exist and have been 
used (see e.g. Bryan and Skilling 1980). 

The reason for using the MEP has been given very clearly and forcefully by Jaynes 
(1983). The usual information theoretic argument: 'in any honeSt data treatment only 
the known data should be used, and nothing more, hence the minimum information 
principle', has recently (Shore and Johnson 1980) been supplemented by a proof 
that the only consistent (in a sense given a specific meaning by Shore and Johnson) 
algorithm for treating data of the kind described here is equivalent to the MIP. 

In principle then a function P(x) in N variables has to be evaluated. It has 
already been pointed out (Steenstrup and Wilkins 1984), that for certain special spaces 
E, certain prior densities pO(x) and certain forms of the constraint functions ar(x), 
considerable simplifications of the above procedure are possible. A specific case is 
now examined. 
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Fig. 1. Sketch of the experimental set-up. 
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We consider for illustrative purposes a specific experimental set-up as shown in 
Fig. 1. A 'white' X-ray beam is diffracted by a sample and detected by an energy 
analysing counter, which counts the photons that are subsequently sorted according 
to energy by the multichannel analyser. Thus, in principle, this is an energy-dispersive 
X-ray diffractometer (Staun Olsen et al. 1981). As the resolution in energy-dispersive 
X-ray diffraction analysis is much lower than in the corresponding angle-dispersive 
analysis, it is used as an example for deconvolution. The quantity of interest in this 
experiment is the distribution in energy of the beam as it arrives at the counter. The 
variables x thus consist of the set (xl' ... , Xn J, with x 1 the energy of the first photon, 
x2 that of the second and so on. It is actually sufficient, at least from the experimental 
point of view, to consider Xi as a discrete variable in the sense that the energy axis 
is divided into intervals; Xi is then the centre of interval i. Such a discretization 
process corresponds to the actual measurement and we will say that Xi belongs to 
channel i. The basic variables then become a set of integers each in the interval 
[1, N], where N is the number of intervals, and the space E is [1, N]n. A simple 
prior density po(x) on this space is po(x) = N- n, corresponding to the belief that 
all N n possible spectra are equally likely. Such a choice does not really express the 
knowledge that the spectrum is an X-ray diffraction spectrum and not something else; 
for example, a Rutherford backscattering spectrum. However, the translation of this 
kind of information into mathematical form is not obvious. 

In practice we are not interested in the order in which the photons arrive and a 
grouping into number of photons ni in channel i is used. This grouping corresponds 
to a transformation of the variables X into the set 

and the prior po(x), when expressed in terms of these new variables, becomes the 
multinomial distribution (Levine 1980) 
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(3) 

It should be pointed out that the multinomial distribution is a result of our choice 
to ignore the order of arrival of the photons and is in no way related to the nature 
of the particles (fermions, bosons or classical Boltzmann particles). The prior (3), 
underlying the measuring process, can in fact be generalized in at least two ways: 

(a) In (3) parameters qI' ... , qN can be introduced with ~ qi = 1 and then the 
equation 

(4) 

can be used corresponding to a non-uniform prior in the the x variables. 
(b) The multinomial distribution corresponds to the case where a fixed number 

of photons are counted. In practice the counting is usually for a fixed time, 
in which case the total number of counts n becomes a variable and pO(n) a 
product of Poisson densities: 

(5) 

with mj parameters corresponding to qj above, and all equal for the simple 
case of a uniform pO(x). 

For computational purposes (5) is often simpler to use than (4); there is for example 
no a priori correlation among the ni values if (5) is used, while they are weakly 
correlated if (4) is used. 

In terms of the variables n, equation (1) becomes 

I[P, pO] = 1: P(n) In P(n)/ pO(n) , 

where 
lIEf} 

n = {(nI' ... , nN)1 ni EN, 1: ni = nJ 
i 

in case (a), 

in case (b). 

