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Following the approach employed by Mathieson in his analysis of an X-ray Bragg reflection, we 
dissect the images of the 3, 3 polymorph of CuAsSe and show that certain characteristic patterns 
which outline the structure are to be found in the lattice images of a wide range of tetrahedrally 
bonded species. 

1. Introduction 

Whether an image can be interpreted intuitively depends on the optical system and 
on the nature of the interaction between the object and the illuminating radiation. 
In conventional microscopy the conditions on the interaction are that the object 
should modify the wavefield only by absorption, and pictorially, that the probability 
of scattering more than once within the object should be negligible. Neither of these 
conditions is satisfied in the scattering of electrons by matter. 

In general, then, the interpretation of electron micrographs is not a straightforward 
matter, but for certain classes of compounds general patterns can sometimes be 
discerned so that trial structures can be postulated. Well-known methods can then be 
used to calculate images and diffraction patterns, and hence refine the initial estimate. 

It is the purpose of this communication to dissect the images obtained from a 
compound of known structure, namely the 3,3 (or hcchcc) polytype of CuAsSe, in 
order to reveal the patterns common to that range of structure based on the stacking 
of tetrahedrally bonded species. 

2. Outline of the Theory 

The complexity of lattice images derives from the strength of the coupling of the 
electron to the potential within the object, a coupling which is some three orders of 
magnitUde greater than that for electromagnetic radiation. Approximations on which, 
for instance, the design of the phase-contrast microscope and the procedures used in 
X-ray structure analysis are based are then no longer valid. 

* Dedicated to Dr A. McL. Mathieson on the occasion of his 65th birthday. 
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The theoretical treatment adequate to calculate images and diffraction patterns to 
substantially arbitrary accuracy is well known, but an outline of one approach will be 
given as a means of summarizing various approximations which will be used below. 
This approach is a transcription of standard one body scattering theory, and has some 
shortcomings for a crystallographer, but is chosen in this instance because it is set 
in the direct space of the image rather than the momentum space of the diffraction 
pattern. 

The elastic scattering of electrons can be described by a Klein-Gordon equation, 

Here W is the accelerating voltage and </> the potential in the crystal is defined as 
being positive. The relativistic values for mass and wavelength are given by 

More compactly, we have 

(1) 

where 

1T 2 
U= --- ---------~ 

WA 1+(I-v2/c2)!' 

For fast electrons </>/ W is a slowly varying function on a scale of wavelength and 
is small compared with unity. The scattering will therefore be peaked about the 
direction defined by the incident beam and simplification is possible. 

By an intuitive method it can be argued that since </>/ W < 1, then the component 
of the motion along z is little changed by scattering. Hence, making the substitution 
tjJ = tjJ exp(i kz z), neglecting 02tjJ/oz2 and taking the object to be in the form of a 
plate normal to the z-axis, equation (1) becomes 

(2) 

where \7;,y = 02/0X2 +02/oy2, Ko = kx+ky is the transverse wave vector and 
tjJ(x, y, 0) = exp{ i( kx x + ky y) J. Equation (2) is in the form of a time dependent 
Schrodinger equation, so that the theory of the evolution operator can be directly 
invoked. [A recent account has been given by Gratias and Portier (1983).] 

In terms of the Hamiltonian of the two-dimensional system, 

the evolution operator U(z,~) defined by 

tjJ(z) = U(z, ~)tjJo 

satisfies 
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i a U(z, ~)laz = H(z) U(z,~) 

or 

(3) 

At the gaussian focus of a perfect electron microscope the contrast will, of course, 
be uniform and this is made explicit in equation (3). This equation can be solved 
iteratively by direct computation and the terms collected in ascending order of inter
action to give a Born series, essentially in powers of (JCP and the differentials of cpo 
Since in the voltage range routinely used in microscopy (JCP is of order 10-3 A -1, the 
series will converge very slowly for nearly all practical cases. Numerical values must 
therefore be obtained by other methods. 

So far we have assumed cP to be a function of x, y and Z. When the periodicity in 
the z direction is not too great however, the dependence on z may be neglected and 
the solution simplifies to give 

U(z,~) = 1 -iH(z-~) +(i2/2!)H2(z-~) - ... 

