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Theoretical and experimental techniques for the determination of the X-ray anomalous dispersion 
corrections f'(w, LI) and fl/(w, LI) are discussed. The results of experiments on metallic, ionic 
and covalently bonded materials typified by copper and nickel, lithium fluoride, and silicon 
respectively are compared with the theoretical predictions. Attention is drawn to deficiencies 
in both the experimental and the theoretical approaches. 

1. Introduction 

A knowledge ofthe anomalous dispersion corrections for X rays is necessary for the 
solution of a wide range of problems involving the diffraction of X rays. The intensity 
of a scattered X-ray beam at a given distance from the scatterer depends on the square 
of the scattering power of the atoms which comprise the scatterer. Hence deviations 
in scattering power of the atoms from their normal values have a very significant 
effect on the intensities observed in X-ray scattering experiments. The influence of 
this anomalous scattering is felt in all sectors of crystallography, ranging from the 
solution of the phase problem in the structural analysis of large organic crystals to 
the study of epitaxial growth of III-IV and II-VI compounds by X-ray topography. 
Anomalous scattering can be a hindrance to the interpretation of experimental results 
or it can be of great assistance, the latter being the case if accurate values of the 
anomalous dispersion corrections are known. 

Although the quantum mechanical theory of anomalous dispersion was developed 
by Waller (1927), and a nonrelativistic theory based on hydrogen-like wavefunctions 
was later extended by Sugiura (1927) and Honl (1933a, 1933b), the ability to test 
experimentally the predictions of these theoreticians has really existed only since 
1960. Attempts had been made to measure the anomalous dispersion corrections by a 
number of techniques ranging from deviation from the exact Bragg angle of reflection 
(Senstrom 1919; Duane and Patterson 1920; Hjalmar 1920) to measurements of the 
angle of deviation by a prism (Bearden 1931, 1932; Larsson et al. 1924). All these 
experiments measured the refractive index of the material being investigated, and the 
difficulty of achieving accuracy in the measurement of the X-ray refractive index can 
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be judged by the fact that the X-ray refractive index differs from unity only by a few 
parts per million. Given the primitive experimental facilities available at the time it 
is not surprising that these experiments did not have sufficient precision to test the 
predictions made by theory. 

The further development of quantum mechanics saw the development of new 
scattering formalisms and the development of relativistic Hartree-Fock-Slater models 
of the atom. Many theoreticians made contributions to these new ways of describing 
the scattering of photons by atoms. However, the most demonstrably significant 
contribution was that made by Cromer and Liberman (1970) who used the relativistic 
Hartree-Fock wavefunctions of Brysk and Zerby (1968) to construct tables of the 
anomalous dispersion correction which were later to become part of the standard 
reference work used by crystallographers (Ibers and Hamilton 1974). Measurements 
are usually compared with this theoretical data base. Stibius-Jensen (1979) later drew 
attention to some unnecessary simplifications of the theory and the new versions of 
Cromer's computer program contain this suggested correction term. 

Most of these advances have occurred because of the enormous improvement in 
digital computing power which has occurred in the past twenty years. This in tum 
was a consequence of the ability to manufacture large crystals of almost perfect 
silicon. It was only after these crystals became available to experimentalists that 
the predictions of Ewald (1916) concerning the dynamical theory of X-ray diffraction 
were verified. Through an understanding of the dynamical theory of X-ray diffraction, 
experimenters were able to conceive of the notion that the symmetric Laue reflection 
from a lattice plane in a perfect crystal could be used to phase split an incident beam. 
From this notion came the X-ray interferometer (Bonse and Hart 1965, 1966). X-ray 
interferometers have been used to provide extremely precise measurements of the X
ray refractive index of materials, over a large wavelength range which often includes 
the K- or L-absorption edge. 

However, other dynamical scattering devices exist. In an experiment paralleling 
the early deviation-of-a-prism experiments Deutsch and Hart (1984) have designed a 
monolithic double crystal spectrometer which promises to provide results which equal 
the X-ray interferometer in their precision. 

The nonrelativistic quantum theory shows that a direct relation exists between 
the imaginary part of the anomalous dispersion correction and the linear attenuation 
coefficient ILl. Also the real and imaginary parts of the dispersion are linked by the 
Kramers-Kronig integral equation. It would seem that measurement of ILl for a num
ber of wavelengths should lead to the determination of both the imaginary and the real 
parts of the anomalous dispersion correction. Parratt and Hempstead (1954) and later 
Cromer (1965) used power law approximations to observed sets of measurements of 
ILl to determine the real and imaginary parts of the anomalous dispersion corrections. 
More recently other authors (Creagh 1975, 1977, 1980; Gerward et al. 1979; Fuoss et 
al. 1981; Henke et al. 1982; Dreier et al. 1984) have attempted to produce anomalous 
dispersion data from measurements of ILl. 

Other, less direct, techniques for the measurement of X-ray anomalous dispersion 
corrections exist. These have their origin in Bijvoet's (1951) observation that the in
tensity of scattering from lattice planes {hklJ in non-centrosymmetric crystal struc
tures is different from that of the { fzk~ planes. This was a most significant observation 
and has great importance in the solution of the phase problem in crystallography. For 
structures where the positional parameters of the atoms are known the problem can 
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be changed around, the intensity ratio being used to determine information about 
the anomalous dispersion corrections. This approach has been used by Fukamachi 
and Hosoya (1975) and Fukamachi et af. (1977) to observe the polar crystals GaAs 
and GaP. More recently an isomorphous replacement technique has been used by 
Templeton et al. (1980). The extent to which these less direct techniques can be 
applied to determine the anomalous dispersion coefficients will be discussed later in 
Section 3. 

In this paper a brief discussion of the several theories of the anomalous scattering 
of photons by atoms will be given in Section 2. Section 3 describes the techniques 
which are at present being used for the determination of the anomalous dispersion 
corrections. In Section 4 the experimental results are compared with theoretical 
predictions. 

2. Theories Concerning the Anomalous Scattering of Photons by Isolated Atoms 

(a) Classical Model 

The concept of an atomic scattering factor is an integral part of X-ray scatter
ing theory. It has its origin in the classical nonrelativistic electromagnetic theory. 
Although this aspect has been discussed thoroughly in a number of texts [see e.g. 
James (1955) and Warren (1969) and the review articles by Gavrila (1981) and Kissel 
and Pratt (1983)] a brief resume of its more important notions will be given here 
because the proper assessment of modem theories and experimental techniques depends 
on a correct understanding of these earlier definitions. 

The discussion commences with the scattering of an unpolarized electromagnetic 
wave by a free electron. In Fig. 1 a the geometry of this scattering process is shown. 
For a free electron situated at the origin the fraction of the intensity of the wave 
scattered through an angle 4> is 

(1) 

where r e is the classical radius of the electron and r is the distance measured along 
the scattering direction at which the intensity is measured. Implicit in the derivation 
of this equation is the assumption that the wavelength of the scattered radiation has 
been unmodified in the scattering process: elastic or Rayleigh scattering has occurred. 

To consider the scattering of electromagnetic waves by the electrons bound to an 
atom one must assume that each electron scatters as an individual and the atomic 
scattering is the sum of each of these individual contributions. The atomic scattering 
factor f is defined as the intensity scattered by an atom at wavelength A to the intensity 
scattered by a free electron at wavelength A. Because the electrons are not localized 
in space but are in rapid motion about the nucleus the atomic scattering factor can be 
written in terms of the electron density p which exists a distance r from the nucleus. 
Also, because the size of the atom is comparable with the wavelength of the incident 
electromagnetic wave (as shown in Fig. 1 b), an electron within the atom will scatter 
as though its scattering factor is 

f = J {exp(27T i/A)(kr- kj ). r jp d V. (2) 

Here kr- kj is the change in direction of the wavevector of the electromagnetic wave. 
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Fig. 1. Scattering by (a) a free electron situated at the origin 0 
and (b) a bound electron situated at A. In (b) the pathlengths 
AP and OP are different, leading to interference effects when 
the incident wavelength is comparable with the dimension of the 
atom. 
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The scattering factor f is the Fourier transform of the electronic charge distribution 
and is alternatively referred to as the atomic form factor. 

If the atom is assumed to have a charge distribution with spherical symmetry 
equation (2) can be simplified, and 

sin ar 
47T r2 p( r) -- dr, 

ar 
(3) 

where p = p( r), a = 47Tsin 01A. and 0 = ~<p. The assumption of spherical symmetry 
for the electron charge distribution is not unreasonable since the orbitals involved 
directly in the scattering processes are often closed shells and therefore have spherical 
symmetry. For an atom containing several electrons the atomic scattering factor 
becomes f OC! sin ar 

f = l: 47Tr2pir)-- dr. (4) 
n 0 ar 

For forward scattering (0 = 0) the value of sin(ar)lar becomes unity and the scat
tering factor f becomes equal to Z, the total number of electrons in the atom. Hence, 
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we have 

(5) 

In general the radial distribution of electron density p( r) must be known before f can 
be determined. 

