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Abstract 

We consider manifolds for solar collectors capable of self-draining action as a means of freeze 
protection. We study a number of single- and double-header designs, both in the context 
of domestic and industrial installations. We present both simple theoretical models and 
experimental results for various promising manifold designs, indicating optimal choices for key 
design parameters. 

1. Introduction 

Solar collectors are now used in a wide variety of climatic zones varying from 
tropical to near-arctic regions. It is neither practical nor economical to design a single 
collector system suitable for such a wide range of conditions, so that the collector 
design will depend on the operational environment. One important problem in cold 
climates is that of protecting the collector from damage due to the freezing of its heat 
extraction fluid. This can be done by adding a suitable anti-freeze chemical to the 
fluid. Another method of freeze protection is the complete removal ('drain-down') 
of the fluid from the collector manifold whenever its temperature rise on passing 
through the collector is less than a pre-determined value. 

One disadvantage of using anti-freeze in solar collectors heating domestic water 
is the increased system complexity required to guarantee purity of potable water. 
Also, the exposure of the collector fluid to low ambient temperatures during extended 
periods causes substantial heat loss and reduces system efficiency. On the other hand, 
the drain-down method must be completely reliable if the system lifetime is not to be 
curtailed. Hence, it is desirable to achieve drain-down by passive rather than active 
means. Manifolds which achieve this are termed self-draining; they do not require 
a heat exchanger and can be significantly more efficient than systems employing 
anti-freeze liquid (Dubin and Bloome 1981). 

There are numerous ways of designing self-draining manifolds for solar collectors, 
but a convenient way of classifying them is into single- and double-header types. In 
the former, liquid flows into riser pipes from a header pipe, absorbs thermal energy 
and is returned to the same header pipe. In the latter, the heated liquid is collected 
by a second header pipe. Here, we discuss designs of both types, concentrating on 
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manifolds for evacuated tubular collectors (Kreith and Kreider 1981). However, our 
results also have relevance to the design of manifolds for flat-plate collectors. 

Important design characteristics which we consider are the distribution and stability 
of flow among the various risers of the manifold, head loss around the manifold, and 
the efficiency of the self-draining action. We discuss the single- and double-header 
manifolds both in the context of a small domestic installation and a medium-scale 
industrial system. We present both theoretical models and experimental results for a 
number of promising manifold designs. 

Fig. 1. Self-draining double-header manifold, showing the character
istic diameters D), D2 , Dr and D~, the lengths Lh and Lr and the 
inclination angles e and <p. 

2. A Double-header Manifold 

We consider the self-draining manifold shown schematically in Fig. 1. Water 
enters the manifold through an inlet header of internal diameter D), along which 
risers are connected in parallel separated by an interval L h • Water coming from the 
inlet header first ascends a pipe of small diameter D T' inclined at an angle () to the 
vertical, before falling under gravity through a pipe of larger diameter D; into the 
outlet header. This outlet header has an internal diameter D2 and is inclined at an 
angle cp to the horizontal. 

During normal or pumped operation of this manifold, the inlet header and inlet 
side of the riser pipes have closed-channel flow, while the outlet portion of each riser 
and the outlet header have open-channel flow. When pumping stops, back flow of air 
through the outlet header and riser sections enables complete draining under gravity 
of the inlet riser sections and the inlet header. 

This design is based on commercially developed manifolds for tubular solar 
collectors. However, it is commercial practice to use the inner glass walls of the 
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evacuated tubes as part of the water containment circuit, while in the manifold of 
Fig. 1 water is entirely contained in metal pipes, with a heat transfer fin providing 
thermal contact between the collector tubes and the risers. 

In previous work (McPhedran et al. 1983) we studied the forced isothermal flow of 
water through a parallel connected manifold of the non-self-draining type. We have 
adapted the previous formulation to study the isothermal flow through the manifold 
of Fig. 1, with the aim of optimizing the various critical design parameters. We will 
not discuss the new formulation in detail here, but give the key equations in Appendix 
1. The interested reader will find fuller details in McPhedran (1983). 

Numerical studies have been made to determine the appropriate values for key 
manifold parameters (Dr' D;, D1, D2 and 4», both for a small domestic installation 
and for an industrial system. The other manifold parameters (Lr' Lh and 8) are 
fixed by the size of the evacuated tubes, the optical design of the solar panel and the 
latitude of the installation. 