= exp! -i H(z-~)j. (4) 

This is a sufficiently good approximation to describe most images at least in outline, but 
in preliminary evaluation even simpler forms are required. If the object is sufficiently 
thin and the wavelength short, the terms involving differentials become small and the 
phase grating approximation is obtained as 

(5) 

At small defects of focus the intensity distribution then approximates to the charge 
density (Lynch et al. 1975) and intuitive interpretation is possible. 

The first Born approximation results from selecting only those terms that are first 
order in (JCP. The range of validity is very limited. If the object is crystalline the 
series can be summed to give 

sin!7T'(g)zj . 
tjJ = I +i .; V(g) 7T'(g) exp(27T 1 g. r), 

where the excitation error 
,(g) = ! K~-(Ko+ g)2j/47T kz 

measures the deviation from the Bragg condition and derives directly from the opera
tion of the kinetic energy term in the Hamiltonian. Dynamical results are usually 
expressed in terms of the excitation errors, and this is appropriate in reciprocal space. 
In image space, however, qualitative assessments can sometimes be made more directly 
in terms of the differentials. 

The third type of approximation used in this paper involves the summation of all 
orders of interaction for a limited number of beams. The prototype is the two beam 
approximation in which the intensity of the forward scattered beam has a cos-squared 
dependence on thickness and is complementary to the diffracted beam. Analogous 
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wavefunctions are generated at symmetric orientations to a few strongly coupled 
beams (Niehrs 1959). 

None of these approximations is, by itself, adequate to describe the images generated 
by the more complicated chalcogenides. Experimental data were therefore collected 
from a typical compound of known structure. 

3. Experimental 

The method of preparation and the determination of the crystal structure by single 
crystal X-ray diffraction of the 3, 3 or hcchcc polymorph of CuAsSe has been reported 
previously (Whitfield 1981). 

Specimens of CuAsSe suitable for high-resolution electron microscopy were prepared 
by crushing crystals in an agate mortar under ethanol. The thin crystals were 
deposited on holey carbon films and examined in a JEOL 200CX electron microscope 
in a configuration (Moodie and Whitfield 1984) that allowed direct switching between 
convergent beam electron diffraction (CBED) and imaging of the field at ultra-high 
resolution. 

We describe elsewhere (Glanvill et al. 1985) how we use optical diffractograms 
of a through focus series of amorphous films of C, Si and Ge to determine the 
spatial frequencies of maximum and minimum phase contrast, and thence the spherical 
aberration coefficient Cs of the JEOL 200 kV electron microscope. In the particular 
configuration we used, with a tilting stage holder placed very low in the objective lens 
and with a double-gap condenser, the measured spherical aberration is 0·94 mm. 

Lattice images were calculated using the multi-slice formulation of the dynamical 
theory for electron diffraction (Cowley and Moodie 1957). The calculations were 
carried out using special purpose computer programs written by D. Lynch. 

Table 1. Atomic coordinates for ideal and actual structure of CuAsSe 

Atom Ideal Actual 
x y z x y z 

As(l) 0·0000 0·0000 0·1875 0·0156 0·0108 0·1806 
As(2) 0·0000 0·3333 0·3542 0·0168 0·3580 0·3541 
As(3) 0·0000 0·3333 0·0208 0·0176 0·3229 0·0170 
Se(l) 0·1667 0·5000 0·1875 0-1645 0·4773 0·1803 
Se(2) 0-1667 0·8333 0·3542 0·1636 0·8701 0·3455 
Se(3) 0·1667 0·8333 0·0208 0·1646 0·8100 0·0144 
Cu(l) 0·8333 0·5000 0-1875 0·8315 0·5364 0·1965 
Cu(2) 0·8333 0·8333 0·3542 0·8343 0·8151 0·3598 
Cu(3) 0·8333 0·8333 0·0208 0·8265 0·8644 0·0307 

