
Aust. J. Phys., 1985, 38, 449-69 

Burgers Vectors in Secondary Grain Boundary 
Dislocation Structures for near ~9, ~27 
and ~81 Boundaries* 

C T. Forwood and L. M Clarebrough 

Division of Chemical Physics, CSIRO, 
P.O. Box 160, Clayton, Vic. 3168. 

Abstract 

The Burgers vectors of secondary grain boundary dislocations, forming networks in near ~9, 
~27a, ~27b and ~81a grain boundaries in polycrystalline specimens of a Cu +6 at. % Si alloy, 
have been determined using the technique of image matching, which involves a comparison 
of experimental and theoretical electron micrographs. In all cases, the Burgers vectors of the 
secondary grain boundary dislocations were found to be vectors of the DSC lattice corresponding 
to the appropriate CSL orientation. Further, in most cases, the Burgers vectors were found to be 
basis DSC vectors. 

1. Introduction 

The application of transmission electron microscopy to the study of the structure of 
high angle grain boundaries in polycrystalline metals and alloys has shown that such 
boundaries contain arrays of dislocations when the observed misorientations between 
neighbouring grains depart from exact coincident site lattice (CSL) orientationst 
(see e.g. Bollmann et al. 1972; Pumphrey 1975; Clark and Smith 1978; Forwood 
and Clarebrough 1983). These dislocations have commonly been identified with 
the secondary grain boundary dislocations (GBDs) in the model of a high angle 
boundary (Bollmann 1967) in which secondary GBDs accommodate the departure 
of the observed misorientation from an exact CSL orientation. In this model the 
Burgers vectors of the secondary GBDs are vectors of the DSC lattice,§ so that the 
displacements associated with them maintain the CSL relationship. 

Although the dislocations observed in high angle boundaries have been commonly 

* Dedicated to Dr A. McL. Mathieson on the occasion of his 65th birthday. 

t Coincident site lattices occur at particular misorientations between neighbouring grains and 
consist of those lattice points which are coincident when the two misoriented lattices are allowed 
to interpenetrate. A particular CSL is specified by a parameter ~, where l/~ of the lattice points 
are common to both lattices. If more than one CSL exists for a particular ~ value they are 
denoted a, b, c, etc. where a is given to the smallest angle of misorientation, b is the next s,nallest, 
etc. For CSLs with the same values of ~ and the angle of misorientation alphabetic, precedence 
is given to the CSL with the smallest sum of the squares of the indices of the rotation axis. 

§ The DSC. lattice is the coarsest lattice that contains all the lattice sites of both grains when they 
are misoriented at the CSL orientation. 
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identified with the secondary GBDs of the theoretical model, there has only been one 
example of positive experimental identification of the Burgers vectors of secondary 
GBDs as DSC vectors from their diffraction contrast in electron microscope images, 
and this was for a near ~9 boundary in copper (Clarebrough and Forwood 1980a, 
1980b). In that example, it was also shown that the arrays of secondary GBDs 
did accommodate the departure of the observed misorientation from the exact ~9 
orientation. However, there is a need to see if the theoretical model verified for a near 
~9 boundary applies, more generally to high angle boundaries with other ~ values. 
In the present paper the Burgers vectors of secondary GBDs in arrays in near ~9, 
~27a, ~27b and ~81a boundaries are identified from their diffraction contrast and it 
is shown that in all cases the Burgers vectors involved are DSC vectors. 

2. General Principles 

The secondary GBD model for the structure of a general high angle grain boundary 
can be formulated as follows. If, for a general boundary, the misorientation between 
the grains is given by a rotation 0 about an axis Rand is close to a CSL orientation, 
corresponding to a rotation w about an axis P, then the small angular departure from 
the exact CSL will be given by a rotation cp about an axis u, according to the matrix 
equation 

(R,O) = (u,cp).(P,w). (1) 

The secondary GBDs required to accommodate the small misorientation (u, cp) can 
be described by the equation given by Frank (1950), 