(1') 

The detector and the counting electronics introduce noise and a smearing over 
counting channels, such that the measured numbers Yk (number of counts in channel 
k) are related to the desired quantities < nj ) [the mean value of nj taken with respect 
to P(n)] by 

or 

= 1: Rkj 1: njP(n) +ek' 
j nef} 

(6a) 

(6b) 

with Rkj the elements of a convolution matrix and ek the noise assumed to be 
independently normally distributed with zero mean and assumed variance O"~. Hence, 
we have 

(7) 
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with X~ the value at the ath significance level of the X2 distribution. 

4. Transformed Problem 

Our desired result for the vector <n) is obtained firstly, by minimizing (la) with 
respect to P(n) subject to constraints (6) and (7) and the normalization constraint 
and. secondly, by calculating the mean value of n with respect to the P(n) determined. 
It is now shown how these two steps can be combined into one involving <n) only. 

The constrained minimization follows the standard procedure of introducing Lag­
range multipliers Ak for each of the constraints (6). one IL for constraint (7), and one 
for normalization. and then varying P(n) and the errors. In the present context P(n) 
and the errors are unconnected and the variation with respect to P(n) is sufficient. 
The resulting minimum information density is given by (see e.g. Jaynes 1983) 

with 

pMI(n) = Z-I pO(n) exp( - .; Ak -7 R kj nj), 

z = ~ pO(n) exp(- ~ ~ Ak R kj nj ). 
nEn k } 

(8) 

(9) 

where the Lagrange multipliers in fact depend on the errors. Now using the fact that 
pO(n) is multinomial (or Poisson) and that n} enters linearly. i.e. 

exp( - .; -7 ARk} nj ) = ~ {exp( - .; A R kj) rj

• 

Z can be evaluated in closed form and the mean values < nj ) can be expressed in 
terms of AI' .... AN' i.e. 

<n) = Z-I nqj exp( - .; Ak R k}). (10) 

By using these expressions the information 1[ pMI. pO] for this specific case is expres­
sible in terms of <n): 

MI ° n 4a)[P • P ] = ~ <n;) In <n;)lnq;. (lIa) 
;=1 

The corresponding expression in case ( b) is 

Let us consider now the expressions 

n 
l[a)(P, q) = n ~ p; In p/ % 

;=1 

(lIb) 

~ p; = 1. (l2a) 

(I2b) 

In general l[a) or l[b~is not an information measure, but if p; = <n;)ln (or fi = <n)) 
its value equals I[P I, pO] and it corresponds to a derived measure for information 
under the given particular conditions. A direct calculation now shows that minimizing 
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I' (p, q) [or I' (f, m)] subject to the constraints (6), where 

Yk = n l: R kj Pj + ek or 
J 

S. Steenstrup 

and (7) yields Pi = <ni)ln (or /; = <n;». It is thus sufficient to use this simpler 
minimization procedure. 

This recasting is similar to the one introduced by Burg (1967), who showed that for 
quadratic constraints, for the entire real line as variable space and a uniform prior, i.e. 
for the time series problem, the maximization of entropy corresponds to maximization 
of the integral of the logarithm of the power spectrum. 

It is usually claimed that the MEP yields the maximally non-committal answer 
or that it allows the maximal variability consistent with the data. This claim seems 
at first at variance with the fact that one particular solution is actually chosen. In 
the derivation given here this one particular solution is just the mean value of the 
maximum information probability density. It is this density which is actually the 
widest, consistent with the data. 

The general consistency proof of Shore and Johnson (1980) has recently been 
specialized to the more specific case based on (12a), a multinomial prior and linear 
constraints (Tikochinsky et al. 1984). 

The final equation ready for numerical solution now follows by minimizing (12) 
constrained by (6) and (7). Let us take case (b) for example, i.e. we minimize Q with 
respect to ft, ... ,IN and e1, ••• , en: 

(13) 

Due to the convex nature of the forms entering Q, constraint (7) is in fact an equality 
constraint (unless fj = mj , j = 1, ... , N happens to be an interior point in the allowed 
region). Setting a Qlafj = 0 and a Qla ej = 0, we get 

a Qlafj = In fjlmj + l: Ak R kj = 0, 

a Qla ej = Aj +2/U/CT] = o. 