4. Structure of hcchcc-CuAsSe 

The compound CuAsSe crystallizes in the orthorhombic space group Pbcn with 
Z = 24 in a unit cell of dimensions a = 11·75, b = 6·79 and c = 19·21 A, and 
with all atoms in general 8-fold positions (Whitfield 1981). This structure is related 
to the B6 structure of the 6H polytype of ZnS but all three kinds of atoms (Cu, As 
and Se) occupy the equipoints of the 6H ZnS lattice in such a way that each Cu is 
coordinated by lAs+3Se, each As by lCu+2As+ ISe, and each Se by lAs+3Cu. 
The Cu-As, Cu-Se and As-Se bond lengths are appreciably different and there is an 
associated distortion from perfect tetrahedral angles of 109°28 '. 
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Fig. 1. (a) Experimental image of a mixture of polytypes of CuAsSe. To the left of the crystal 
is the 4,3 polytype, to the right of the crystal is the 3,3 polytype, and in the centre are observed 
stacking patterns 7,3 6,4 and 5,3. (b) Enlargement of the centre portion of (a) with the stacking 
sequence indicated. 
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Fig. 2. Selected area diffraction pattern of the Okl projection of hcchcc-CuAsSe 
viewed down the [100] direction. Note that the 001 reflections with I odd, forbidden 
in appropriate orientation (see Figs 3 and 4), are quite strong. This results from the 
averaging over angle, deriving both from residual convergence in the illuminating 
system and bends in the crystal. 

There is a simple relationship between the lengths of the three axes of CuAsSe, 
namely aly3 = b = c/YS. For an 'ideal' CuAsSe structure in which this relation 
between unit cell lengths is exact and with perfect tetrahedral coordination with equal 
bond lengths for Cu-As, As-As, Cu-Se and As-Se, the atomic coordinates of the 
atoms in the asymmetric unit of CuAsSe would be 

As (0,0, :is) (0,1, ±V (0, to is), 

Se <i, ~, Is) (i,~, H) (i, ~, is) , 

Cu (i, ~, !s) (t, i, H) (i, i, is) . 

In Table 1 these atomic coordinates for the 'ideal' structure are compared with the 
experimentally determined coordinates. 

At the resolutions attainable in the JEOL 200CX the most informative projection 
is likely to be [0 k /] which, in effect, displays the stacking sequence (see Fig. 1). 

5. Images 

The [0 k /] projection was identified by its diffraction pattern (see Figs 2-4), and 
through focal series of images were obtained for a range of thicknesses (Fig. 5). 
At negative defect of focus three main types of contrast distribution could be dis
tinguished; namely, with white patches in the approximate positions of the 'holes' 
(Fig. 5 a), with white patches in the approximate positions of the pairs of atoms 
(Fig. 5b), and with undulating symmetrical lines (Fig. 5c). 
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Fig. 3. CBED pattern of the 0 k 1 projection of hcchcc-CuAsSe. The incident beam 
is tilted along the [001] direction of the crystal to satisfy the 001 beam. Note the 
sharpness of the black bands in the odd orders of 00 1 and the high intensity outside 
these bands. 

Fig. 4. CBED pattern of the Okl projection of hcchcc-CuAsSe. The incident beam 
is tilted slightly along the [001] direction to satisfy the 005 beam. Note the cross 
on the fifth order beam. 
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Table 2. Calculated intensities I and phases <P for 001 and 021 thickness fringes of hcchcc-
CuAsSe 

Incident beam is along the [100] direction 

z = 50 z = 100 z = 160 z = 200 
h k 1 I <P I <P I <P I <P 

000 0·488 32 0·082 -10 0·682 -14 0·724 15 
002 0·000002 152 0·00007 -141 0·00002 51 0·00002 15 
004 0·00003 -9 0·00007 81 0·00015 -146 0·00034 -72 
006 0·0752 143 0·142 -166 0·0326 -103 0·0046 -82 
008 0·00001 -140 0·00008 -86 0·00008 -10 0·00004 77 
0010 0·00007 -33 0·00005 41 0·00011 -149 0·00025 -88 
0012 0·0015 172 0·0052 -138 0·0054 -73 0·0021 -42 
020 0·0004 136 0·0007 181 0·0004 -113 0·0002 -47 
021 0·0099 146 0·0190 -158 0·0067 -80 0·0011 27 
022 0·0188 -37 0·0372 12 0·0104 73 0·0003 -93 
023 0·0064 135 0·0125 171 0·0056 169 0·0133 139 
024 0·0013 -16 0·0056 55 0·0138 120 0·0130 146 
025 0·0024 -25 0·0059 39 0·0054 116 0·0018 159 
026 0·0001 142 0·0004 -169 0·0002 112 0·00005 -70 
027 0·0048 143 0·0080 -166 0·0019 -86 0·0004 54 
028 0·0124 -41 0·0189 3 0·0018 64 0·0021 -83 
029 0·0110 134 0·0147 171 0·0009 165 0·0079 112 