B = 2(x X u) sin ~cp, (2) 

where B is the net Burgers vector of the secondary GBDs intersected by any vector 
x lying in the plane of the boundary. In equation (2) B is linearly dependent on 
x and this can only be satisfied, for any vector x in the plane of the boundary, if 
the secondary GBDs occur in arrays where the GBDs in each array are parallel and 
equally spaced. It can also be seen from equation (2) that the net Burgers vector B 
must always lie in the plane normal to u and, in general, this will not be a simple 
low-index crystallographic plane. Thus, to satisfy this condition, the structure of the 
boundary must consist of at least three arrays of secondary GBDs with non-coplanar 
Burgers vectors. The Burgers vectors of secondary G BDs are vectors of the DSC 
lattice and these DSC vectors are specific to particular CSL orientations and crystal 
structures. They can be obtained from the (P, w) matrix in the manner described by 
Grimmer et al. (1974). However, in the present paper DSC vectors will be obtained by 
adopting a simpler procedure using the theorem of Grimmer (1974), which shows that 
the DSC lattice is reciprocal to the coincidence lattice of the two reciprocal lattices 
of the grains at the CSL orientation. The coincidence lattice of the two reciprocal 
lattices corresponds to those sets of planes which are crystallographically equivalent, 
with plane normals gc' and which are continuous across the boundary. The three 
smallest non-coplanar gc vectors can be obtained directly for cubic crystals from the 



Burgers Vectors in GBD Structures 451 

rotation matrix (P, w). * If these are taken as the rows of a 3 x 3 matrix, then the basis 
vectors of the DSC lattice, corresponding to the CSL under consideration, are simply 
given by the columns of the inverse matrix. For example, in the case of an exact '};3 
boundary in a f.c.c. bicrystal, where grain 2 is rotated clockwise by an angle w of 
60° with respect to grain 1 about an axis P parallel to [111] in both grains, then a 
direction with indices [uvwlt in grain 1 and [u' v' w'h in grain 2 are related by the 
equation 

By inspection the three smallest non-coplanar gc vectors, indexed with respect to grain 
1, are (111)1' (202)1 and (022)1' giving the gc matrix and its inverse as, respectively, 

so that the basis DSC vectors for this '};3 CSL are H111lt, H21Tlt and H121lt. For 
boundaries with other.}; values the magnitudes of the gc vectors increase and the 
magnitudes of the DSC vectors decrease with increasing .}; value. 

The methods available for the determination of the Burgers vectors of GBDs from 
their electron diffraction contrast in bright field images are more restricted than those 
for dislocations in single crystals. For example, the criteria g. b = 0 can only 
conceivably be applied under two rather restrictive conditions: (i) when a bicrystal 
is orientated with respect to the electron beam so that only one grain is diffracting 
in 'two-beam' conditions, with the second grain nominally 'non-diffracting', and (ii) 
when the same diffracting vector gc is operating under two-beam conditions in both 
grains (Barry and Mahajan 1971). Condition (i) cannot be used with any reliability 
because g. b frequently has small fractional values and the resultant weak diffraction 
contrast cannot be reliably distinguished from cases where g. b = O. In addition, the 
diffraction contrast always arises from a GBD lying in an entrance or exit surface for 
the electron beam in the diffracting crystal, and under these conditions it is known 
that g. b = 0 criteria are very unreliable (Clarebrough 1974). In the case of condition 
(ii), gc. b has integral values (since the gc lattice is reciprocal to the DSC lattice) so 
that, similar to the case of dislocations in single crystals, the gc • b = 0 condition can 
in principle be distinguished. However, there is a very restricted set of gc vectors 
available for a given boundary and, for boundaries with high values of .};, some of 
the required gc vectors are of such high order that it is virtually impossible to set 
good two-beam diffraction conditions. In addition, there are rigid body displacements 
between neighbouring grains for many near CSL boundaries (Pond and Vitek 1977; 

* The rotation axis corresponding to the matrix (P, w) always gives one of the same gc vectors 
and the others can often be obtained by simple inspection of the (P, w) matrix. However, when 
simple inspection fails, the general form of the indices < h, k, l) of the other same gc vectors is 
given by the rotation axes of the matrices obtained by operating on the (P, w) matrix with the 
symmetry matrices for cubic crystals. 
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Forwood and Clarebrough 1983, 1984, 1985), and these displacements give rise to 
fringe contrast in the boundary which influences the visibility of the GBDs. For 
example, situations commonly arise in which GBDs show strong diffraction contrast 
when gc. b = O. For these reasons g. b = 0 criteria cannot be used with confidence 
even for condition (ii). 