The choice of manifold parameters for the system of Fig. 1 breaks up into three 
separate problems. In the first, Dl and Dr are chosen so that flow in the inlet risers 
is sufficiently uniform (i.e. so that the ratio of maximum to minimum riser volume 
flow rates is smaller than 2). Also, adequate flow rates must be maintained in each 
riser (with the temperature increase in the riser a ~ always being smaller than 5 K). 
In the second problem, the diameter D; is chosen to ensure open-channel flow in 
each outlet riser. Thirdly, the diameter D2 and the inclination angle 4> are chosen to 
ensure open-channel flow in the outlet header. 

Flow in the Inlet Section of Risers 

Flow characteristics were calculated for a domestic system having 32 risers, 
operated at 60°C and with a volume flow rate Q~ at the entrance to the manifold of 
10-4 m3 S-I. Five values were chosen for the internal diameter of the inlet header 
Dr (stepping from 1 to 5 mm) and Dl was varied between 10·9 and 48·4 mm. 

For Dr equal to 1 or 2 mm, all header diameters considered gave acceptable flow 
ratios. For Dr equal to 3, 4 and 5 mm the smallest acceptable values of Dl are 
respectively 17, 23 and 29 mm. 

For a fixed value of D 1, decreasing the value of Dr results in a more uniform 
distribution of riser flow. However, if we decrease Dr too far then the pump power 
required to force water through the risers becomes unacceptably large. Also, with 
small values of Dr there is an increased risk of riser blockage due to trapped sediment 
in the circulating water. For these reasons, we select 3 mm as a reasonable minimum 
value for the internal diameter of the inlet riser. 

Flow characteristics were also calculated for an industrial system having 160 risers, 
operated at 60°C and with Q~ equal to 5xlO-4 m3 s- 1. For Dr equal to 3, 4 and 5 
mm the smallest acceptable values of Dl are respectively 29, 29 and 42 mm. 

Flow in the Outlet Section of Risers 

Having obtained appropriate values for the diameters Dl and Dr' we consider 
the problem of choosing the diameter D; of the outlet section of the risers. The 
diameter is required to be large enough so that water entering the outlet section will 
be carried away sufficiently quickly by gravity to ensure open-channel flow. A simple 
argument suffices for a minimum value of D;, provided that surface tension effects 
are negligible. 
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Let us calculate the distance s water would have to fall from rest in a pipe of 
diameter D; before the fluid flow rate reached a value Qr (assuming the pipe to be 
completely filled by falling water). At greater distances down the pipe, it would only 
be partially filled by the falling water. From elementary dynamics we have 

(1) 

where g is the acceleration due to gravity. We ensure open-channel flow by requiring 
s to be only a small fraction of the diameter D; (i.e. s = D;/ F). Then from (1) we 
get 

(2) 

Experiments have been performed to determine suitable values for the factor F. 
This increases with decreasing pipe diameter (as surface tension effects increase the 
tendency to closed-channel flow). For pipes of internal diameter 11 mm, F is around 
5, while for D; equal to 7 mm, F is around 8. 

Flow in the Outlet Header 

Finally, we consider the choice of the internal diameter D2 and pitch angle cf> of 
the outlet header. Let A denote the flow area, which is a function of the distance I 
down the outlet header. The flow starts at I = 0 and when I reaches the total header 
length Ih it has attained the volume flow rate Qh' An adequate diameter D2 will be 
such that for all points in the outlet header 

(3) 

Here SF is the safety factor, for which we will adopt the value 0·75. At least 25% 
of the outlet header area is then available for air flow to or from the risers. 

We have used a continuous model for flow in the outlet header, based on 
conservation of momentum rather than mechanical energy at riser/header junctions. 
The analysis given in McPhedran (1983) leads to the result 

( 4Q )~{( 167T 1)/ }* D2 ;;;. 7TS: 3 + p~ h 2g/h sin cf> (4) 

Here J.l and p denote respectively the viscosity and density of water. 
As a sample of the use of (4), for a domestic manifold with 32 risers operated 

at 60°C with Qh = 7xlO- 5 m3 s- 1 and cf> == 3.3°, we find that D2 must not be 
smaller than 1· 69x 10-2 m. For an industrial manifold with 160 risers and Qh = 

3·5xlO-4 m3 s- 1 we find from (4) a lower bound on D2 of 2·63xlO- 2 m. These 
diameters agree well with those obtained as a result of field tests on similar manifolds 
(M. Platt, personal communication 1983). 