In the model most frequently used to explain the scattering of electromagnetic 
radiation by an electron bound to an atom the electron is considered to move about 
the nucleus with a characteristic angular frequency W n' and to be acted upon by 
a damping force proportional to the induced electron velocity when the electron is 
displaced from its natural path, given by Kndxldt. Forced harmonic motion of the 
electron occurs and consequently it radiates as if it were a dipole radiator. When 
the displacement of the bound electron is compared with the displacement produced 
by the wave interacting with a single free electron, the following expression for the 
atomic scattering factor of the bound electron results: 

W 2 
f = --::---::----

w2-w~-iKn W 
(6) 

It is usual to extend this analysis to encompass a number of orbits, the angular 
frequencies of which may be written as Wi' W2' ... W n' for which there is a certain 
probability gn for the electron to exist in the level having natural frequency W n" The 
real part of the scattering factor can then be rewritten as 

(7a, b) 

The probability 9 n is referred to as the oscillator strength corresponding to the 
virtual oscillator having the natural frequency W n. Equation (7) takes the form 

Ref = Io+f l
, (8) 

where f 0 represents the sum of all the elements of the set of oscillator strengths and 
is therefore unity for the single electron atom considered earlier. The correction fl 
is referred to as the real part of the anomalous dispersion correction. 

Because a large, effectively infinite number of oscillator states exist in an atom it is 
possible to rewrite the expression for fl (equation 7b) for an incident wave of angular 
frequency Wi as 

f l = Joo w2 dgldw dw. 
W 2 -Wf (9) 

tV n 1 

If the atom has k electrons each electron may be thought of as possessing its own 
oscillator density of states (dgldwh, and the real part of the anomalous dispersion 
correction is the sum of the contributions of each of the k electrons: 

(10) 
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The oscillator strength of the kth electron 

(11) 

is in general different from unity but the total oscillator strength of the atom must 
be, by definition, equal to the total number of electrons Z in the atom. 

The imaginary part of the anomalous dispersion correction f II is linked to the 
attenuation of the wave by the medium through which it propagates. Consider a 
medium in which a density p of oscillator states of the same type exists. For this 
medium the dielectric susceptibility [defined by E = Eo(1 +X)] can be deduced to be 

(12) 

The refractive index of the medium is given by 

(13) 

and it must be remembered that n is complex since f is complex. A wave travelling 
in the + z direction in a medium which commences at z = 0 will have an amplitude 
ljJ(z) given by 

ljJ(z) = ljJ(O) expOI klx" z) 

= ljJ(O) exp( - IJ-l z) , 

(14) 

(15) 

where IJ-l is the linear attenuation coefficient. Note that the term 'attenuation' is used 
in preference to the widely used term 'absorption'. The decision to call the loss in 
beam intensity by scattering 'attenuation' was made (ICRU 1968) to avoid confusion 
with the dosimetry term 'absorption'. 

Substituting for X II we have 

(16) 

The atomic attenuation coefficient IJ-a' the scattering power per virtual oscillator state, 
is 

so that 
II 2 f = (EO mwc/ e )IJ-a· 

The atomic attenuation coefficient is related to the density of oscillator states by 

1T2 dg 
IJ-a(w) = 2Eomc dW' 

and hence 

(17) 

(18) 

(19) 

(20) 

Here (dg/dw) k, is the density of oscillator states of the kth electron at frequency Wi. 
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Whence an expression linking the real and the imaginary parts of the dispersion 
corrections can be written as 

I' = ~ l: P foo wl"(w) dw, 
7T k W 2 _ w'f 

"'k 1 

(21) 

where P represents the principal value of the integral over the range from w k to 
infinity. This integral, which links the real and imaginary parts of the dispersion 
correction, is referred to as a Kramers-Kronig integral. Note that the restoring force 
term involving K n has been omitted in equation (21). 

Equations (19)-(21) are the fundamental equations of the classical theory of photon 
scattering and it is to these that all other theoretical results are compared. It is 
also important to remember that, although the concept of a medium or collection 
of atoms was introduced to give an explanation of the attenuation coefficient ILa(w), 
these equations in reality apply only to spherical isolated atoms. 

A similar situation exists for the nonrelativistic quantum mechanical theory to be 
discussed in Section 2b and the relativistic quantum theory discussed in Section 2c. 

Referring to equations (13) and (16) one sees that I' can be determined directly by 
determining the refractive index of a medium and I" can be determined directly by 
determination of the linear attenuation coefficient IL,. Other less direct methods have 
made use of the dependence of I' and I" on the local electron density function p(r) 
within the medium. The results of these experiments will be compared in Section 4 
with the results to be expected from theoretical calculations. 

(b) Nonrelativistic Quantum Mechanical Models lor Photon Scattering by Atoms 

As in the classical theory the nonrelativistic quantum mechanical theories com
mence with the assumption that the photon interacts with a spherical free atom, and 
because we are here interested in elastic scattering only those interactions for which 
the internal energy of the atom remains invariant will be considered. It will also be 
assumed that the photon energy will be in the X-ray range so that only the electrons 
interact with the photons. The nuclear Thomson, nuclear resonance scattering and 
Delbriick scattering processes are neglected here; for review articles on these processes 
see, for example, Hayward et al. (1974) and Papatzacos and Mork (1975). 

In the elastic scattering processes discussed here we have I k j I = I k f I, where k j and 
k f are the wavevectors of the incident and the scattered photons respectively. The 
scattering vector is .d = kj - kf and the scattering angle is denoted by <1>. If it can 
be assumed that the atom has a rotationally symmetric electron cloud the Rayleigh 
scattering matrix element can be written as 

(22) 

where kj and kf are unit vectors in the directions of the wavevectors kj and kf 

respectively, and ej and ef represent the polarization of the photon. The amplitudes 
M, and M 2 depend now on wand.d. This matrix element depends on the state 
of polarization of the photons. The matrix element M, corresponds to a linear 
polarization state for which ej and ef lie perpendicular to the scattering plane. 

In the classical case the incident and final polarizations were considered to be 
averaged. Here too an average is made over all polarization states and the differential 
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scattering cross section takes the form 

(23) 

In the photon-atom interaction the nucleus is assumed to be at rest at the origin 
and the interaction of the electrons of the atom with the radiation field for which the 
appropriate potential is A( r, t) is considered. For this exposition, to emphasize the 
logical similarity to the classical case, the scattering by a one electron atom will be 
discussed. Generalization to the case of an n-electron atom can be effected by the 
inclusion of the appropriate summations over the number of electrons present in the 
atom. 

The perturbed Hamiltonian for an atom containing one electron coupled to a 
radiation field having vector potential A (assuming that div A = 0 and the scalar 
potential is zero) is given by 

A A e e2 2 

H= Ho- mc A . P + 2mc2 A, (24) 

where flo is the Hamiltonian for the unperturbed atom and P = i fl\!. 
Applying second order perturbation theory one can obtain the matrix element for 

Rayleigh scattering of photons by an atom whose initial state is designated by l. 
Following Akhiezer and Berestetskii (1957) one can write for the matrix element 

11* (. ) 1 . I + -<1 e2 P exp -1 k 2 • r A el P exp(1 kl . r) I) 
m !l1-HO 

1 . 1 . 
+-<llelPexp(lkl.r) A e!Pexp(-lk2 .r)ll), (25) 

m !l2-HO 

where el and e2 are the initial and final polarizations of the photon; .J = k2 - k 1; 

flo II) = E1, and !l- flo is Green's operator associated to the Hamiltonian flo. 
Further, we have 

where g is an infinitesimal positive quantity. The first term in (25) corresponds to the 
atomic form factor and, for spherically symmetric states, has the form 

1o(.J) = p(r) -- r2 dr f'" sin llr 

o b.r 
(26) 

and is identical to that predicted from classical scattering theory (equation 3). 
For photon energies flw close to the resonance energy of an orbital the matrix 

element has a resonant behaviour due to the second and third terms of equation (25). 
These comprise the anomalous dispersion corrections. Note that the derivation of (25) 
does not contain any contribution to the scattering from radiation damping. More 
complete nonrelativistic treatments include terms to account for linewidths. 

Extension to the case of an atom containing Z electrons is trivial (see e.g. Mizu
shima 1970), and involves only the incorporation of appropriate summations to the 
exposition given earlier. It is however convenient to adopt a different formalism to 
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describe the atomic scattering factor. Because we have been discussing the scattering 
of a photon with a change in momentum ..d but not energy at a frequency w, it is 
proper to write the atomic scattering factor as 

(27) 

where lo(..d) is the atomic form factor and I' (w,..d) and I" (w, ..d) are respectively the 
real and the imaginary parts of the anomalous dispersion correction. In the dipolar 
approximation employed earlier it can be shown (Goldberger and Watson 1965) that, 
for forward scattering (kj = kr), 

1'(wj'O) = ~ P foo w{"(Wl dw, (28) 
7T 0 w -Wj 

which may be compared with the classical equation (9) and, using the optical theorem 
(Gell-Mann et al. 1956), 

" w I (w,O) = --O"tot(w). 
47Tre c 

(29) 

Here O"tot(w) is the total atomic scattering cross section, and this is to be compared 
with equation (18). 

A particular extension of this nonrelativistic analysis of the scattering of photons by 
atoms is now discussed. Hydrogen-like wavefunctions were assumed for the electrons 
comprising the atom and appropriate shielding constants were introduced to account 
for inter-electron interactions. The technique was applied initially by Honl (1933a, 
1933b) to K-shell electrons and was later extended to the case of L-shell electrons by 
Eisenlohr and Muller (1954). A more modem exponent of this approach is Wagenfeld 
(1966, 1975, 1985). 