Eliminating Aj and taking ej from (6) we obtain 

In fjlmj -2J.t; l/CTi( Yk - -7 Rk1fi )Rkj = 0, (14) 

which is indeed identical to the equation used by Gull and Daniell (1978), but the 
derivation given here emphasizes that the constraints are linear in fi. 

5. Solution of Equation (14) 

Since (14) corresponds to the minimization of a convex function, provided that the 
matrix A with elements 

is positive definite, there exists a unique solution (see e.g. Ortega and Rheinboldt 
1970). Two factors limit the useful types of algorithms. One is that the equation is 
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only defined for positive values of ft, making it necessary, for any linearizing method 
. (e.g. the Newton, the steepest descent, and so on), to take special precautions to avoid 
negative values. The other is the size of the problem; even for a one-dimensional case 
with, say, 1024 channels, a direct matrix inversion is ruled out, as discussed by Burch 
et al. (1983). 

For one-dimensional cases of the size mentioned a successive over/under relaxation 
(SOR) type algorithm (Ortega and Rheinboldt 1970) has been found adequate. It is 
similar to the one described by Wilkins et al. (1983) and termed 'the single pixel 
approximation' (Wilkins 1983a, 1983 b). The algorithm involves obtaining the new 
iterate /i+ 1) from the old /i) by considering (14) as a single equation in one unknown 
ft, by taking fj,j =1= I, fY+l),j < 1 and .t)i),j > I, solving this single nonlinear 
equation 'exactly', and then setting 

(15) 

where w is a relaxation factor. At each stage the Lagrange multiplier is updated by 

Burch et al. (1983) used k= 1, however, in the present context it was found that the 
convergence was faster if we put 

with X(i)2 the actual value of X2 at iteration number i and Xta) the value aimed at. 

6. Results 

Results of deconvolution with a gaussian point spread function are shown in Fig. 2. 
Fig. 2a presents the result of a test case. Five delta functions were convoluted with 
a gaussian, and noise was added producing the thin curve. This was treated as 
the original spectrum for unfolding with a gaussian with a slightly smaller standard 
deviation, yielding the thick and dotted curves such that X2 was at the 95% and 5% 
significance limits, respectively. The positions of the peaks are precisely reproduced, 
the heights less so. 

Fig. 2b shows part of an energy-dispersive X-ray diffraction spectrum [the sample 
is a uranium sulfide powder at 14·2 GPa (Staun Olsen et al. 1984)]. The raw data 
yielded the thin curve while, after background subtraction (Steenstrup 1981), the 
unfolding yielded the thick curve. In this case it is of course not possible to tell 
whether the resulting structure is real. It is worth noting, however, that there is a 
phase change in uranium sulfide at around 15 GPa (Staun Olsen et al. 1984) from 
a f.c.c. structure to an orthorhombic structure. At the phase change the f.c.c. (220) 
reflection splits into the orthorhombic (200) and (114) reflections, and this splitting is 
definitely observed at a pressure slightly higher than the one shown. These peaks are 
the ones located at about channel number 1240. The peak at about 1330 is a merging 
of (311) and (222) f.c.c. into (204) and (212) orthorhombic. The result, using 500 
channels, was reached in nine iterations or 16 s on a Sperry 1100/82 computer. 
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(a) 

103 

Ui 2X104 

(b) 

Channel number 

Fig. 2. Results of deconvolution with a gaussian point spread function for (a) a test 
case and (b) an X-ray energy-dispersive diffraction spectrum. In (a) the thin curve 
corresponds to 'measured' data obtained by adding gaussian noise to five gaussians 
with CT = 4 channels at channel numbers 30, 50, 60, 70 and 100 with areas 4000, 
6000, 3000, 2500 and 4000 respectively; the thick and dotted curves correpond to 
MIP deconvolution with a gaussian point spread function with CT = 3·8 channels and 
X2 at the 95% and 5% limits respectively. In (b) the thin curve corresponds to raw 
data, while the thick curve is the MIP deconvolution after background subtraction. 

7. Conclusions 

It has been shown that the minimum information principle for a specific situation 
can be turned into a simpler optimization problem involving only the desired mean 
values. The usefulness of the MIP in yet another area, with a simple SOR algorithm 
for numerical solution, was also demonstrated. 
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