The difficulties associated with the determination of the Burgers vectors of GBDs 
are overcome by using the method of image matching for GBDs (Humble and Forwood 
1975; Forwood and Humble 1975). This is based on the technique of image matching 
for dislocations in single crystals (Head et al. 1973), in which experimental images 
of a dislocation are compared with theoretical images computed for different Burgers 
vectors. * For GBDs the experimental images used are ones in which both grains are 
diffracting simultaneously under good two-beam diffraction conditions. In general, 
different diffracting vectors are used in each grain, but the method can be used equally 
well with the same gc diffracting vector in both grains. Theoretical images are com­
puted using the 'welded' boundary approximation for calculating the displacement 
field of a GBD in anisotropic elasticity (Tucker 1969) so that they apply to an isolated 
GBD in a boundary. However, the technique can be applied to a GBD in a network 
provided that the spacing of the dislocations in the network is sufficiently large for 
the local elastic displacement field of the GBD, causing the diffraction contrast, to be 
represented by that of an isolated GBD. The method has the advantage that it enables 
the magnitude and sense of a GBD to be determined. 

Table 1. Diffraction parameters 

Diffracting 
vector 9 

111 
200 
220 
311 

3. Experimental Details 

Extinction 
distance ~ 9 (A.) 

416 
469 
675 
817 

Anomalous 
absorption 

0·07 
0·08 
0·10 
0·11 

The material used was a Cu + 6 at. % Si alloy in the form of an annealed strip 
75 J-Lm thick. Small tensile specimens were cut from this strip, strained 5% and 
annealed for 1 h at 60(tC under vacuum to produce an average grain size of ap­
proximately 20 J-Lm. After thinning, specimens were examined by transmission electron 
microscopy at 200 kV, by using a goniometer stage giving ±30° of tilt about two 
orthogonal axes. 

Grain boundaries of the type ~3, ~9, ~27 and ~81 were commonly observed, and 
the near ~9, ~27a, ~27b and ~81a boundaries, selected for detailed analysis, were 
inclined at shallow angles in the foils with misorientations very close (.$ O· 10

) to 
exact CSL orientations, so that the dislocations in the secondary GBD networks were 
widely spaced. 

For computing theoretical images the elastic constants used were ell = 16·58, 

• The theoretical images presented in this paper have been computed using a 'Corona' personal 
computer and the images have been produced on an 'Epson FX 80' printer using 25 levels of 
grey. 
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C12 = 12·64 and C44 = 7·41x1010 Nm-2 (Neighbours and Smith 1954). The 
values of extinction distance and anomalous absorption for different diffracting vectors 
are given in Table 1. The determination of crystallographic data, such as boundary 
planes and directions of dislocations, was made using standard stereographic analysis 
from images and diffraction patterns taken in at least four different beam directions 
spanning the full range of tilt. 

For all the boundaries considered, the boundary plane normals are taken as pointing 
from the lower grain, with respect to the electron source, into the upper grain, while 
the sense of the line directions of the GBDs is taken as pointing from the bottom 
surface of the foil, with respect to the electron source, to the top surface of the foil. 

(a) 

Grain 2 
(b) 

020 

'" 
Grain 1 

0·5 f.Lm 

Fig. 1. Simultaneous two-beam electron micrograph (a) showing a secondary GBD network in 
a near ~9 boundary. The intersections of the boundary with the bottom and top of the foil with 
respect to the electron source are the traces marked Band T respectively, so that grain 1 is the 
upper grain. The diffracting vectors are indicated and the beam directions are close to [105] 1 and 
[31412- A schematic representation of the secondary GBD network is shown in (b). 

