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In this paper two different approaches are used to study core correlation effects in the 3p64s4p I pO 
state of calcium. We show that the number of relevant configurational functions in the 
configuration interaction expansion can be reduced by determining the core correlation functions 
prior to the valence correlation functions. We also show that core correlation effects of the 
form 3p2 ~ nP can be represented in the configuration interaction expansion by including 
configurational functions of the type 3p4(S L) nP(S L){ IS 14s4p in the expansion. 

1. Introduction 

The study of correlation effects in atoms and ions has received much attention 
from theoreticians. The aim has been to develop a theory for the accurate 
calculation of energy separations, transition energies, transition probabilities and 
atomic polarizabilities. In general, quite accurate results can be obtained by using a 
fixed core approximation and carrying out a detailed study of the valence correlation 
effects. However, for some atomic systems, core-valence and core correlation effects 
are also important. 

The approach most commonly used to study valence, core-valence and core 
correlation effects is: 

(i) to determine correlation functions to describe the valence correlation effect; 

(ii) additional correlations are then determined to describe the core correlation 
effect. 

An alternative approach is: 

(i) to determine correlation functions to describe the core correlation effect; 

(ii) additional correlation functions are then determined to describe the valence 
correlation effect. 

In this paper we look at the feasibility of both methods using the 4s4p I pO state of 
calcium as an example, as a result of the large 4s ---+ nl and 3p2 ---+ nd2 valence and 
core correlation effects respectively. 
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2. Radial Functions 

The radial functions used in the calculations are determined in a LS coupled 
representation of the atomic states. The atomic state wavefunctions are represented 
by the configuration interaction expansion 

N 
IJI(LS) = 1: c;(/>;(a;:LS), (1) 

;=1 

where the I(/>; J are single configurational functions constructed from the one-electron 
(spin) orbitals 

(2) 

and where Land S are the total orbital and spin angular momenta, and I a; J specifies 
the angular momentum coupling scheme of the ith configuration. The radial functions 
I Pnl(r)J are expanded in analytic form as 

(3) 

where k ;;. n-I, and where 

(4) 

We also require the radial functions, for a given value of I, to form an orthonormal 
set: 

1+ 1 .;;; n' .;;; n. (5) 

If k = n-I then the coefficients I Snl J are uniquely determined by the orthonormality 
conditions, for a given choice of I ~nb 'jnl J. If k > n-I some of the coefficients 
can be treated as variational parameters, either in Hartree-Fock calculations or in 
superposition of configurations calculations. 

The coefficients I c;! in equation (1) are, for a given set of I (/>;!, the components 
of the appropriate eigenvector of the Hamiltonian matrix with elements 

(6) 

where JY' represents the nonrelativistic Hamiltonian operator. The corresponding 
eigenvalue is given by 

E = < IJI(LS) I YC' I IJI(LS» , (7) 

where IJI(LS) is normalized to unity and E is, for the cases considered here, an upper 
bound to the corresponding exact energy (MacDonald 1933; Perkins· 1965): 

E;;. Eexact. (8) 
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Different choices of the parameters C jnl, I jnl and 'jnl in equations (3) and (4), subject 
to the orthonormality condition in (5), will lead to different functions! cP i J and hence 
to different values of E and ! C i J . 

Because of the upper bound property (8), it is possible to treat an eigenvalue as 
a variational function to be minimized with respect to ! 'jnd and those coefficients 
! Cjnd in (3) which are not determined by the orthonormality condition, provided 
configurations corresponding to lower lying states are included in the calculation. We 
have used the configuration interaction code CIV3 (Hibbert 1975; Glass and Hibbert 
1978) in the LS coupling mode to determine the correlation radial functions ! P nl J. 

Table 1. Contributions to correlation energy (in a.u.) 

Excitation 

4s -+ 3d 
4s -+ 4d 
3p2 -+ 4d2 
3p2 -+ 3d4d 
3p2 -+ 3d2 

Total correlation energy 

3. Results and Discussion 

Calculation A 

0·01430 
0·00165 
0·12407 
0·00519 
0·00010 

0·14531 

Calculation B 

0·00000 
0·01450 
0·00000 
0·00000 
0-13071 

0·14520 

The Is, 2s, 2p, 3s, 3p, 4s Hartree-Fock radial functions were taken (Clementi and 
Roetti 1974) from the Is22s22p63s23p64s 2S state of Ca II. The 4p radial function was 
taken from the Is22s22p63s23p64s4p I pO state optimizing on the I pO eigenvalue of the 
single configuration wavefunction 

(9) 

Correlation functions were then determined as follows: 

(i) A 3d function was determined to describe the important 4s -+ nd correlation 
effect. The exponents were optimized on the lowest I pO eigenvalue of the 
two-configuration wavefunction 

(10) 

(ii) A 4d function was then determined to describe the 3p2 -+ n F core correlation 
effect. The exponents were optimized on the lowest 1 pO eigenvalue of the 
five-configuration wavefunction 

3p64s4p, 3p63d4p, 3p\3p)4d\3PH IS J4s4p, 

3p\ID)4d2(IDH IS J4s4p, 3p\IS)4d2(,S)! IS J4s4p. (11) 

Using the radial functions from Section 2 we performed a configuration interaction 
calculation including the configurations 
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in the wavefunction. In Table 1 (calculation A) the contribution to the correlation 
energy is given, each row representing the additional contribution to the correlation 
as a result of the new replacement up to and including that specified on the particular 
row. From an examination of the eigenvector composition for the 3p64s4p I pO state it 
was found that the configurational functions with expansion coefficients greater than 
10- 3 in expansion (1) are 

where 

3p64s4p, 3p63d4p, 3p64d4p, 3p4e L)3d2(s L)[ IS)4s4p, 

3p4(S L)3deD)4d[ IS)4s4p, 3p4( L)4d2(s L)[ IS )4s4p, (13) 

(14) 

Using the new set of configurational functions we recalculated the correlation energy 
for the 4s4p IpO state. The total correlation energy was found to be 0·1453 a.u., 
in excellent agreement with value given in Table 1. The number of configurational 
functions in expansion (1) has been reduced from 45 to 12. This is particularly 
important when studying correlation effects in the first-row transition metal atoms, 
where a detailed study of valence, core-valence and core correlation effects using the 
configuration interaction approach soon becomes unwieldy as a result of the large 
number of configurational functions needed in the expansion. 