Table 3. Calculated structure amplitudes (V) for hcchcc-CuAsSe 

hkl VR h k I VR h k I VR h k I VR 

000 14·524 021 2·587 026 0·305 028 -2·877 
002 0·354 022 -3·545 008 -0·010 029 2·858 
004 -0·143 023 2·080 0010 -0·221 0210 0·849 
006 7·108 024 -0·817 0012 0·485 0211 -0·012 
020 0·489 025 -1·177 027 1·758 0212 0·122 

A series of images was calculated at representative defects of focus and thickness 
(see Tables 2 and 3 and Fig. 6) using Lynch's version of the multislice program and 
incorporating instrumental parameters determined by optical interferometry. These 
calculations fit the observed images in outline, but there are a number of significant 
discrepancies. For instance the calculations, as they should, show a glide line, but in 
the images this element of symmetry is reduced to a plane of reflection. Nevertheless, 
convergent beam patterns taken from the same volume of the crystal as the images 
show bands of low intensity in the odd order 00 1 discs (Figs 3 and 4), so that the 
specimen in fact has glide symmetry to high accuracy in the Okl projection (Gjj1Snnes 
and Moodie 1965). This point will be discussed in Section 6. First, however, the 
origin of the main features of the images will be considered. 

The Fourier transform of the Okl projection, or of equivalent projections, in the 
many poiytypes (four of which are shown in Fig. 7) can be envisaged in terms of 
the transform of the unit of six atoms in the [110] projection of the diamond lattice 
(Fig. 8). This unit generates a sublattice and since in the overall structure it has two 
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z Sa z lOa z=10a 

-soo 

-700 

-800 

-100I'I 

Fig. 6. Multislice calculations using Cs = 0·94 mm of the 3,3 (hcchcc) polytype of CuAsSe 
viewed down the a-axis (a = 11·75 A) with 200 k V electrons. Calculations are presented for 
seven defects of focus as indicated at the left of the diagram for each of four thicknesses z = 5 a, 
lOa, 16a and 20a as indicated at the top. 

orientations, the transform of the projection has the typical appearance of a twin. The 
details of the superlattice convey in the standard way the details of the widths of the 
slabs of cubic material. This is illustrated in Fig. 9 which relates typical geometry to 
the characteristics of the electron microscope used in the experiments. 

Suppose now that a crystal thin enough to satisfy the requirements of the charge 
density approximation is to be imaged. Then, defects of focus corresponding to curves 
e or f in Fig. 9 will be used. These curves give a qualitative indication of the resolution 
which can be expected, in this case, to be enough to resolve the lattice. And indeed, 
multislice calculations (see Fig. 6 for z = 5a; -400 and -500 A) show a projection 
of the charge density with the atom positions black, and the holes, though not' the 
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(a) (b) (c) (d) 

Fig. 7. Projections of ideal structures of the four different polytypes (a) hccchccc, 
(b) hccchcc, (c) hcchcc and (d) heche of CuAsSe with the unit cells of the 3, 3 
(hcchcc) and 4,4 (hccchccc) polytypes indicated by dashed lines. 
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Fig. 8. Optical transform of the unit of six atoms in the [110] projection of the diamond lattice. 
The object is shown in the inset. 
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Fig. 9. Diagram of the CBED of hcchcc-CuAsSe with incident 
beam along the [100] direction showing intense beams as large 
circles, weak beams as small circles, and beams with dark bands 
(00 I for I odd) as shaded small circles. The transfer function sin X 
of a 200 kV electron microscope with a spherical aberration of 
o . 94 mm is plotted as a function of distance in reciprocal space 
(A -1) for tp.e various def~cts of focus (a) - 950 A, (b) 0 - 900 A, 
(c) -8s0A, (d) -700 A, (e) -400 A, (j) -sOOA and (9) 
-600A. 

individual atoms, resolved. In order to determine the stacking sequence however, it 
is sufficient to resolve the holes. 