4. Results 

In this section the Burgers vectors of the dislocations forming the secondary GBD 
networks in near L9, L27a, L27b and L81a boundaries will be identified using the 
image matching technique. With this technique, it is necessary to use a sufficient 
number of experimental images so that the diffracting vectors involved sample the 
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(0) 

(b) 

(c) 

(d) 

Fig. 2. Experimental and theoretical electron micrographs of secondary GBDs in a near ~9 
boundary with boundary normal [439h in a foil 13· 5 ~ 111 thick with foil normal [5 19 27h. The 
experimental electron micrographs (a), (c), (e) and (h) have diffraction vectors g, beam directions 
B (values listed here and in Figs 4, 5,7, 9-11 are close to actual values), deviation parameter w, 
and GBD line directions I as listed opposite. The matching theoretical images (b) were computed 
for the parameters of (a) with bA = H122h. Similarly (d) was computed for the parameters 
of (c) with bs = M127h; (f) and (9) were computed for the parameters in (e) for C and B 
respectively with be = H121h and bs = -h[127h; and (i) was computed for parameters of (h) 
with bo = -h[4ITh· 
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(e) 

(h) 

(i) 

Fig. GBD 9 B w I 
(a) A 02°1 [l05h 0.35 1 [031]1 

IIT2 [314h 0.292 
(c) B 02°1 [105h 0·2°1 [2413 ISh 

02°2 [I03h 0·2°2 
(e) C As for Fig. 2 a [IB 37h 

B [2413 ISh 
(h) D 0201 [105]1 0.4°1 [60 I 27]1 

1112 [31 4h 0·4°2 
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full three-dimensional displacement field of the GBD under consideration. For two­
beam diffracting conditions each diffracting vector g samples only the component 
of the displacement field parallel to g, so that images involving at least three non­
coplanar diffracting vectors are needed. Each of the experimental images selected is 
compared with theoretical images computed for the possible Burgers vectors that could 
apply to the GBD under consideration. In this way, the Burgers vectors which give 
mismatching theoretical images are eliminated, so that the matching set of theoretical 
images defines the Burgers vector. For secondary GBDs the possible Burgers vectors 
are the basis DSC vectors for a particular l: value and all linear combinations of these 
vectors. However, in this work, for all the boundaries considered, the possible Burgers 
vectors tested with theoretical images were restricted to those with magnitudes up to 
and including the magnitude of a ~<112> vector. 

It is not possible here to show all the experimental images with the matching and 
mismatching theoretical images that were used and only selected examples will be 
presented. For example, in the case of the near l:9 and near l:27b boundaries only 
one matching pair of experimental and theoretical images, for each of the components 
ofthe GBD network, are presented; in the case of the near l:27a boundary an example 
of the use of three non-coplanar diffracting vectors is demonstrated, and in the case 
of the near l:81a boundary some mismatching theoretical images are included. 

(a) Nearl: 9 Boundary 

Fig. 1 a shows a low magnification image of a portion of a near l:9 boundary which 
terminates at the bottom right of the micrograph in a triple junction involving a 
coherent l:3 and a near l:27 boundary. The small angular departure from the exact 
l:9 orientation is taken up by the coarse secondary GBD network, which is clearly 
resolved in Fig. 1 a and illustrated schematically in Fig. 1 b. The network consists 
of three independent arrays of GBDs, A, Band D, in which the segments A and 
B have interacted to form the GBD product C, giving a hexagonal network in the 
boundary containing. elements with the three Burgers vectors bA , bB and bc' where 
bc = bA + bB• The dislocation D with Burgers vector bn crosses the segments A of 
the hexagonal array and, although it changes direction where it crosses segments A, 
it does not interact to form reaction products. 

The exact CSL orientation corresponding to this near l:9 boundary involves a 
clockwise rotation of grain 2 with respect to grain 1 by 38.94° around an axis parallel 
to [0 II} in both grains, and is defined by the matrix 