Practical Operation of the Manifold 

In order to test flow balancing and drain-back characteristics of the manifold of 
Fig. 1, a set of risers was constructed in clear plastic tubing, the risers being linked 
by copper header pipes. At low flow rates this manifold operated in a satisfactory 
fashion, with equal flow in all risers and open-channel flow in the outlet section of 
each. However, once a riser flow rate exceeded the value Qr obtained from (2), then 



Self-draining Manifolds 637 

all air was excluded from that riser, reducing head loss in it and further increasing 
Qr' This process continued until one riser operated with closed-channel flow, and 
neighbouring risers were completely starved of flow. Once the manifold was in this 
undesirable condition, it was only possible to restore flow balance by either draining 
it completely, or by increasing the flow rate to unacceptably high values. 

This potential instability of the manifold places tight tolerances on the uniformity 
of its construction, and on the total flow rate Q~, if it is used close to its design limits. 
Careful design of the recirculating system is then necessary to avoid transient effects 
on re-filling of the manifold, which may force it into the closed-channel flow-starved 
configuration described above. 

When closed-channel flow occurs in a riser, the pressure at the junction point 
between the inlet and outlet sections falls below the atmospheric value. Hence, it is 
possible to prevent the occurrence of this condition by making a small hole at the 
top of the outlet section of the riser. We have verified experimentally that such holes 
prevent the onset of closed-channel flow, irrespective of the riser flow rate. 

The drain-back characteristics of the manifold of Fig. 1 were seen experimentally 
to be entirely adequate. The speed of drain-back was improved by the insertion of a 
hole in each outlet riser. 

Fig. 2. Self-draining single-header manifold, where the section shown has its risers 
tilted along their length at an angle e to the vertical. Flow in the header is from 
left to right. Shown are the heads hl and h2' the pressures Po, P 1 and P2 and the 
pressure differences ~Pu and ~Ps. 

3. Single-header Manifolds 

Here we consider manifolds in which all risers take fluid from and return fluid to 
a single-header pipe. In this configuration, identical risers have identical flow rates, 
irrespective of their location along the header pipe. A balanced, stable flow pattern 
is thus a consequence of this design. Also, if the risers are placed above a slightly 
inclined header pipe, drain-back will occur. 
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We consider the manifold of Fig. 2, which is being refilled after drain-back. Flow 
will only start in a riser when the liquid in its inlet arm has reached the top of the riser, 
a height Lr cos () above the header. Once this level has been achieved, closed-channel 
flow will be initiated in the riser. From Fig. 2, we see that if the pressure difference 
ll. Ps between the ends of the riser exceeds p 9 Lr cos () then flow will occur in that riser. 

(a) 

-

(c) 

-

(e) 

--

x , 

(b) 

(d) 

-

Fig. 3. Five designs for 
single-header self-draining manifolds 
relying on flow effects to generate 
the refilling heads. Designs 
( b) and (e) generate satisfactory 
static riser heads (see Table 3). 
For (c) the penetration distance 
x of the outlet riser is shown. 
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The pressure difference along the header pipe required to refill all N risers is NtlPu· 
In order to minimize the size and power requirements on the recirculating pump, 
we must design our manifold in order to maximize its pressure-advantage ratio 
/3 = tlPs/ tlPu· 

We now consider a number of designs (Fig. 3) for single-header self-draining 
manifolds. These all use pressure differences associated with liquid flow in a changing 
geometry in order to stimulate flow in the risers. As we shall see, it is important 
to distinguish two types of pressure difference. The first we call reversible, which is 
associated with the conversion of kinetic energy into momentum flow, and vice versa. 
The second is irreversible, and is associated with the conversion of kinetic energy 
into heat. Good manifold designs attain substantial values of /3 by maximizing the 
reversible contribution to pressure differences. 