Wagenfeld's use of the Bethe and Salpeter (1957) expression for the atomic photo
electric cross section and his use of hydrogen-like eigenfunctions [corrected for screen
ingusing Grodstein's (1957) screening constant] enabled a description of the scattering 
of a photon incident in the + x direction, polarized in the y direction, by 

1: l<p'l(oloy)exp(i kx)lp)12 • (30) 
n,i,m 

The bra-ket notation is used here to represent the matrix element for the transition of 
an electron from a hydrogen-like eigenstate characterized by p, for which the quantum 
numbers are n, I, m, to an unbound state p' characterized by the quantum numbers 
of the ejected free electron. 

Each shell contributes to the total cross section. For example, the contribution 
from the K shell O"ls is calculated using the analytical form of the hydrogen-like 
eigenfunction lJ11s' The retardation factor within the matrix elements was expanded 
as a power series: 

exp(ik. r) = 1 +i k. r -Hk. r)2+ .... (31) 

The first term in this equation corresponds to the dipole approximation used earlier to 
determine the anomalous dispersion corrections. (The forced vibration of the electron 
was assumed to give rise to an electric dipolar radiation field.) The second and third 
terms correspond respectively to the electric quadrupole and mixed electric quadrupole 
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and mixed electric-dipole-octopole transitions. As Wagenfeld (1966) has shown these 
terms form part of a rapidly converging series for which analytic expressions can be 
obtained. From these values of the cross section the imaginary part f" (w, 0) and the 
real part f' (w, 0) can be calculated. 

The attractive feature of this technique is that the wavefunctions have an analytical 
form. Other techniques, using self-consistent fields, require numerical solutions for 
the eigenfunctions and consequently demand access to large computer facilities. The 
technique is also able to predict values of f'(w,..d) and f"(W, ..d): scattering in other 
than the forward direction can be considered. Knowledge of the form of the angular 
correction is of great importance to crystallographers involved in structure analysis 
since each diffracted beam corresponds to a nonzero value of ..d. 

There are, however, inadequacies in this approach, the most serious being the 
assumption that each electron acts as though it is part of a hydrogen-like atom. The 
sole concession to electron-electron interaction is the inclusion of Grodstein's (1957) 
screening constant. Finally, the nonrelativistic basis for the theory must limit its 
usefulness to atoms with low atomic numbers. 

In the final analysis it is how well theory and experiment agree with one another 
which determines the success or failure of a theory. The degree of success of the 
nonrelativistic quantum mechanical model used by Wagenfeld will be discussed in 
Section 4. 

(c) Relativistic Quantum Mechanical Model for Scattering of Photons by Isolated 
Atoms 

In the last 15 years considerable effort has been made by theoreticians to develop a 
relativistic quantum mechanical model for the scattering of photons by isolated atoms. 
For the most part, however, theoreticians have concentrated on calculations of cross 
sections of atoms such as uranium, lead and aluminium. Reference to this rather 
fragmented work is to be found in the review articles of Gavrila (1981) and Kissel 
and Pratt (1983). Three theoretical data sets are frequently referred to in papers. 
These are the tabulations of Storm and Israel (1970), Scofield (1973) and Cromer and 
Liberman (1970, 1981). Ofthese the latter forms the basis for tables of the anomalous 
dispersion corrections (Ibers and Hamilton 1974). 

All commence with the description of the scattering of photons by bound electrons 
given by (Sakurai 1967) 

(32) 

where 
f = mc2 l: «21 e2' & exp( -i k2• r)1 n+Xn+ 1 e1 .a:exp(i k 1• r)ll) 

n+ g'1 - g' ~ + hW1 

<21 e1.a: exp(i k 1• r)1 n+Xn+ 1 e2.a: exp( -i k 2 • r)ll») 
+ + 

g' 1 - g' n - hW2 

+ <21£1'& exp(i k 1• r)1 n-Xn-I e2.a: exp( -i k 2 • r)ll»). (33) 
g' 1 - g' n - hW2 
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In (33) the usual bra-ket notation has been used to denote the matrix elements 
between energy states, 1 and 2 being respectively the initial and final states of the 
system, and n+ and n- being intermediate energy states of positive and negative 
energy respectively. The Dirac velocity operator ea operates on the retardation factors 
within the bra-keto The summations are over all states of positive and negative energy 
not already occupied by electrons. Although this equation completely describes the 
scattering process it cannot be readily used and must therefore be manipulated into a 
more familiar form. 

If one were to define an atomic scattering factor 10 similar to I in equation (33), 
except that all the energy denominators are written as 2me2 and the sums n+ and 
n- occur for all states without exception, then 

(34) 

(35) 

which is identical in form to the nonrelativistic equation (26) for the atomic form 
factor. 

The relativistic atomic scattering I may then be written as 

1= fo+(f - 10), (36) 

where (f -10) is analogous to the anomalous scattering terms and is (usually) small 
compared with 10 , There will be contributions to (f - 10) from both positive and 
negative energy states and it is convenient to write 

(f - fo) = 1+ -It +1- -10 . (37) 

The term It corresponds to transitions similar to those in (35) but involving only 
transitions from the initial state to positive energy (unbound) states. 

Using the dipole approximation and averaging over polarization, Cromer and 
Liberman (1970) showed that 

(38) 

which, when summed over all the electrons, is equal to the total electronic kinetic 
energy Eo, which can be estimated using self-consistent field techniques. 

The two terms involving the negative energy (bound) states can also be evaluated 
in a similar fashion, using the dipole approximation, and the three final terms of (37) 
can be written as 

(39) 

which is a constant for a particular atom. 
The principal anomalous scattering term 1+ is given by 

1+ = me2 l: kn+le.aexP(ik.r)ll>12 ( \ + _ 1+ ). (40) 
n+ 15' 1 -15' n +/iw 15' 1 -15' n -/iw 

Contributions from both occupied and continuum states are included in 1+. However, 
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the contribution due to unoccupied bound states is neglected because it is small 
compared with the value of 1+. A similar assumption was made for the nonrelativistic 
treatment of photon scattering. The summation over the continuum energy states 'if? + 
may be considered to be adequately represented by an integration over the continuum 
energy states. 

A singularity exists in the first term in the denominator of (40) when 'if? + equals 
'if? +liw. Using the Cauchy principal value theorem, 1+ can be evaluated as 

1+ -_ 2( fa> 2('if?+-'if?I)I<'if?+le.aexp(ik.r)ll>12 +) 
mc P + d'if? 

me? (IiW)2_('if? _'if?1)2 

+i 7T mc21<'if? + +liw 1 e. a exp(i k. r) 11>12 ; (41) 

1+ contains a real part which can be equated to I' (w, 0) and an imaginary part which 
can be equated to I" (w, 0). 

Akhiezer and Berestetskii (1957) have shown that the photoelectric cross section 
at photon energy liw is given by 

47T2 e2 m 
U"(liw) = mc2k'if? 1 +liw 1 e. a exp(i k. r) 11~2 . 

wc 
(42) 

Whence, we have 
(43) 

which may be compared with equations (18) and (29). Evidently a one-to-one corre
spondence exists between the classical, the nonrelativistic and the relativistic formulae 
for the imaginary part of the dispersion correction at the level of approximation 
used, namely for forward scattering by isolated atoms and neglecting bound state 
contributions. 

The real part of 1+ may be rewritten using the cross section U"(liw) == U"('if? + - 'if? I): 

Re/+ = P 1 1 
1 fa> ('if?+-'if? )2U"('if?+-'if? )d'if?+ 

27T2lirec me? (IiCll)2_('if?+-'if?l)2 
(44) 

This is identical in form to equation (21). It is not, however, equal to the real part of 
the dispersion correction 1'( Cll, 0), and in this respect the relativistic approach differs 
from the other two. The term -It +1- - 10 must be included so that 

(45) 

In addition, the matrix element in the high energy limit for forward scattering without 
change in polarization is 

, 5~ 1 fa> + + 1(00,0) = --2 + 2 U"('if? -'if?I)d'if? . 
3mc 27T lire c 0 

(46) 

Rewritten in terms of oscillator strengths this is the relativistic form of the Thomas
Reiche-Kuhn rule which in the nonrelativistic case sums to Z, the total number of 
electrons in the atom. In the relativistic case the rule represents only the matrix 
element for forward scattering at infinite energy. 
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In the foregoing exposition a number of simplifications have been made, not the 
least of which was the extensive use of the dipole approximation to determine -It + 
1- - 10, the term which depends on the total electron energy Eo. It has been pointed 
out by Stibius-lensen (1979) that Cromer and Liberman (1970) employed the dipole 
approximation at an inappropriately early point in their argument, and that a further 
correction term equal to ~Z(llw/mc2)2 results if the dipole approximation is made 
later in the development of the theory. 