~ [ : -: :], 
-4 8 

which transforms a direction indexed with respect to grain 2 into that indexed with 
respect to grain 1. The same ge matrix, indexed with respect to grain 1, is 

which gives the basis DSC vectors as a = M41I]!, b = HI22]! and c = is[127h. 
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Fig. 2 shows matching theoretical and experimental images for the segments A, B, 
D and the reaction product C of the secondary GBD network, where the theoretical 
images were computed for bA = H122]l' bB = ts[127h, be = HI2Th and bo = 
ts[4ITh. For segment A (Figs 2a and 2b), B (Figs 2c and 2e1) and D (Figs 2h and 
2 I), the theoretical images were computed for two segments at different depths in 
the foil and in these figures the images of the GBDs are arranged to be horizontal. 
The experimental image Fig. 2e shows the GBDs A (centre left), B (lower) and C 
(upper) meeting at a node. The matching theoretical image for the reaction product 
C is shown in Fig. 2/ and the matching theoretical image for the segment B, under 
these diffracting conditions, is shown in Fig. 2g. 

The character of the experimental images in Figs 2a and 2h is typical of that found 
for secondary GBDs and involves a change from black to white contrast at the line 
of the GBD. It was found that a great many possibilities for the Burgers vectors of 
GBDs could be eliminated simply on the basis of whether, in computed images, black 
and white contrast appeared on the appropriate sides of the GBD. In some cases 
special features of contrast involving fine detail helped in the identification, and such 
an example is shown in Figs 2c and 2d where the contrast of GBD B consists of a 
narrow black line (approximately 3 nm wide) bordered by two diffuse white bands. 

Image matching of the type illustrated in Fig. 2 identified the Burgers vectors of 
the GBDs as bA = b = H122h, bB = C = -Is [127h , be = b+ c = HI2Th and 
bo = a = -Is [41 I] 1. The identified Burgers vectors show that the three independent 
arrays of GBDs A, Band D have basis l:9 DSC Burgers vectors and that the GBD 
C is the reaction product formed by the reaction 

i.e. H121h = H122h +ts[I27h, which is an energy lowering reaction on the simple 
b2 criterion (Frank 1949). 

(b) Near l:27a Boundary 

Fig. 3a shows a low magnification image of part of a near l:27a boundary. The 
course secondary GBD network in the boundary, which accommodates the small 
departure of the misorientation between grains 1 and 2 from the exact l:27a CSL 
orientation, contains three independent arrays of GBDs, A, Band D, as illustrated 
schematically in Fig. 3b. The GBD segments A, Band C, with Burgers vectors bA , 

bB and be, form a hexagonal network in which C is the reaction product formed by 
the interaction of A and B. The GBDs D with Burgers vector bo cross the elements 
of the hexagonal network without reacting. 

The exact CSL orientation corresponding to this near l:27a boundary involves a 
clockwise rotation of grain 2 with respect to grain 1 by 31· 58° around an axis parallel 
to [011] in both grains, and is defined by the matrix 

217 [ ~~ -:~ 1~]. 
-10 2 25 
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(b) 

020 

J 

Fig. 3. Simultaneous two-beam electron micrograph (a) showing a secondary 
GBD network in a near~27a boundary. The intersections of the boundary with 
the bottom and top of the foil with respect to the electron source are the traces 
marked Band T respectively, so that grain I is the upper grain. The diffracting 
vectors are indicated and the beam directions are close to [314h and [I03]z. A 
schematic representation of the secondary GBD network is shown in (b). 

The same Be matrix indexed with respect to grain 1 is therefore 

[ -~ -: :] 
2 -6 4! 

which gives the basis DSC vectors as a = f..[11116h, b = M511h and c = M255h. 
Matching experimental and theoretical images for the segments A, Band D of 

the secondary GBD network of this near l:27a boundary are shown in Figs 4 and 
5, where the theoretical images were computed for bA = HTt2h, bB = M5Tth 
and bo = M255h. The images for two segments of A at different depths in the 
foil, and for three different sets of diffracting conditions, are given in Figs 4a-c; the 
images for segment B, for two different diffracting conditions, are given in Figs 5 a 
and 5b, and the images for segment D are given in Fig. 5c. In all cases the GBD 
under consideration is arranged to be horizontal in the figures. The three experimental 
images, and matching theoretical images computed for bA = HTt2]! in Fig. 4, are 
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(a) 

(b) 

(c) 

