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In an attempt to reconcile the large number hypothesis (LNH) with Einstein's theory of gravitation, 
a tentative generalization of Einstein's field equations with time-dependent cosmological and 
gravitational constants is proposed. A cosmological model consistent with the LNH is deduced. 
The coupling formula of the cosmological constant with matter is found, and as a consequence, 
the time-dependent formulae of the cosmological constant and the mean matter density of the 
Universe at the present epoch are then found. Einstein's theory of gravitation, whether with 
a zero or nonzero cosmological constant, becomes a limiting case of the new generalized field 
equations after the early epoch. 

1. Introduction 

Over the past 50 years, there have been numerous suggestions that the gravitational 
constant G is time dependent. In particular, in 1937, Dirac (1938) proposed a theory 
of this kind which has as its basis the numerology uncovered by Weyl, Eddington, as 
well as Dirac himself. Dirac noticed that the ratio of the electrical to gravitational 
force beween a proton (mass mp) and an electron (mass me) at a distance r apart, 
given by G~ me1r2, is a large dimensionless number of the order 1040. Similarly, 
the age of the Universe t, expressed in terms of a unit provided by atomic constants, 
say e2 I me c2 , is roughly of the same size. Dirac then went on to suggest that 

(1) 

Assuming that (1) holds at all times, both in the past and future, and that the atomic 
parameters do not vary with time, * equation (1) tells us that 

(2) 

Dirac put this semi-quantitative argument on a formal footing with his large 
number hypothesis (LNH) which states that: 

* Gamow (1967) once proposed keeping G constant and varying the fine structure constant 
e2 /1ie, but his attempt was unsuccessful. 
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Any two of the very large numbers occurring in 

Nature are connected by a simple mathematical 

relation in which the coefficients are of the order 

of unity. 
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A time-dependent G then follows as a natural consequence of the LNH. However, 
Einstein's theory of gravitation, with its great success in explaining local gravitational 
phenomena, requires G to be a genuine constant independent of any coordinates, in 
contradiction with the LNH. 

Since Dirac's early work, several attempts have been made to formulate a generalized 
field theory of gravitation in which G is a scalar function of coordinates and Einstein's 
theory of gravitation appears as a special case of the new theory. Jordan (1949, 
1959) attempted this by starting from a five-dimensional theory of relativity, where 
G is generalized to be a scalar function of the age of the Universe and the covariant 
divergence of the energy-momentum tensor is nonzero. The latest attempt was by 
Dirac (1975, 1979) himself who proposed the 'two metrics' theory, where two unit 
systems are set up, namely the Einstein and the atomic units. For the Einstein units, 
general relativity holds and G is a universal constant, whereas for the atomic units, G 
varies inversely with the age of the Universe. Hence, the success of Einstein's theory 
of gravitation was not disturbed. 

In the present paper, another attempt is made to make the LNH compatible 
with Einstein's theory of gravitation, without needing the 'two metrics' theory. The 
original form of the Einstein field equations, with a nonzero cosmological constant It, 
is retained except that It and G receive a time-dependent form in the field equations. 

2. Scale Factor of Expansion 

From observations of a redshift in the spectra of the spiral nebulae, we believe 
that the Universe is in a state of expansion in the sense that the nebulae are 
uniformly moving away from each other. If we assume that the Universe is spatially 
homogeneous and isotropic, as proved by Robertson (1933) and Walker (1936), the 
general form of the metric of the Universe, irrespective of the model assumed, is 

R2( t){ (dxl)2 + (dx2)2 + (dx3)2 J 
ds2 = dt2 - ---'------;--::--c~---

(1 +ikr2)2 ' 
(3) 

where the velocity of light c is taken to be unity, r2 = (xl)2 + (X2)2 + (X3)2 and k is 
a real constant. Further, R(t) is a function of t only, where t is the proper time on 
any clock carried by a particle with fixed coordinates (Xl, x2 , x 3). The function R(t) 
gives the time dependence of the distance between two points in space at a particular 
epoch and therefore governs the rate of expansion of the Universe. We call R( t) the 
scale factor of expansion and derive the form of its time dependence from the LNH. 
The derivation is entirely due to Dirac (1938, 1979); for the sake of completeness, it 
is repeated here. 