To what extent do the photoelectric scattering cross sections of Cromer and Liber
man agree with calculations by other authors, and also with experiment? Both the 
Cromer and Liberman (1970) and the Storm and Israel (1970) programs for com
puting the photoelectric scattering cross section have their origin in the Brysk and 
Zerby (1968) program designed to use relativistic Dirac-Slater wavefunctions. Where 
Cromer and Liberman differ from Storm and Israel is in the use of the Kohn and 
Sham (1965) rather than the Slater (1951) exchange potential. In addition they used 
experimental rather than computed eigenvalues. Scofield (1973) on the other hand 
employed a relativistic Hartree-Fock approach. Comparisons by Kissel et al. (1980) 
of the results of the several Dirac-Hartree-Fock-Slater calculations show that they 
predict cross sections in excellent agreement with one another despite their different 
origin and simplifying assumptions. Experimental evidence gained in the course of 
the International Union of Crystallography X-ray Attenuation Project by Creagh and 
Hubbell (1985) suggests that there exists no rational basis for preferring one data set 
to another. It would seem therefore that for most atoms the calculation of atomic 
photoelectric cross sections and therefore 1"(w,O) to sufficient accuracy is purely 
a routine matter. Furthermore, using equation (44) and the appropriate correction 
terms, the calculation of 1'( w, 0) should become a routine procedure. 

However, it must be stressed that both I' (w, 0) and I" (w, 0) have been calculated 
here only for the forward scattering case with no change in polarization. The extension 
to the more general case of a nonzero scattering vector ..:1 is usually made using the 
assumption that the anomalous corrections have the same angular dependence as 
the form factor. However, Parker and Pratt (1982) have shown that this is not a 
realistic assumption and that a better approximation is that I' (w,..:1) and I" (w,..:1) 
are independent of angle. This conclusion must be compared with the predictions of 
Wagenfeld (1975) using the hydrogen-like model, which predicts a relatively simple 
dependence on scattering angle. 

It must be further stressed that polarization changes in the scattering process have 
not been considered and that the state of polarization of the incident beam has a 
significant effect on the scattering cross section in the region of the absorption edge, 
as Templeton and Templeton (1985) have shown. 

3. Experiments to Determine Anomalous Dispersion Corrections 
I' (w,..:1) and /" (w,..:1) 

(a) Theories and realities 

In the foregoing sections the discussion has centred on the development of a theory 
for elastic scattering of photons by isolated spherical atoms. In reality, measurements 
are not made on isolated atoms but on condensed, usually crystalline, phases. Hence 
some comments must be made on the use of these theories to describe the scattering 
properties of crystalline materials. 
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Crystalline materials are characterized by a periodicity in electron density p(r) 
within their structures and this periodicity can be described by a set of translation 
vectors a, b, c such that 

p(r) = p(r+ma+nb+pc), (47) 

where m, n, p are integers. This electron density is associated with the atoms which 
comprise the crystal structure. Within a unit cell whose volume is characterized by 
Vc = a. b X c, a number of atoms of different scattering powers may exist. If the 

position of the jth atom is ui' vi' Wj in units relative to the lengths of the translation 
vectors I ai, Itl, I cl then the scattering power of the unit cell is, for a Bragg reflection 
from the {h. I] plane of the crystal, described by the geometrical structure factor 

Fhkl = l: fj exp{27Ti(huj + kvj + Iw)}. 
j 

(48) 

In arriving at equation (48) the assumption has been made that each of the atoms 
scatters as though it were a spherical atom having an atomic scattering factor fj. The 
crystal as a whole scatters like a lattice having translational periodicity given by the 
translation vectors a, b, c but with all the charge density localized on the lattice points 
and each lattice point scattering with a power Fhkl for the hk I Bragg reflection. The 
concept of the geometrical structure factor is central to many of the techniques to 
measure the anomalous dispersions corrections f' (CLI,..d) and f" (CLI, ..d). 

For experiments in which the forward scattering is measured no Bragg reflection 
occurs and h, k, I == 0, 0, 0: the lattice scatters as the sum of the scattering powers 
of the individual atoms within the unit cell. For experiments involving diffraction 
the scattering vector ..d becomes the reciprocal lattice vactor ghkl. Note that the 
analysis of the results of such experiments has inherent in it two unresolved theoretical 
difficulties: the assumption that each atom's spherical charge distribution is unaffected 
by the charge distributions of the other atoms within the crystal structure and, more 
importantly, the question of whether there exists a dependence of the anomalous 
dispersion corrections on angle. 

In Section 2 it was shown that two macroscopic properties of a medium are 
related to the atomic scattering factor. These are the refractive index n and the 
linear attenuation coefficient J-LI. Both of these correspond to forward scattering of 
the photons by the medium and therefore enable a direct test of the theories of 
scattering. Remember that these theories were developed for the forward scattering 
case. Experiments to measure the X-ray refractive index will be discussed in Section 
lb, while experimental techniques for the measurement oflinear attenuation coefficient 
J-LI will be discussed in Section 3 c. Those experiments which determine the anomalous 
dispersion corrections by the Bijvoet-pair and isomorphous replacement techniques 
will be discussed in Section 3d. Section 3e will suggest some other techniques which 
might be used to determine the anomalous dispersion corrections. 

(b) Measurements of refractive index 

Three techniques for measuring the X-ray refractive index of materials have evolved 
since 1960. The first is based on the use of X-ray interferometers, and the second and 
third are essentially revivals of the earlier techniques involving the measurement of 
deviation by a prism and angle of total external reflection. 
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Fig. 2. X-ray interferometer where Sl. S2 and A represent wafers 
of silicon and the lines represent Laue reflecting planes; Sl and 
S2 are phase splitters and A is the analysing wafer: (a) When 
the pathlengths are equal the standing wavefield lies between the 
Laue planes of A and the wave experiences little absorption. 

(b) The insertion of a specimen into one of the beam paths 
shifts the phase of that beam and hence the position of the stand- . 
ing wavefield. The case shown here corresponds to the maximum 
of the standing wavefield falling upon the Laue planes where ab
sorption is high. 

X-ray Inteiferometer Measurements 

385 

The X-ray interferometer was invented by Bonse and Hart (1965). In the form 
most commonly used for refractive index measurement it is a device in which a boule 
of perfect single crystal silicon is cut to produce three wafers linked at the base and 
oriented so that the wafer surface is normal to the <Ill) direction and parallel to the 
<220) direction. As shown in Fig. 2 the thickness of the wafers is selected such that 
the intensities of the transmitted and reflected beam in the Laue reflection are equal, 
and the spacing between wafers is chosen to allow convergence of two of the beam 
paths at the surface of the third wafer. The X-ray beam undergoes Laue diffraction at 
each of the three wafers and is therefore referred to as an LLL interferometer. Because 
the two converging beams are phase coherent they interfere with one another produc
ing a standing wave pattern in front of the third wafer. The position of this standing 
wavefield in relation to the Bragg reflecting planes of the third wafer determines the 
intensity of the beams transmitted through the wafer. If the wavefield maximum lies 
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A 

Fig. 3. Configuration used by Creagh (1968, 1970, 1975, 1980, 
1984), Creagh and Hart (1970) and Bonse and Materlik (1975) 
to measure fringe shifts produced by a specimen placed in a beam 
path. 

Specimen Fig. 4. Configuration used by 

D. Creagh 

~-.. --.., .. ~'+-.- Bonse and Hellkiitter (1969). 
Translation of the wedges of specimen 
material causes the phase shift 
in the beam paths and hence 
variation in contrast in the beams. 
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Fig. 5. Configuration used by Bonse and Materlik (1976) and Bonse et 
al. (1980, 1983). The X-ray beam from a synchrotron radiation source, 
made monochromatic by a double crystal monochromator, is incident 
upon the LLL interferometer. The monochromator and interferometer 
are turned by rotation about the axes ill and il2 respectively. The 
interferometer system can be turned as a whole by rotation about the 
axis il3. 

f w 
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Fig. 6. (a) Schematic view of Hart's (1968) Angstrom ruler showing the method of movement 
of the analysing wafer A, which is supported by leaf springs machined from the crystal. A 
magnetic force is used to displace the analysing wafer. (b) Configuration of the interferometer 
and the electronic system. Because a Bremsstrahlung source is used the fundamental (w) and 
first (2w) harmonic can be detected simultaneously by the solid state detector. As the wafer A 
is moved, contrast in the beam changes as the standing wavefield moves over the Laue reflecting 
planes. (c) Contrast variations with the motion of A with (W) and without (0) the specimen 
for both the fundamental (top) and the harmonic (bottom) radiations. 
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between the Bragg planes little energy is lost from the wavefield and a maximum of 
intensity is observed. If, however, the maximum of the standing wavefield lies on the 
Bragg plane the absorption of the beam is a maximum, and a minimum of intensity 
is seen in the transmitted beam. If an object is placed in one of the beam paths (Fig. 
2b) it causes a shift in phase in that beam and therefore a shift in the position of the 
standing wavefield relative to the Bragg planes of the third wafer. A change in fringe 
pattern occurs. This phase shift is related directly to the X-ray refractive index by 

(49) 

where na is the refractive index of air and t is the thickness of the object. 
Various techniques have been used to enable this phase shift to be measured. 

Creagh (1968, 1970, 1975, 1980, 1984), Creagh and Hart (1970) and Bonse and 
Materlik (1972) inserted a lucite wedge into one beam path of an interferometer to 
provide fringes along the length of the reflected beam. The phase shift caused by 
inserting a parallel-sided specimen in the other path was measured using photographic 
techniques. This configuration is shown schematically in Fig. 3. 