Fig. 5. Experimental and theoretical electron micrographs of the secondary GBDs B (a) 
and (b), and D (c) of Fig. 3. The boundary normal, foil thickness and foil normal are given 
in Fig. 4 and the GBD line directions I are [27 56 78] 1 for Band [9 34 33] 1 for D. The 
diffraction parameters for the experimental images and the theoretical images, computed 
for ba = i,[sTlh and bD = s'.[255h, are: 

Fig. GBD 9 B w 
(a) B 020 1 [409h 0.401 

2002 [OTllh 0.022 
(b) B 020 1 [409h 0.401 

2002 [0 T Ilh 0.022 
(c) D 11T1 [314] 1 0.301 

0202 .[l03h 0.222 
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for three sets of diffracting conditions involving non-coplanar diffracting vectors which 
sample the full three-dimensional displacement field of the GBD. These experimental 
and matching theoretical images, which cover a wide range of image character [black­
white contrast in (b) and double images with different character in (a) and (c)], 
illustrate the degree of agreement obtained in the image matching technique, which 
leads to the positive identification of the Burgers vectors of GBDs. The experimental 
images and matching theoretical images computed for bB = f; [511 h in Figs 5 a and 
5 b illustrate the change in contrast of a GBD (i.e. reversal from black to white) that 
results from reversing the sign of the diffracting vectors in both grains. 

Image matching identified the Burgers vectors of the GBD segments A, Band D 
as bA = a+ b = H112h, bB = b = ;\;[511]1 and bD = c = M255h. The Burgers 
vector of the short segment C was also identified by image matching as be = a = 
M11116]1 but no matching experimental and theoretical images are shown here. This 
Burgers vector is the reaction product formed by the energy lowering reaction 

(a) 
(b) 

Fig. 6. Simultaneous two-beam electron micrograph (a) showing a secondary GBD network in 
a near ~27b boundary. The intersections of the boundary with the bottom and top of the foil with 
respect to the electron source are the traces marked Band T respectively, so that grain 1 is the 
upper grain. The diffracting vectors are indicated and the beam directions are close to [0 T 12h 
and [301h. A schematic representation of the secondary GBD network is shown in (b). 

(c) Near ~27b Boundary 

Fig. 6a shows a low magnification image of a near ~27b boundary where the 
secondary GBD network contains three independent arrays of GBDs A, Band C as 
illustrated schematically in Fig. 6b. In the network, segments Band C interact where 
they cross to form very short lengths of reaction product, whereas segment A does 
not react with segment C. 
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(a) 

(b) 

Fig. 7. Matching experimental and theoretical images for the secondary GBDs (a) A, (b) Band 
(c) C in the network of Fig. 6. The boundary normal is [267h, and the foil is 11· O~ 111 thick 
with foil normal [4714]1. The diffraction parameters and line directions of the GBDs I are: 

Fig. GBD 9 B w I 
(a) A ITll [918h 0.201 [232]1 

TTI2 [112h 0.122 
(b) B 2001 [0112h 0.301 [232]1 

0202 [301h 0.102 
(c) C 2001 [0112h 0.021 [83 512Oh 

0202 [301h 0.442 

The matching theoretical images were computed for bA = f.-[I 194]1, bs = MT14h and be = 

f.-[721]1· 

(c) 



Burgers Vectors in GBD Structures 463 

The exact CSL orientation corresponding to this near ~27b boundary involves a 
clockwise rotation of grain 2 with respect to grain 1 by 79.33° around an axis parallel 
to [131] in both grains, and is defined by the matrix 

27 [ : -~: =::J. 
26 2 7 

The same ge matrix indexed with respect to grain 1 is therefore 

which gives the basis DSC vectors as a = f.[5 14 7h, b = t\[T14h and c = f.-[721h. 
Figs 7 a-c show matching experimental and theoretical images for the segments A, 

Band C respectively of this near ~27b boundary, where the theoretical images were 
computed for bA = f.[1l94h, bs = -ts[T14h and be = f.[721h. In all cases the 
relevant GBD segment is arranged to be horizontal in the figure, and segments A and 
B were computed throughout the full thickness of the foil, whilst segment C was 

(a) (b) 

B 

Fig. 8. Simultaneous two-beam electron micrograph (a) showing a secondary GBD network in 
a near ~81a boundary. The intersections of the boundary with the bottom and top of the foil 
with respect to the electron source are the traces marked Band T respectively, so that grain 1 is 
the upper grain. The diffracting vectors are indicated and the beam directions are close to [352h 
and [14512- A schematic representation of the secondary GBD network is shown in (b). 