Let Po be the average matter density of the Universe. Without continuous creation 
ofmatter*, mass is conserved and hence POR3(t) is constant, that is 

(4) 

* Dirac (1938) originally proposed this idea to account for the time dependence of the number 
of protons in the Universe, but abandoned it in his subsequent 1979 paper. 
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We now take the general law of expansion R 0:: tn, and fix our attention on a 
particular galaxy whose velocity of recession is i c. The velocity of recession of that 
galaxy is then given by 

dR(t)/dt = nR(t)/t = i, 
where c is taken to be unity, so that the distance of the galaxy from us is presently 
t/2 n. Therefore, the total mass within this distance is proportional to P t3 • 

We consider the mass of that part of the Universe that is receding from us with 
velocity less than i c which is, in terms of the proton mass, roughly 1078 , with a 
suitable factor allowed for invisible matter. The LNH then requires this large number 
to be proportional to t2 and, as a result, we have Po t 3 0:: t2 , which gives 

Po 0:: t- 1 • (5) 

From (4) and (5), we also get 

1 
R(t) 0:: {3, (6) 

which is the time-dependence form of the scale factor required. 

3. The Model of the Universe 

In the previous section, we determined the time-dependence form of the scale 
factor R( t). Equation (3) is then determined up to a real constant k which represents 
the curvature of the three-dimensional space corresponding to a particular epoch. As 
worked out by Dirac (1979), the value of k can be determined by considering the 
cases k > 0, k < 0 and k = 0 separately. For k > 0, the three-dimensional space 
at a particular epoch is finite and hence has a finite total mass which, expressed in 
proton units, gives a constant large number, this being not allowed by the LNH. 

For k < 0, the three-dimensional space is hyperbolic and hence infinite. By picking 
an arbitrary point in the three-dimensional space and considering another point in 
the immediate neighbourhood, the distance between these two points ds must have 

1 

the same time-dependence form as that of the scale factor of expansion, i.e. ds 0:: t3. 
The radius of curvature of the three-dimensional space :?ll is determined by ds, and 

1 

therefore:?ll 0:: f3 . We consider a sphere with radius :?ll, where the total mass within 
the sphere is proportional to Po.'?( 3. From (5), we get Po 0:: t- 1. Thus, PO:?ll3 gives 
a constant large number independent of time, in contradiction to the LNH. 

We are thus left with k = 0 as the only case consistent with the LNH. Equation 
(3) then becomes 

(7) 

1 

where R( t) 0:: f3, and this is the metric compatible with the LNH and the cosmological 
principle. 

Incidentally, we note that (7) is the same as the metric in the Einstein-De Sitter 
(1932) model. However, the model represented by (7) differs from the Einstein-De 

2 1 

Sitter in that (i) instead of R( t) 0:: t 3 , we have R(t) 0:: (3 and (ii) the cosmological 
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pressure is not assumed to be zero. As a mattter of fact, the pressure can be calculated 
easily since we know the exact time-dependence form of R( t). 

4. Generalized Field Equations with Time-dependent A and G 

The most general form of the Ricci tensor with zero covariant divergence, as 
proved by Cartan (1922), is of the form 

where R/LV = R~ /LV is the contracted Riemann-Christoffel tensor, A is a real constant 
and R is the curvature scalar. Hence, the general form of Einstein's field equations 
is 

(8) 

where T/LV is the energy-momentum tensor, c is equal to unity and A is identified 
as the cosmological constant. Clearly, equation (8) is not compatible with the LNH. 
For, if G is a function of time, then 

where the colon before a suffix always denotes a covariant derivative, while a comma 
always denotes an ordinary partial derivative. The number following the comma 
means differentiation with respect to the corresponding coordinate, where 

As a consequence of the principles of conservation of energy and momentum, we 
have 

and therefore (- 817 G T/LV):v = - 817 G T/LO Go, which is not equal to zero in general. 
However, it is always true that 

and so (8) is not valid in general if G is a function of time. 
To generalize (8) to make the LNH compatible with Einstein's theory of gravitation, 

we postulate that both G and A are scalar functions of time. To be compatible with 
the LNH, we further postulate that G is inversely proportional to the age of the 
Universe. The covariant divergence of (8), instead of zero, is then 

(9) 

From (7) we have 

2 

bbo=l, gl1 = 9z2 = g33 = _{3(3, (lOa) 
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where {3 is a constant of proportionality, and 

gl"V = 0 for J-t:/=v. (lOb) 

It follows that 

gl"V = 0 for J-t:/=v. (11) 

To determine Tl"o we need to know the energy-momentum tensor of the Universe. 
If we assume that the cosmological principle is valid, then on a large scale the 
Universe is isotropic and homogeneous, and local irregularities are smoothed out. 
The energy-momentum tensor of the Universe with c set to unity will be of the form 

where Po is the proper matter density of the Universe, p is the cosmological pressure 
and v is the velocity of matter. Furthermore, by the principle of relativity, physical 
laws are invariant under transformation of a frame of reference. To make the 
calculations simpler, we choose a co-moving coordinate system in which matter is at 
rest. Hence, we have TOO = Po and Tl"o = 0 for J-t :/=0. Thus, when J-t :/=0, (9) is 
equal to zero, being identical to the result with constant A and G. 