For the reasons given above, it is a characteristic of this type of compound that 
little intensity is scattered around the central beam. It is therefore plausible that a 
useful operating condition might be found at fairly large negative defect of focus. As 
can be seen from Fig. 9 curves band c, corresponding to -900 and -850 A defect 
of focus, generate an annular pass band which accepts more energy, apart from the 
central beam, than that for the charge density setting. The phase of the central beam 
is reversed with respect to the diffracted beams so that, qualitatively, a black to white 
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Fig. 10. Thickness fringes for (a) a central beam, (b) a 006 
beam, (c) a 022 beam, (d) a 021 beam and (e) a 023 beam of 
hcchcc-CuAsSe (3,3 polytype). The intensity of the 006 beam 
is multiplied by 2 and the intensities of the 021, 022 and 023 
beams by 4. 
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reversal of contrast is to be anticipated, and this is, to good approximation found to 
be the case in quantitative calculations (see Fig. 6 for z = 5 a; - 800 and - 900 A). 

In practice it is difficult to obtain crystals of these substances sufficiently thin 
to ensure the validity of the charge density approximation. In thicker crystals, 
interpretation of the image is simplified by the very small values of the low order 
structure amplitudes. This greatly reduces the coupling in the superlattice and between 
the superlattice and the sublattice. The low orders of the sublattice couple to form 
an effective two beam system (Niehrs 1959), the main effect of the weak beams being 
to damp the oscillations of the thickness fringes (see e.g. Anstis et al. 1974). 

Precise calculations show that this approximation retains a high accuracy for all 
polytypes (see Fig. 10). The details of the extension of Niehr's work to cover the 
present and related cases will be the subject of a separate paper, but the outlines of 
the phenomenon can be briefly described in the Bloch wave picture. 

When an orientation can be found in which all of the significant beams have nearly 
equal excitation errors and structure amplitudes, the magnitudes of all but two of 
the zero order components jlo of the eigenvectors will, in tum, be very small. Since 
the wavefunction in momentum space can be written in terms of these quantities as 
(Fujimoto 1959) 

U(h) = l: jthjt~ exp(2'7TiAjz), 
j 

then U(h) will collapse into an effective two beam form, and a perturbation series 
can be developed on the excitation errors, Le. on the orientation. 
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Since, in an effective two beam form the intensity of the thickness fringe of the for
ward scattering beam is out of phase with the other diffracted beams, half 
periodicities increase in intensity as the central beam approaches extinction. In the 
present instance, the thickness at which this occurs is approximately 110 A (Fig. 10) 
and the effect can be seen clearly in the calculations (see Fig. 6 for z = lOa at all 
defects of focus). 

At this thickness another complicating factor in the interpretation of the images 
becomes apparent. The zig-zag of high intensity, which is one of the most important 
structural features in this projection, depends quite sensitively on the balance in 
amplitude and phase between the 022 and the 023 beams, as an inspection of Table 2 
shows. However, the phase difference between these beams is strongly dependent on 
thickness so that the zig-zag that has become most prominent is, in fact, structurally 
spurious. 

Thus, at 200 kV and in a substance containing no element with an atomic number 
higher than 34, dynamical interaction is such that by a thickness of 100 A an intuitive 
interpretation of the image would lead to a plausible, but completely erroneous 
structure. 

However, the 000, 006, 006, 022, 022, 022 and 022 reflections approximate an 
effective two beam system sufficiently closely for the overall pattern of images to begin, 
again, to resemble the structure as intensity flows back into the central beam. The 
contrast is, of course, reversed relative to that in the first half period. This correspon
dence is only approximate, largely because of the 021, 023 and 024 reflections. With 
increasing thickness the weight of the high order interactions of those beams with 
the effective two beam system induces excursions in phase and amplitude sufficient to 
perturb the images. At a defect of focus between - 800 and - 900 A this perturbation 
is minimized by the shape of the transfer function, which reduces the weights of the 
023 and 024 reflections relative to 022. 

At a thickness of about 150 A and at a defect of focus of about - 900 A, quite 
a close representation of the structure is obtained, holes being white. Most images 
have, in fact, been taken under these conditions since crystals of this thickness are 
readily obtained. 