Bonse and Hellkotter (1969) used two wedges cut from the material under inves
tigation, which were placed in the beam as shown in Fig. 4. Motion of the wedges 
across the beam caused the variation in optical path and this variation was recorded 
by means of an X-ray photon counting chain. 

Bonse et al. (1983) used a technique reported by Bonse and Materlik (1976) and 
Bonse et al. (1980). In this technique a phase shifting plate was inserted into the 
beam as shown in Fig. 5 and the rotation of this plate about an axis perpendicular 
to the plane of reflection caused phase shifts, which were then detected by a solid 
state detector. Many of the experiments performed by Bonse's group have used 
radiation from the synchrotron at DESY, and very significant progress has been made 
in the precision of their experiments in the past five years. Indeed, in a recent paper 
Bonse and Hartmann-Lotsch (1984) claimed sufficient accuracy to confirm the mutual 
Kramers-Kronig relations which link II (cu, 0) and I" (cu, 0); this implies an accuracy 
of better than one per cent. 

All the other X-ray interferometer experiments have been performed using varia
tions of Hart's (1968) Angstrom ruler interferometer. This interferometer is manufac
tured such that its third wafer is linked to the block of silicon carrying the first two 
wafers by two silicon strips, as shown in Fig. 6a. By exerting a force on this wafer 
(either by means of an electromagnet or by capacitive coupling) the wafer itself can be 
made to move with respect to the standing wavefield. Without the specimen the wafer 
is driven to establish the standing wave pattern shown in Fig. 6c for monochromatic 
radiation. Variations in the transmitted beam intensity are detected using a solid 
state detector. Insertion of the specimen causes a phase shift, and a change in fringe 
contrast because of the attenuation of the beam in the specimen. This type of inter
ferometer enables direct measurements of the refractive index n [and hence II (cu, 0)] 
and the linear attenuation coefficient f-Ll [and hence I" (cu, 0)]. 

All interferometers measure the X-ray refractive index by means of phase shifts 
(equation 49) and therefore measure a parameter which is directly related to the real 
part of the atomic scattering factor 

r ')..2 
n=l __ e_~~/j. (50) 

27T j 
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Here ~ is the number of atoms of type j per unit volume, and Ii is the real part 
of the atomic scattering factor in the forward direction. Writing 0 for ..4 in the form 
factor, since this is a case in which forward scattering occurs, we have 

Refj = fj(O) + I;(w, 0). (51) 

If the normal crystallographic convention that fj(O) is equal to the total atomic number 
of the atom is followed, then we have 

.Refj = z.;+I;(w,O). (52) 

The fringe shift at . wavelength A is given by 

Pi. = re At 1: {z.;+I;(w,0)}/21T. 
j 

(53) 

For both the Angstiomruler and the interferometer used by Bonse et al. (1983) the use 
of Bremsstrahiung • radiation. enables the detection of harmonics of the wavelength to 
which the interferometer was set simultaneously with the primary wavelength. These 
harmonics will exhibit different phase shifts from the primary wavelength since the 
refractive indeJ( depends on wavelength. The dominant harmonic wavelength is 1../2 
and . , 

.PAn = -4 re At 1: ~{z.;+ 1;(2w, 0) }/21T. 
j 

The ratio of these fringe shifts is therefore 

(54) 

P=PA/Pi.12 =c2i; {z.;+I;(W,O)}/i; {z.;+I;(2w,0)}. (55) 

Note that thi~e~pression does flot contain the specimen thickness. Since most recent 
measurements: have been made in the region of an absorption edge, where I' (w, 0) is a 
substantial fraction of ~ alld I'(w, 0) is small with respect to z.;,a simplification can 
be effected if the theoretical value of I' (2w, 0) is used in equation (55). As Cusatis 
and Hart (1975) have shown the error in making this assumption is small compared 
with the error which occurs when the thickness of the specimen can be measured 
experimentally. 

Using this technique it is possible to produce data at 2 eV intervals to 2% precision 
for an energy range which extends 1000 eV on both sides ofthe absorption edge (Hart 
and Siddons 1981). With such a device the various theoretical predictions of I' (w, 0) 
and I" (w, 0) can be put to the test. 

Deviation 01 a Prism Experiment 

In recent papers Deutsch and Hart (1984) have described a new double crystal 
diffractometer fabricated from a monolithic perfect crystal of silicon. The block is cut 
such that two wafers with Bragg planes hhh are oriented normal to the base block. A 
series of slits cut in the base block between the wafers form a folded leaf spring of the 
material between the wafers. Rotation of one wafer relative to the other is effected 
by bending the leaf spring by means of a small magnet attached to one segment and 
a small electromagnet attached to the other. A schematic diagram of the apparatus 
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is shown in Fig. 7. Notice that the reflections occur in the Laue case. Without the 
specimen (cut in the shape of a wedge) the rocking curve of a pair of hhh reflections 
can be measured. Because the crystals are perfect and have parallel sides the intensity 
of the main rocking curve is modulated by dynamical interference effects within the 
Bormann fan. Any of the modulation maxima would serve as an angle reference but 
in fact there exists a sharp central maximum, gaussian in shape, of 0·2 arc sec FWHM 
which is the most convenient reference point to use. 

X ray 

Specimen 

Fig. 7. Double crystal spectrometer by Deutsch and Hart (1984) for 
measurement of the deviation of the X-ray beam produced by a wedge
shaped specimen. The crystal wafers are linked by a spring machined 
from the single crystal silicon specimen. Rotation of one wafer with 
respect to another is done by changing the current in the electromagnet. 

The insertion of a wedge in the beam between the two wafers. causes the incident 
beam to deviate from exact Bragg reflection, and the second wafer can be rotated to 
return the second reflection to the peak of the rocking curve. Detection of the X-ray 
beam is by means of a solid state detector linked to a single channel pulse height 
analyser. 

The effect of wedge angle is largely eliminated by using two related Bragg reflections, 
{777} and {888}, and measuring the deviations from exact Bragg reflection in each 
case. The angular conversion factor relating electromagnet currerit to angular rota
tion of the wafer is established by careful study of the rocking curve shapes and the 
comparison of these with the predictions of the dynamical theory of X-ray diffraction. 

With this technique an accuracy of fractions of a part per billion is possible in 
measurements of the X-ray refractive index. Hence, /' (w, 0) can be determined to a 
precision comparable with that of an X-ray interferometer. 

ReflectiVity Measurements 

Pet/ect crystal techniques. The double crystal spectrometer used in the foregoing 
refractive index measurement was a Laue case (transmission) spectrometer. Double 
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crystal spectrometers can however be used in the Bragg case (reflection) to determine 
the real and imaginary parts of the anomalous dispersion correction. 

The geometrical structure factor Fhkl is related to the integrated reflecting power 
of a perfect crystal for the Bragg case by the formula (Zachariasen 1945) 

e PAhelF~kll exp(-M) y 
RH = RH(g, k), 

'lT1 bl1 V sin 20B 

(56) 

where P is the polarization factor, b is the ratio of the cosine of the incident to the 
cosine of the reflected angle of the beam (equal to 1 for symmetric reflection), V is 
the volume of the unit cell, 0B is the angle of Bragg reflection, R~(g, k) is the Prins 
correction which corrects for absorption, and exp( - M) is the Debye-Waller factor. 

The Prins correction is itself a complicated function. The parameters 9 and k are 
given by 

(57) 

(58) 
and 

R~ = J:oo !L-(L2-1)1) dy, (59) 

where 
L = y2 + if + !(y2 - if -1 + k 2)2 +4(gy- k)2/(1 + k 2) )1. (60) 

It is assumed that the parameters involved in this calculation such as the Debye
Waller factor, F~kl and P can be determined to sufficient accuracy, and use is made 
of accurate values of the integrand (59) computed elsewhere. 

The technique is to measure the integrated reflectivity of a Bragg reflection, correct 
it for the influence of thermal diffuse and Compton scattering and then to compare it 
with the expression 

This had been computed using the best available values for the parameters involved 
in determining R~(g, k) and a suitable estimate of the polarization factor P. A value 
for I F ~kll exp( - M) results from which the real part of the anomalous dispersion 
correction may be deduced. 

Freund (1975) has described an experiment to measure the integrated intensity 
of the 222 reflection from a nearly perfect crystal for a number of wavelengths in 
the vicinity of the K-shell absorption edge of copper. The copper crystal formed one 
element of the double crystal spectrometer, the other element being a (111) cut perfect 
crystal of silicon set to produce 333 reflections of the incident beam. Freund (1975) 
measured the linear attenuation coefficient J.Ll directly. It is difficult, in the region of 
the absorption edge, to make such a definite measurement because of the existence 
of the extended X-ray absorption fine structure (EXAFS). Freund did not report the 
observation of EXAFS in this experiment, and further comment will be made on this 
in Section 4. 

Using his data Freund (1975) produced values of the real part of the anomalous 
dispersion correction. These results however are not for j' (w, 0) as in the earlier case, 
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but for I'(w, g222)' where .d the scattering vector is here set equal to the reciprocal 
lattice vector for the 222 Bragg reflection. 