For J-t = 0, we have gOO = 1 and TOO = Po, and (9) then becomes A,o = 
- 87TPO ~o· From (2) and (5), we have 

G ex: t- 1 and Po ex: t- 1 

or, equivalently, G = {31 t- 1 and Po = {32 t- 1, where {31 and {32 are constants of 
proportionality. Thus, we have Go = -{31 t- 2 and, as a result, 

In turn, this implies 
(12) 

where C is a constant of integration. We can see that, apart from a constant of 
integration, A has an inverse-square form for its time dependence. 

5. Exact Time-dependence Form of A 

From now on, we refer to equation (8) as the generalized field equation with 
time-dependent A and G. In (12), A is indeterminate up to a constant of integration. 
To find a more exact time-dependence form of A, we write the Ricci tensor in the 
form 

Using (10) and (11), we find for the non-vanishing Christoffel symbols 

o 0 1._1 r 22 = r 33 = }{3 t 3, 

rlo = r62 = r~o = r63 = r~o = ~t-l. 
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After some algebraic manipulation, we find 

Rl = R~ = Rj = 0, 

and hence 

If we put I.L = v = 0, then equation (8) becomes 

lROO+A = _87TGTOO = _lROO_87TGTOO 
2 2' 

and hence 

(13) 

We can see that A and G are not independent, but coupled with the age and matter of 
the Universe via equation (13). Using (10), we can further deduce from G = /3 1 t- I 

and Po = /32 t- I that 

(14) 

By comparing (12) and (14), we note that the constant of integration is zero and that 

j--87T/31/32 = -47T/31/32· 

We then obtain 
(15) 

Substituting (15) into (14) we find that 

Thus, A depends on the inverse square of time and is always negative. It will approach 
zero when the age of the Universe tends to infinity; otherwise, A is nonzero as a 
consequence of the LNH. 

At the present epoch, we have t ::::; 6x 1017 s, giving a present value of A of about 
9x1O- 37 S-2. The limit for A set by experiment is (Ohanian 1976) I AI < 2x1O- 35 S-2, 
and so our theory is not impossible. 

6. Average Matter Density of the Universe 

From (15), we have /3 1/32 = (127T)-1. Since /31 = Gt and since G is known 
accurately to be 6·67x1O- 11 m3kg- 1s-2, then /3 1 = 4x107 m3kg- 1s- l , and this 
implies 

As a result, the mean matter density of the Universe is given by 

Po = /32 t- I = lx1O- 27 kgm- 3 = lxl0-30 gcm-3 . 
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The experimental value of Po varies from 10-29 to 10-31 gcm- 3, depending on the 
method of determination used. Our predicted value is within the range, and so the 
theory is not inconsistent with observation. 

7. Einstein's Field Equations as an Approximation 

With a time varying G and A, (8) is satisfied by the LNH. From our calculations, 
we know that at the present epoch A is of the order of 10-38 S-2 or 10-54 m-2 . It 
follows that the order of A -~ is around 1027 m. For a local region in the Universe 

I 

with dimensions small compared with 11.-2, for instance the Solar System, A has 
a negligible influence and can be approximated to zero in most calculations at the 
present epoch and in the future, or even in the not too distant past. In addition, 
I Go/G I = t- 1, and thus we have I Go/G I - 10- 10 yr- 1 at present. Even over a 
pe;iod of 105 yr, the fractional change ~f G with time is only about 10-5. Therefore, 
under most circumstances, G can be regarded as a genuine constant after a time 
which is distant enough from the Big Bang. The implication of a time varying G will 
take effect only in the early epoch or when the overall history and evolution of the 
Universe is considered. Hence, with the approximation of zero A and constant G, we 
can immediately go over to Einstein's field equations of the form 

RJJ-V _.!.gJJ-v R = -87TGTJJ-V 
2 ' 

and the success of Einstein's theory of gravitation in explaining local gravitational 
phenomena is preserved. 

We note also that I ".0/11. I = t- 1• For similar reasons as in the case of G, A can 
be treated as a genuine constant after the early epoch. With this approximation of 
constant G and A, we can arrive again at (8) with time-independent G and A. 
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