464 C. T. Forwood and L. M. Clarebrough 

(a) 

(b) 

(c) (d) 

Fig. 9. Matching experimental and theoretical images (a) and (b), for GBD A of Fig. 8 for 
bA = Th[111314h· The GBD line direction I is [635h, the boundary normal is [143 27lJ, the 
foil thickness is 9.3~111 and the foil normal is [72112lJ. The diffraction parameters are: 

Fig. 9 B w 
(a) 0221 [Illlllt 0.141 

2202 [115h 0.02 
(b) 1111 [352lJ 0.361 

TII2 [I34h 0.212 

The additional theoretical images (c)-( e) were computed for the diffraction parameters of (b) 
with bA = Th[17229lt, (c); bA = Th[2317 44]1, (d); and bA = Th[28TT 43lJ, (e). 
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computed between two nodal points in the GBD network. In the theoretical image in 
Fig. 7 b, no account was taken of the fact that in the experimental image of B there 
are interactions at various positions along its length with segment C. However, this 
did not interfere with the identification of the Burgers vector of this GBD by image 
matching. 

The full image matching procedure identified the Burgers vectors of the segments 
A, Band Cas bA = a-b+c = f.[1194h, bB = b = ts[T141t and be = c = 
f.[721h. The lengths ofGBD formed by the interaction ofB and C were too short to 
be reliably identified by image matching, but their Burgers vector would correspond 
to bB - be = f.[4511h. 

(d) Near '2-81a Boundary 

Fig. 8a shows a low magnification image of a near '2-81a boundary where the 
secondary GBD network contains three independent arrays of GBDs A, Band C, as 
illustrated schematically in Fig. 8 b. 

The exact CSL orientation corresponding to this near '2-81a boundary involves a 
clockwise rotation of grain 2 with respect to grain 1 by 38.38° around an axis parallel 
to [513] in both grains and is defined by the matrix, 

-23 

64 

-44 

-16] 
41 . 

68 

The same gc matrix indexed with respect to grain 1 is therefore 

which gives the basis DSC vectors as a = I~Jll 13 14]1' b = lU19 7 20h and c = 
f.[255h· 

Figs 9a and 9b show, for GBD A, experimental images and matching theoretical 
images computed for bA = 1~2[11 13 14h. The experimental image in Fig. 9b proved 
to be a particularly definitive image for eliminating a large number of possible Burgers 
vectors for GBD A. It can be seen that in this experimental image the contrast ofGBD 
A is very weak with weak dark intensity below the line of the GBD, whereas many 
of the possible Burgers vectors gave images with stronger contrast with strong light 
intensity above the line of the GBD, as shown by the examples of the non-matching 
theoretical images in Figs 9c-e. 

Figs lOa and lOb show experimental images and matching theoretical images for 
the G BD segments Band C, respectively, with bB = 1~2 [19 7 20] 1 and be = f.[2551t. 
In the experimental image shown in Fig. 11 a, the GBD segment C shows weak con­
trast throughout the thickness of the foil and is another example of an image which 
enabled many of the possible Burgers vectors to be eliminated in the identification 
procedure. For example, the theoretical image in Fig. 11 b, corresponding to be = 
f.[255h, is a good match in that it shows the type of weak contrast observed at the line 



466 C. T. Forwood and L. M. Clarebrough 

(a) 

(b) 

Fig. 10. Matching experimental and theoretical images for the secondary GBDs (a) Band 
(b) C in the network of Fig. 8. The boundary normal, foil thickness and foil normal are 
given in Fig. 9 and the GBD line directions I are [4328 13h for Band [13 11 ISh for C. The 
diffraction parameters for the experimental images and the theoretical images computed for bB = 
I!J197 20h and be = h[255h are: 

Fig. 9 B 
(a) 1111 [132h 

2002 [012]z 

Fig. 
(b) 

B 
[257h 
[0112]z 

of the GBD in the experimental image throughout the entire foil thickness, with this 
contrast virtually disappearing near the bottom surface of the foil (left-hand side of 
image). However, the other two theoretical images (c) and (d), which were computed 
for Burgers vectors having given theoretical images that matched experimental images 
for other diffracting conditions, are mismatches in this case as they show strong 
contrast throughout the entire thickness of the foil, and therefore can be eliminated. 