Total external reflection technique. The Laue case techniques mentioned earlier 
are unsuitable for use when the photon energy is low because the attenuation both of 
the measuring device and the sample itself becomes large. Consequently measurements 
become extremely difficult to make. If measurements have to be made in that region of 
the X-ray spectrum referred to as the vacuum ultra-violet, measurements of reflectivity 
would seem to be the most likely to provide reasonable results. The technique itself is 
based on Compton's (1923) observation that X rays are totally externally reflected by 
smooth surfaces. Note that this technique differs from that described in the previous 
subsection in that the scattering vector .d is not a reciprocal lattice vector. Henke et 
al. (1982) have shown that the reflection of an electromagnetic wave from a smooth 
(vacuum-material) interface can be described by a single complex constant and that, 
at the angle of total external reflection, 

(61) 

Measurement of ()t allows direct calculation of the real part of the refractive index, 
provided absorption is not significant, and results in the determination of I' (w, ~), 
where ~ is the scattering vector corresponding to the angle of total external reflection 
()t. A comprehensive compilation oflow-energy X-ray interaction coefficients has been 
made by Henke et al. (1982) for Atomic Data and Nuclear Data Tables. 

(c) X-ray attenuation techniques 

It has already been shown in Section 2 that a direct relation exists between the 
imaginary part of the anomalous dispersion correction I" (w, 0) and the linear attenua
tion coefficient 1-'-1. Attention has also been drawn to the fact that a Kramers-Kronig 
type of relation exists between 1"( w, 0) and the real part of the anomalous dispersion 
correction 1'( w, 0). 

Indeed the semi-empirical theory of Parratt and Hempstead (1954) and the early 
work of Cromer (1965) made use of this inter-relationship. In both cases, however, 
power law fits were made to existing X-ray attenuation data originating in other 
laboratories and this simplified dependence of linear attenuation on photon energy 
was carried through in their calculations of 1'( w, 0). 

The computer fitting of data acquired in X-ray attenuation measurements was 
employed by Creagh (1975, 1977, 1978, 1980) for the determination of 1'(w,O) for 
alkali and alkaline-earth halides. A similar approach has been taken by Gerward et 
af. (1979) who determined I' (w, 0) for silicon and germanium for a wide range of 
photon energies including, in the case of germanium, the K -shell absorption edge. 
Other determinations have been reported by Henke et al. (1982) for the interaction 
of low energy photons with a number of elements. 

The advent of synchrotron radiation sources has stimulated much research interest 
in EXAFS and X-ray absorption near edge structure (XANES) because the high 
brilliance of these sources enables measurements to be made readily in those regions 
near the absorption edges where the linear attenuation coefficient is very large. Most 
of these measurements, however, have been of a qualitative, rather than absolute, 
nature. This follows from the deficiencies in the detectors used in the measurement 
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and also because the interpretation of EXAFS and XANES spectra has not required 
data which are correct on an absolute scale. Some efforts, however, have been made 
to place measurements on an absolute scale. 

The use of the direct integration technique to determine /' (w, 0) for germanium 
and selenium in the vicinity of the L3 edges was described by Fuoss (1980) and Fuoss 
et al. (1981). A further summary of results was given by Fuoss and Bienenstock 
(1981). 

More recently Dreier et al. (1984) have produced results for Ni, Cu, Zn and Zr 
close to their K edges, and Ta, W, Pt and Au near their respective L edges. Before 
giving details of their experiment a few comments concerning the measurement of 
linear attenuation coefficients must be made. 

For 80 years attenuation data have been collected, and not an insignificant propor
tion of these data is inaccurate. The problem with the tabulated data was of such 
magnitude that the Commission on Crystallographic Apparatus of the International 
Union of Crystallography set up a project to determine which, if any, of the techniques 
for measuring J.Ll could be trusted. In their report Creagh and Hubbell (1985) set out 
the criteria which must be met if reliable data are to be acquired. The experiments 
of Creagh and Gerward et al. met these criteria. Dreier et al. (1984), however, used 
a system whereby the relative data gained using standard EXAFS techniques were 
matched to X-ray cross sections tabulated by McMaster et al. (1969). During the 
fitting procedure a further energy dependent term had to be used to improve the 
quality of fit. When these data sets had been fitted to one another the direct integra
tion technique was used. Because of the uncertainties in the McMaster et al. (1969) 
tables and the nature of the energy dependent term (which represents photon scat
tering processes that are not photoelectric in origin), there must be some significant 
uncertainties in their final results. 

Finally, as Creagh (1980) has indicated, the Kramers-Kronig integration technique 
does not give the value of /' (w, 0) if a relativistic quantum mechanical theory is used, 
and uncertainties must exist because of problems in calculating the correction terms 
using relativistic quantum mechanics. 

(d) Diffracted intensity techniques 

The intensity differences between inversion symmetry related diffracted beams from 
non-centrosymmetric crystals were first commented on by Bijvoet et al. (1951). All 
detection techniques determine the intensity rather than the amplitude and phase of 
a diffracted beam and this is related to I Fhk11 2 . For non-centrosymmetric structures 
one can write 

(62) 

This ratio contains terms for both /' (w, 9 hkl) and /" (w, 9 hkl) in both the numerator 
and the denominator except that the phase of the imaginary part for the inverted 
structure is opposite to the sign for the normal structure. Cole and Stemple (1962) 
studied the Bijvoet-pair reflections in the neighbourhood of the absorption edge and 
found that the ratio of intensities is independent of the defect state of the crystal and 
applies equally to ideally perfect as well as ideally imperfect crystals. 

Fig. 8 shows schematically the relationship between Friedel pairs for a structure, 
where Fw is the scattering amplitude from atoms without dispersion and /' and 
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(a) 

f" 

Fig. 8. Friedel pair scattering amplitudes and phases for (a) Fhkl and (b) 
Fiikl· Note that Fhkl =1= Fiikl and ahkl =1= -aiikl. 

I" are the resultants of scattering with dispersion from the atoms comprising the 
structure. Here we have 

(63) 

where a hkl is the phase angle. It is obvious that 

(64) 

Hosoya (1975) outlined several techniques for the determination of I'(OJ, ghkl) and 
I II (OJ, g hkl) from such measurements. In one technique the experimentally deter
mined linear attenuation coefficient ILl was used, from which values of I" (OJ, ghkl) 

were deduced. Using this value II(OJ, ghkD was calculated. In another technique, 
measurements on a set of Bijvoet pairs gave rise to a set of simultaneous equations, 
with II(OJ, ghkl) and I"(OJ, ghkl) the solutions. Implicit in this, however, is the 
assumption that no angular dependence of anomalous dispersion corrections exists. 
This technique has been applied to studies of GaAs and GaP in the region of the 
gallium, arsenic and phosphide absorption edges by Fukamachi and Hosoya (1975) 
and Fukamachi et af. (1977, 1978). Other studies have been reported by Bamea 
(1975) for CdSe and by Post (1975) for ZnP, ZnS and BP. From his studies Post 
concludes: ' ... it would be more useful to base these (experimental tests of disper
sion theory) on X-ray interferometric determinations of II and careful measurements 
of the true photoelectric absorption cross sections, rather than measurements of the 
intensities of selected X-ray reflections.' 

The problem can be approached from another angle. If the positions of all the 
atoms within a crystal structure have been determined its geometrical structure factor 
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Fhkl can be calculated to some precision. The relative intensities of each of the set 
of Bragg reflections for a particular photon energy can therefore be computed. If one 
then makes measurements at other photon energies the assumption could be made that 
the only parameter which changes is the scattering power of the atom. If the structure 
is then solved using the positional and thermal parameters determined previously the 
R factor will be different from that found earlier. Also, if one atomic species is near 
one of its absorption edges its anomalous scattering factors become dominant terms in 
the structure factor. This led Templeton and Templeton (1978) to refine the spectrum 
of caesium tartrate using the anomalous dispersion correction f /I as a free variable for 
photon energies in the neighbourhood of the caesium absorption edge. The success of 
this technique has led to a number of other measurements; see, for example, Philips 
et af; (1978), Templeton et al. (1980) and Philips and Hodgson (1980a, 1980b). 

There are some problems inherent in this technique. The first is that it relies on the 
accurate measurement of the intensity of the diffracted beam and the conclusion by 
Cole and Stemple (1962) concerning the independence of intensity ratio on crystalline 
perfection. Other factors such as primary and secondary extinction also present 
difficulties to those making an accurate measurement of the intensities of the diffracted 
beams. A more serious flaw is its assumption that neither of the anomalous scattering 
corrections depends on the angle of scattering. By definition structure factor methods 
measure fl(w, ghkl) and f;'(w, ghkl) for the atomic species j which is the major 
anomalous scatterer in the structure. Since it is not yet proven that no angular 
dependence of the anomalous dispersion correction exists this technique does not 
provide a good test of current theories. 

Nevertheless, the concepts developed form the basis of an extremely powerful 
technique, the 'heavy atom' or isomorphous replacement technique, used to resolve 
the phase problem in the solution of complicated crystal structures. Discussions of 
these techniques are given in standard crystallographic texts, such as Stout and Jensen 
(1968). 