In the Introduction we mentioned that an alternative approach would be to study 
the core correlation effects first, followed by a study of the valence correlation effects. 
A new set of correlation functions was therefore found as follows: 

(i) A 3d function was determined to describe the important 3p2 ---+ nd2 correlation 
effect. The exponents were optimized on the lowest I pO eigenvalue of the 
four-configuration wavefunction 

3p64s4p, 3p4CP)3d2CP)[ IS )4s4p, 3p4(1 D)3d2eD)[ IS )4s4p, 

3p4eS)3d2eS)[ IS)4s4p. (15) 

(ii) A 4d function was then determined to describe the 4s ---+ nd correlation 
effect. The exponents were optimized on the lowest I pO eigenvalue of the 
five-configuration wavefunction 

3p64s4p, 3p4CP)3d2CP)[ IS )4s4p, 3p4eD)3d2eD)[ IS )4s4p, 

3p4eS)3d2eS)[ IS )4s4p, 3p64d4p. (16) 

Using these configurations we performed a configuration interaction calculation 
including the configurations listed in (12) in the wavefunction. In Table 1 (calculation 
B) the contributions to the correlation energy from the various configurations are listed. 
Using this alternative approach we see that the only contributions to the correlation 
energy are from the 3p2 ---+ 3d2 and 4s ---+ 4d replacements, the contributions from 
the replacements 4s ---+ 3d, 3p2 ---+ 3d4d and 3p2 ---+ 4d2 being negligible. This is in 
contrast to the results from the first approach, where the contributions to the correlation 
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energy from all replacements were significant. Also, from an examination of the 
eigenvector composition for the 3p64s4p 1 pO state, it is found that the configurational 
functions with expansion coefficients greater than 10- 3 in expansion (1) are 

(17) 

where the values for S L are given in (14). The total correlation energy is 0·1452 a.u. 
in excellent agreement with the value given in Table 1 (calculation B). The number 
of configurational functions in expansion (1) has now been reduced to five. 

In the variational approach radial functions are determined to minimize the energy 
of a particular functional expression with respect to variation in the radial functions. 
In the 'conventional' approach a 3d function is first determined to describe the valence 
4s ---+ 4d correlation effect, the 3d function being optimized to minimize the energy 
of the lowest 1 pO eigenvalue of the functional expression. However, there are large 
correlation effects arising from the 3p2 ---+ nd2 replacements and the 3d function 
being minimized will capture some of the core correlation effect. The determination 
of the 4d function to describe the 3p2 ---+ nd2 correlation will then capture the 
remaining correlation. In contrast, by using the 'alternative' approach, a 3d function 
is determined first to describe the core 3p2 ---+ nd2 correlation effect. The 3d function 
being optimized to minimize the energy of the lowest 1 pO eigenvalue of the functional 
expression will now capture all of the 3p2 ---+ nd2 correlation. The determination of 
a 4d function to describe the valence 4s ---+ nd correlation will now only be optimized 
to capture the 4s ---+ nd correlation. That is, by using the 'conventional' approach, 
each electron excitation (4s ---+ nd, 3p2 ---+ ndn'd; n > n') will contribute to the 
correlation energy, whereas only the electron excitations 3p2 ---+ 3d2 and 4s ---+ 4d will 
contribute to the correlation energy in the alternative approach. Thus, the number of 
relevant configurational functions in the configuration interaction expansion can be 
reduced by determining the core correlation functions prior to the valence correlation 
functions. 

The contribution to the correlation energy from the excitation 4s ---+ 3d4p is 
negligible, even though the expansion coefficient of 0·03486 is quite sizeable. The 
configuration should however be included in the final configuration interaction 
expansion, because any configuration that does not contribute directly to the energy 
but has a sizeable expansion coefficient (>0·01) may in fact still play an important 
role in the study of other atomic properties (Glass and Hibbert 1976). 

4. Conclusions 

In this paper we have used two different approaches to study core correlation 
effects in the 3p64s4p 1 pO state of calcium. We have been able to show the following: 

(i) In the 'conventional' approach (where the valence correlation is evaluated 
first) each electron excitation (4s ---+ nd, 3p2 ---+ ndn'd; n> n') contributes to 
the correlation energy and the number of relevant configurational functions in 
expansion (1) is given by (13). 

(ii) In the 'alternative' approach (where the core correlation is evaluated first) 
the only electron excitations that contribute to the correlation energy are 
3p2 ---+ 3d2 and 4s ---+ 4d. The number of relevant configurational functions 
in expansion (1) is given by (17). 
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(iii) For core correlation effects of the form 3p2 ---+ n [2, the relevant configurational 
functions to be included in the configuration interaction expansion are 
3p4(S L)n[2(S L)I lSJ4s4p. 

An important application of these results will be the investigation of correlation 
effects in the first-row transition metal atoms and ions, where a detailed study of 
valence, core-valence and core correlation effects using the conventional configuration 
interaction approach soon becomes unwieldy as a result of the large number of 
configurati('llal functions in expansion (1). 
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