In summary, the image matching technique identified the Burgers vectors of the 
secondary GBD network in this near L81a boundary as bA = a = 1!2[1l 13 14h, 
bB = b = lU19720]I and be = c = M255h. 

5. Discussion 

The present results have confirmed, for a range of near CSL orientations, that, in 
accordance with the secondary GBD model of high angle boundaries as discussed 
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(a) 

(b) 

(c) 

(d) 

Fig. 11. Matching experimental and theoretical images (a) and (b) for GBO C of Fig. 8 for 
be = M255h. The GBO line direction is [011 ISh and the boundary normal, foil thickness 
and foil normal are given in Fig. 9. The diffraction parameters are: 

B 
[11111h 
[115h 

The additional theoretical images (c) and (d) were computed for the same diffraction parmeters 
with be = "Ih[l7229h, (c); and be = "Ih[231744h, (d). 

in Section 2, the Burgers vectors of the secondary GBDs are vectors of the DSC 
lattice of the appropriate CSL. Although in principle more than three independent 
arrays of secondary GBDs could be involved in accommodating the departure of 
the misorientation across a high angle boundary from an exact CSL orientation [see 
equation (2) of Section 2] it has been found, for the cases discussed in detail here 
and for many others investigated, that only three independent arrays of GBDs occur 
in the secondary GBD networks. In many cases additional segments are present in 
secondary GBD arrays, but as has been shown here for the near ~9, ~27a and ~27b 
boundaries, they do not represent independent arrays of GBDs, since they arise from 
energy lowering reactions between pairs of GBDs in the three independent sets. 
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In all cases studied some of the segments in the secondary GBD networks cross 
one another without interaction, resulting in four-fold nodes. This arises because in 
some cases reactions would be energetically neutral on a b2 criterion (for example, 
a reaction between GBDs A and D for the near };9 boundary, and between GBDs 
Band D for the near };27a boundary), while in other cases reactions do not occur 
because of the large difference in the magnitudes of the Burgers vectors and hence the 
line tensions of the crossing GBD segments (for example, the GBDs A and D in the 
near };27a boundary and A and C in the near };27b boundary). 

For the different types of near CSL boundary examined, the Burgers vectors for 
most of the secondary GBDs were found to be the basis vectors of the appropriate 
DSC lattice. The fact that the Burgers vectors are predominantly basis vectors is 
to be expected, because these Burgers vectors minimize the overall self-energy of the 
arrays of secondary GBDs required in the boundary to accommodate the departure 
of the misorientation from a particular CSL orientation. However, this self-energy 
argument cannot be the sole factor determining the values of the DSC Burgers vectors 
of secondary GBDs, because on occasions Burgers vectors are found for segments of 
secondary GBD networks which are not basis DSC vectors, but are simple linear 
combinations of basis vectors. Two examples here are segments A in the near };27a 
and near };27b boundaries which have the Burgers vectors HT12h and M1194h 
respectively. An additional factor may be the energy of the steps associated with the 
secondary GBDs (King and Smith 1980). 

Because the magnitudes of the basis DSC vectors decrease with increasing}; value, 
the intensity of the diffraction contrast of the secondary GBDs with these basis DSC 
Burgers vectors also decreases as the}; value increases. For example, the contrast 
level associated with the secondary GBDs in the near };81a boundary is much less 
than that associated with the secondary GBDs in the near };9 boundary (compare, for 
example, Fig. 8 with Fig. 1). This decrease in the intensity of diffraction contrast did 
not impair the identification of the Burgers vectors by image matching for }; values 
up to };81, in the present work, but identification of smaller basis vectors, associated 
with appreciably higher }; values, could present difficulties. 
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