PendeUosung Measurements 

As Ewald (1916) showed there is an interchange in energy between the transmitted 
and the reflected beam propagating in a crystal structure. He called this phenomenon 
Pendellosung. The first observation of Pendellosung was by Kato and Lang (1959) 
in perfect crystals of silicon. The modem revival of the dynamical theory of X-ray 
diffraction commenced with the work of Kato (1960, 1961). 

The intensity of the wavefield which results from the interference of the incident 
and diffracted beam is related to the geometrical structure factor by 

(65) 

where A is a constant and 

(66) 

The dielectric susceptibility corresponding to the hkl Bragg reflection XhJcI is given 
by 

(67) 

In equation (65), Jo is the spherical Bessel function of zero order which, in its 



396 D. Creagh 

asymptotic form, becomes 

The period of the standing wave pattern is therefore related to the geometric structure 
factor. 

Of the many measurements of the geometric structure factor the most accurate is 
that by Aldred and Hart (1973). The material on which they worked was silicon, the 
material most readily manufactured as a perfect single crystal. If crystalline defects 
exist the periodicity of the Pendellosung fringes is modified. 

Extremely precise measurements have been made of the geometric structure factor 
for a large number of Bragg reflections, from which the atomic scattering factors fhkl 

have been deduced. Price et al. (1978) have used a refinement technique to evaluate 
from this data values of the anomalous dispersion corrections. The data, however, 
are for I(w, ghkl)' and. like the other techniques the refinement procedure assumes 
no angular dependence of II(W, ghkl) and I"(W, ghkl). In addition the Pendellosung 
technique can be used only when large perfect strain-free crystals are available. This 
limits its usefulness to the study of relatively few materials. 

(e) Future developments 

In recent times the technique for manufacturing 'crystals' using the vacuum deposi
tion of alternating layers of elements having significantly different scattering powers 
has advanced to a stage where devices which can operate effectively at low photon 
energies have been fabricated. Henke et al. (1982) have discussed the performance of 
this class of reflector. The manufacturing skills developed by Barbee (1981) has en
abled the construction of a Fabry-Perot etalon capable of operating in the soft X-ray 
region. In principle the refractive index of the spacer material between the elements 
of such an etalon can be measured to very high precision. The real problem with this 
method at present lies in the difficulty of producing layers with a homogeniety com
mensurate with the potential resolution of the etalon. If the manufacturing difficulties 
can be resolved this technique could yield results in a region of the X-ray spectrum 
for which results have been extraordinarily difficult to obtain. 

4. Discussion 

In this section discussion will centre on theoretical and experimental results for 
materials for which the cohesive forces are metallic, represented by copper and nickel, 
covalent represented by silicon, and ionic, represented by lithium fluoride. 

(aJ Experiments Close to an Absorption Edge: Copper and Nickel 

The availability of synchrotron radiation sources has increased greatly the pos
sibility of performing experiments to measure the anomalous dispersion corrections. 
Experiments to determine II (w, 0) and I" (w, 0) for a range of wavelengths encom
passing an absorption edge have been undertaken at both the SRC facility at Daresbury 
(U.K.), HASYLAB at the DESY facility (West Germany), the 'photon factory' 
(Japan), and SPEAR the Stanford (U.S.A.) facility. These experiments for the most 
part have been performed on thin « 10 /-Lm) foils, usually belonging to the transition 
metal sequence. Experiments have been performed on a range of other elements, 
amongst them platinum, gold, zirconium, tantalum and tungsten. 
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In Fig. 9a the record of an experiment to determine 1'(w,O) for copper using an 
X-ray interferometer is shown schematically. At the low energy side of the edge there 
is a smooth decrease of I' (w, 0) until a minimum value is reached at the absorption 
edge. A slight increase occurs before a subsidiary minimum is reached about 15 eV 
above the energy of the absorption edge. Modulations are observed on the 1'(w,O) 
curve, and these tend to become less significant as the energy of the incident photon 
increases. The experimental error claimed, on the scale of the diagram, is typically 
three times the width of the line. For comparison the values of I' (w, 0) calculated 
using an approach similar to Cromer and Liberman (1970, 1981), which is valid 
only for free atoms, is shown in Fig. 9a as the dashed curve. Note the significant 
discrepancy between theory and experiment, which is a consequence of the interference 
of the ejected photoelectron with the electrons in its immediate vicinity. The energy 
range over which this modulation persists depends on temperature, the effect being 
more pronounced at low temperatures. 
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Fig. 9. (a) Variation of j'(w, 0) in the region of the copper absorption edge showing XANES 
structure. (b) Kramers-Kronig transformation of (a) over an extended energy range showing 
both XANES and EXAFS regions. The dashed curves in each case are the results of calculations 
using the Cromer and Liberman (1970, 1981) program. 

In the nonrelativistic theory I' (w, 0) and I" (w, 0) are related by the Kramers
Kronig transformation 

I'(E- 0) = ~ P f EI"(E, O) dE (68) 
l' 7T E2_ Ef ' 

1 

I"(E- 0) = ~ E·P f I'(E, O) dE. 
l' 7T 1 E2_Ef 

1 

(69) 

Fig. 9b shows the Kramers-Kronig transform of the curve displayed in Fig. 9a. This 
exhibits the same modulations as those observed in linear attenuation measurements, 
both in the region of the edge (XANES) and away from it (EXAFS). Further, it 
shows the usual tendency for the averaged slope to be higher near the edge than 
would be expected from the extrapolation of photoelectric attenuation data taken at 
energies significantly greater than the edge energy. These values calculated using the 
Cromer and Liberman (1970, 1981) theory are shown in Fig. 9b as the dashed curve. 
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The fact that both /' (Cd, 0) and /" (Cd, 0) show EXAFS and XANES modulations 
is a consequence of the fact that in a real crystal the photoelectrons ejected from the 
atom by the incident beam interact with the electrons in neighbouring atoms. The 
theory of EXAFS is reasonably well developed (see e.g. Lee et al. 1981) but there 
still exist some problems in the formation of a fully quantitative theory. Nevertheless, 
the existing theories explain quite satisfactorily the shape of the J.Ll(Cd) versus Cd curve 
but, although the maxima and minima of the modulations occur where the theory 
predicts, their magnitudes may differ somewhat from the theoretical predictions. 

Difficulties still exist in the near edge region but the multiple scattering theory 
described by Durham (1983) provides some hope that a proper explanation for XANES 
will be found soon. 

Fig. 9 demonstrates the general features exhibited by the X-ray interferometer 
experiments of Siddons and Hart (1983), Bonse et al. (1983) and Bonse and Hartmann
Lotsch (1984). These same general features occur in the results of X-ray attenuation 
experiments. These range from the EXAFS-type experiments of Dreier et al. (1984) 
to X-ray interferometer beam contrast experiments made by Bonse and Hartmann
Lotsch (1984). Measurements made by Fukamachi et al. (1978) using the Kramers
Kronig transform and the critical angle technique exhibit similar features. 

Table 1. Comparison of /,(CllK' 0) for Cu and Ni 

Here KK implies that a Kramers-Kronig transformation has been used to transform 
scattering cross section data into f' (CllK, 0). The experimental errors claimed are not 

worse than 5% 

Reference Method f'(Cll, 0) 
Cu Ni 

Experiment 
Freund (1975) Bragg reflection -8·2 
Bonse & Materlik (1976) Interferometer -8·1 
Bonse et al (1983) Interferometer -8·3 
Siddons & Hart (1983) Interferometer -9·3 -9·2 
Kawamura & Fukamachi (1978) KK -7·9 
Fukamachi et al. (1978) KK -8·8 

Critical angle -10·0 
Dreier etal. (1984) KK -8·2 -7·8 
Bonse & Hartmann-Lotsch (1984) Interferometer -8·3 -8·1 

KK -8·3 -7·7 
Theory 
Cromer & Liberman (1970, 1981) -10·5 -9·0 

Within each experimental data set reproducibility and self-consistency are very 
good. Typical claims as to experimental precision range from 2% in the case of 
Siddons and Hart (1983) to 5% for Dreier et al. (1984). Remote from the absorption 
edge all the experimental results are in good agreement with one another and, indeed, 
with the calculations by Cromer and Liberman (1970, 1981). But near the edge, 
where multiple scattering of the ejected photoelectrons occurs, significant differences 
occur between the different experimental data sets and the theoretical values. Hart 
and Siddons (1981), using a slightly modified Cromer and Liberman program, found 
that the theoretical curve predicts the trend of /' (Cd, 0) as a function of Cd extremely 
well. 
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Very significant discrepancies exist between these experiments, which can be illus
trated by the results of experiments performed at the K-absorption edge of copper 
and nickel, and which are set out in Table 1. It would seem that the consensus value 
for copper is - 8 . 3 electrons, with no fewer than five measurements lying within 1 % 
of this value. However, the theoretical (albeit free atom) value is -10·5 electrons 
and three measurements lie in the range - 8 . 3 to - 10·5 electrons. 

The agreement between experiments is not quite so good for the case of nickel, but 
all except the Siddons and Hart (1983) value lie in the range -7·7 to - 8·1 electrons, 
which is within the claimed accuracy for most experiments. However, the theoretical 
value is - 9 ·0 electrons which lies much closer to the Siddons and Hart value than the 
others. Given the excellent agreement which exists between theory and experiment at 
energies remote from the edge and the fact that theory successfully predicts the trend 
of the II (w, 0) versus W curve, the differences in II (wK' 0) are somewhat puzzling. 