By 200 A the equivalent two beam approximation is beginning to break down, the 
maximum in the intensity of the forward scattered beam being appreciably displaced 
from the minima of the other beams, which are nevertheless extremely weak. It 
would not be anticipated that the images would resemble the structure and, in fact, 
they are dominated by the zig-zags generated by the 023 and 024 reflections. The 
006 reflection produces a detectable modulation of the zig-zag, but the effect of the 
022 reflection is negligible except at - 900 A defect of focus, where the 023 and 024 
reflections are substantially attenuated and an indistinct outline of the structure is 
generated. The two beam phase has again reversed, so that holes are black. 

A further increase in thickness of 60 A would bring the equivalent two beam cycle 
again into the range of the charge density approximation. This proves to be the 
case to an acceptable approximation for the 006 and 022 set, but the 023 and 024 
group of reflections are now sufficiently strong, and sufficiently far from the two beam 
behaviour, that the image at -400 A defect of focus-while a plausible subject for 
intuitive interpretation and while maintaining the 3, 3 character-is not a projection 
of the charge density. In particular, the angle of the zig-zag now dominated by the 
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023 reflections is incorrect, and the bright spots in each arm of the zig-zag lie too 
close to straight lines. 

At greater thicknesses none of the known approximations have significant validity. 

6. Effects of Tilt and Convergence of the Illuminating System 

It has already been mentioned in Section 5 that the absence of glide symmetry in 
virtually all of the observed images constitutes the most serious of the discrepancies 
with the calculated distributions; further, convergent beam diffraction patterns derived 
from the same volume of crystal as the images show that the specimen in fact holds 
to glide symmetry with high precision. The same diffraction patterns (Figs 3 and 4) 
make clear that the reason for the lack of glide symmetry in most of the images is 
convergence in the illuminating beam, an effect also observed by Creek and Spargo 
(1985). Corrections of the standard type (O'Keefe and Sanders 1975) are of course 
included in the calculations. The additional corrections refer to reprojection of the 
structure, and the need for this can be most easily appreciated by an inspection of the 
odd orders of the 00 I line of Figs 3 and 4. 

The width of the band of low intensity through these orders provides an estimate of 
the angular range over which glide symmetry will be maintained to good approxima
tion in the image. This width is a function of both thickness and structure, and it 
can be seen that in this structure the bands are narrow, even for thicknesses of a few 
hundred Angstroms. 

Calculations carried out at small tilts reproduce the main observed effect, namely 
increased intensity at the peaks of the zig-zag (Fig. 5). With integration over angle a 
plane of reflection results. 

Discrepancies at other thicknesses and other defects of focus can be accounted for 
similarly. For instance, the undulations referred to in Section 5 are very sensitive to 
tilt. In addition, the overall resolution is slightly reduced and this, again, is in accord 
with observation. 

It is not implied here that the breakdown of glide symmetry is entirely or even 
largely due to nonzero amplitude on the zero layer line, but merely that the width of 
the band is diagnostic of the angular range for overall breakdown. In fact, the most 
important contributions come from the 02/ and 021 lines. 

The reasons for the smallness of the angular range derive from the large (11.75 A) 
periodicity in the direction of the beam and in the distortions from the ideal diamond 
lattice, particularly round the arsenic atoms. In real space this results in large 
deviations from glide symmetry for small tilts, an effect which can be seen from a 
model and envisaged in terms of differentials of the potential. In reciprocal space the 
result can be understood in terms of the large structure amplitudes that can be linked 
in low order loops, so that there is cancellation for equality of the excitation errors, 
but large deviations for small differences in excitation errors. 

In general, errors associated with tilted illumination will result in the loss of all 
symmetry in the image, an effect which can be readily explored with the microscope 
used in the present experiments. In the work described in this paper, although glide 
lines usually reduced to planes of symmetry, a complete loss of symmetry was never 
observed after careful alignment of the microscope. It is therefore concluded that, 
to the accuracy of the present experiments, beam misalignment does not lead to 
significant error. 
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7. Conclusions 

The general outlines of the images of a range of tetrahedrally bonded chalcogenides 
can be understood in terms of a combination of the charge density and reduced two 
beam approximations. These reduced two beam approximations are likely to be of 
particular importance when reciprocal space has a pronounced substructure. Detailed 
agreement between calculated and observed images requires reprojection within the 
illuminating cone. 
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