Of the results shown in Table 1 only the X-ray interferometers provide direct 
measurements of II (wK' 0); all the others determine it indirectly. In the experiment 
performed by Freund (1975) numerous corrections had to be made, not the least of 
which was the correction for thermal diffuse and Compton scattering, and it was also 
necessary to measure the linear attenuation coefficient 11-,. In the event his experimen
tal results for 11-, do not show EXAFS and are not in accord with the more recent 
measurements by Dreier et af. (1984). Also, because Freund measured II(WK' g222) 
and not II (wK' 0), the inclusion of his results in Table 1 is only warranted if there 
is no angular dependence of the real part of the anomalous dispersion correction on 
scattering angle. 

Kramers-Kronig transformations are extremely difficult to perform. It is necessary 
to have precise measurements of the linear attenuation coefficient over a wide energy 
range. In the case of Dreier et af. (1984), recourse was made to the data presented 
by McMaster et af. (1969) and this data set is known (Creagh and Hubbell 1985) 
to contain a significant systematic error. This must cast some doubt on the validity 
of their estimate of II (wK' 0). Similar remarks can be made about the experiments 
by Kawamura and Fukamachi (1978) and Fukamachi et aZ. (1978). Further, all 
Kramers-Kronig calculations are subject to a systematic error because of the neglect 
of the K-shelliinewidth in the calculation. This effect of the neglect of this parameter 
is most significant in the region of the edge. 

The critical angle experiment by Fukamachi et af. (1978) is made at a fixed 
(nonzero) angle of scattering and can be included in Table 1 only if no angular 
dependence of the real part of the anomalous dispersion correction exists. 

The origin of the discrepancy between the X-ray interferometer measurements is 
difficult to assess. The interferometers themselves are quite differently constructed 
and are mounted at quite different synchrotron radiation sources. It is known (M. 
Hart, personal communication 1982) that the results taken using the Angstrom ruler 
interferometer at LURE, DESY, SRS Daresbury, and in Hart's laboratory are self
consistent. No similar information exists for Bonse's interferometer. It seems likely 
that the source of the discrepancy lies in the energy resolution of the interferometers. 
Although, in the first instance this is determined by the width of the Laue case rocking 
curve for the interferometer, it is considerably broadened by thermal fluctuations and 
mechanical vibrations. The effect of degradation in energy resolution is the reduction 
in the amplitude of the EXAFS and XANES and the increase in the value of I I (wK' 0). 
This effect can be readily seen by comparing the work of Bonse and Materlik (1975) 
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with that of Bonse and Hartmann-Lotsch (1984). The interferometer configurations 
are identical yet the earlier work barely shows the effect of EXAFS, in contrast to 
the later work. The difference is predominantly that the early experiment was done 
at a work-station to which the interferometer had to be taken and mounted for each 
experimental run. For the latter, the interferometer has had a permanent mounting 
on the beam line of the synchrotron, and the mechanical and thermal stability of the 
system has therefore been improved significantly. 

That neither of the interferometer experiments accord with theory is not surprising 
given that the theory has been developed for a free atom system in which no change 
in polarization is envisaged. Also the theory itself does not make adequate provision 
for such problems as multiple ionization of the K shell and the effect of finite lifetime 
in the excited state. Recent comments by Stearns (1984) concerning the broadening 
of EXAFS spectra tend to support the notion that the explanation of the discrepancy 
between theory and experiment lies partly in the failure of theory to describe ade
quately the photon-atom interaction under conditions of high photon flux. The dis
crepancy between experiments might well arise from differences in parameters such 
as energy resolution, source stability and source brilliance. 

Until some of the theoretical and experimental problems are resolved the correct 
value of I' (wK' 0) will remain uncertain. However, as mentioned earlier, the measured 
values of 1'( w, 0) remote from the edge are in good agreement with the values 
computed using the Cromer and Liberman (1970, 1981) program. 

(b) Experiments Remote Irom an Absorption Edge 

Since 1960 a number of experiments have been performed using characteristic 
radiation from conventional laboratory X-ray sources. Since most crystallographic 
crystal structure analyses are made in laboratories which use conventional sealed-tube 
X-ray sources this forms a very important set of results. To date most of the research 
has centred on the alkali and alkaline-earth halides and the semiconductor crystals 
silicon and germanium. 

Here we discuss the measurements made in a typical ionically bonded crystal, 
lithium fluoride, and the covalently bound crystal, silicon. The refractive index of 
lithium fluoride has been measured by Creagh (1970), Creagh and Hart (1970), Bonse 
and Hellkotter (1969) and Creagh (1984) using X-ray interferometer techniques. It 
has also been measured by Deutsch and Hart (1984) using the deviation of a prism 
technique. Measurements were made at the characteristic K-photon energies from 
copper, molybdenum and silver sealed X-ray tubes. From these measurements values 
of 1'(w, O) were deduced. 

Using X-ray attenuation measurements Creagh (1975, 1978, 1980) has determined 
I' (w, 0) for a range of alkali and alkaline-earth halides. Gerward et al. (1979) have 
used a similar method to determine 1'( w, 0) as a function of photon energy for silicon. 

Data for lithium fluoride and silicon are included in Table 2 together with the 
results of the deformation density study by Price et al. (1978), who used the Pendel
lOsung measurements for silicon reported by Aldred and Hart (1973). We note that 
the inclusion of these results in the table is valid only if it can be assumed that there 
is no functional dependence of 1'( w, ..:i) on ..:i. Although quite good agreement exists 
between the experimental results significant differences are found with the calculations 
of Cromer and Liberman (1970) and Wagenfeld (1975). This is quite unexpected and, 



X-ray Anomalous Dispersion Corrections 401 

as Creagh (1984) has shown, all the low atomic number elements he has studied 
follow the same pattern. If the ratio (j :xp - I ~L)/ I ~L is plotted as a function of 
the. parameter A/AK , where I:xp is the experimental value and I~L is the value from 
Cromer and Liberman (1970), then: 

(i) the experimental results are greater than the theory predicts for A/AK < 0·25; 

(ii) the experimental results are less than the theory predicts for A/AK > O· 25. This 
difference tends to zero as A tends to AK, in accord with the observations made 
by synchrotron radiation users to the effect that, in general, on approaching 
the edge the predictions of Cromer and Liberman (1970, 1981) are in good 
agreement with experiment. 

Table 2. Comparison of measurements of f' (w, 0) for LiF and Si at the charac
teristic K-shell radiations of molybdenum and silver 

The experimental accuracy (in %) claimed by respective authors is given in 
parentheses 

Sample Reference f'(w, 0) 
MoKal AgKal 

LiF Theory 
Cromer & Liberman (1970) 0·014 0·006 
Wagenfeld (1975) 0·023 0·015 
Experiment 
Creagh (1984) 0·020 (10) 0·014 (10) 
Deutsch & Hart (1984) 0.0217(1) 0.0133(1) 

Si Theory 
Cromer & Liberman (1970) 0·071 0·042 
Wagenfeld (1975) 0·101 0·071 
Experiment 
Cusatis & Hart (1975) 0·0863(2) 0·0568(2) 
Price et al. (1978) 0·085 (7) 0·047 (7) 
Gerward et al. (1979) 0·099 (7) 0·070 (7) 
Creagh (1984) 0·091 (5) 0·060 (5) 
Deutsch & Hart (1984) 0·0847(1) 0·0537(1) 

We note in Table 2 that the nonrelativistic approach used by Wagenfeld (1975, 
1985) also is not in agreement with the observed values. This has been attributed 
by Deutsch and Hart (1984) to a failure to account properly for the effect of higher 
electron shells in the calculations. Also the experimental evidence tends to support 
the contention of Parker and Pratt (1982) that there is no angular dependence in 
II(W, .:i), in contradiction with Wagenfeld's (1975) theory. The experimental values 
lie between the values calculated using the relativistic and the nonrelativistic theory. 
However, the relativistic theory gives a better description of photon scattering as the 
incident photon energy approaches the absorption edge energy. In this case the value 
of the integral in equation (44) is much larger than the terms due to the total kinetic 
energy of the atom: 

In the high energy limit, however, these latter terms dominate the expression for 
II (w, 0). It would appear therefore that the source of error lies in the calculation of 
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E tot for a bound system. The electronic energy levels for atoms· bound into crystals 
must be different from those for free atoms. 

Some attempts have been made to estimate the scattering cross sections for crys
talline materials using band-theory calculations. Indeed Takama and Sato (1982) 
reported good agreement between their Pendellosung measurements on copper and 
the band-theory calculations ofWakoh and Yamashita (1971). Such comparisons are 
possible only for those simple crystal structures for which the positional parameters 
are well known. 

Until some technique for estimating E tot for bound atomic systems is established, 
difficulties will be experienced in comparing theoretical and experimental values for 
f I (w, 0) in the high energy limit (w _ 00 ). This is of some significance since, for 
elements with low atomic numbers, measurements which are made with the charac
teristic emissions from sealed X-ray tubes are made effectively in the high energy limit 
(w>wK). A solution to this problem should be sought as a matter of some urgency. 
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