We present a theoretical analysis of the flow properties of the designs in Figs 3a 
and 3 b. The analysis is intended as a guideline to suitable choices of the manifold 
parameters, rather than constituting a rigorous formulation of the flow problem. We 
base the analysis on empirical data from the fluid engineering literature (Hansen 
1967; Swanson 1970; Miller 1978; Ward-Smith 1980), rather than attempting exact 
calculations which would be mathematically abstruse and probably uninformative on 
the practical plane. Our formalism is sufficiently simple to be readily understood and, 
as we shall see, sufficiently realistic to be valuable in practical manifold design. 

We give experimental results for all the designs shown in Fig. 3. While these 
designs do not exhaust all the possibilities for efficient single-header manifolds, they 
have all been chosen on the basis of ease of manufacture. 

Theoretical Analysis of a Single-header Manifold 

We consider then the manifold shown in Fig. 4 in which the flow speeds (V1 to V5 
and v r), lengths (L1 to L 9) and internal pipe areas (A1 to A3 and Ar) are introduced. 
The flow problem for this manifold may be reduced to one of determining V3 and 
vr' given v2 • Key equations for the solution of this flow problem are presented in 
Appendix 2; here we only outline the theoretical method and its principal results. 

The pressure difference P3 - P6 between x = ~ and L6 may be obtained in two 
ways. The first involves fluid passing through the riser, and gives P3 - P6 as a 
monotonically increasing function of v r• The second involves fluid passing through 
the header and gives P3 - P6 as a monotonically increasing function of V3. The 
equation for continuity of flow links V3 and vr to V2. A bisection method may be used 
to find the value of V3 which makes the two expressions for P3 - P6 equal. Given V3; 
flow rates and pressure drops everywhere along the manifold can be readily calculated. 
The most important pressure drops are tlPt = P9 -PO and tlPr = P6 -P3, which we 
will specify by giving the associated head losses ht and hr. 

As well as calculating head differences with flow in the risers, it is important to 
calculate them when the manifold is being refilled, so that vr is zero. We denote the 
head losses from x = 4, to L 9, and from x = ~ to L6 in this situation by hu and 
hs respectively. Formulae for hu and hs have been given by McPhedran (1983). 

Both ratios ~/ ~ and hs/ hu could be adopted as figures of merit for manifold 
designs. However, our theoretical and experimental studies of the manifold of Fig. 
4 have shown these two ratios to be approximately equal, so that they can be used 
interchangeably. 
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Fig. 4. A section of a single-header manifold showing the definition of the 
lengths Ll to ~, the internal cross-sectional areas Alo A2, A3 and Aro and 
the flow speeds vI to Vs and v r. 

We consider flow in a manifold having quite small changes in diameter, such as 
might be readily introduced by manufacturing errors. In Fig~ 4, we take ~/ Dl and 
~/ Dl to be respectively 1·05 and 0·95. At a suitable total flow rate for the domestic 
system (Q~ = 4 Lmin- l ) the riser flow rate is too small (the temperature increase 
t:..1'r for 40 W thermal input into the circulating fluid per riser being n°C). However, 
at a suitable total flow rate for the industrial system (20 L min -1), the riser flow rate 
is sufficiently large (t:..1'r being 3°C). The corresponding value of hs for the industrial 
system is only 5 cm, whereas a head of 1 ·03 m would be required to refill a riser 1·45 
m long inclined at 45° to the vertical. This design illustrates that the achievement 
of static heads large enough to permit filling of the risers is a much more stringent 
requirement than obtaining adequate flow rates in the filled risers. It also enables us 
to rule out the design of Fig. 3 a for a self-draining manifold. 

For purposes of generality, we have included two diffusers (Le. diameter increases) 
in the manifolds of Figs 3 band 4. However, the diffuser lying between x = Lt 
and L2 in Fig. 4 makes effectively no contribution to hr' while it does increase ht • 

Our numerical studies have shown that this diffuser only serves to worsen manifold 
performance. 

Theory versus Experiment for a Single-header Manifold 

In Fig. 5 a we compare theoretical and experimental values of hs and hu, the 
manifold being that of Figs 3 band 4 and having Dl = ~ = 1·71 cm and ~ = 0·64 
cm. The calculated and measured values for hs agree very well, but the theoretical 
estimates of hu are significantly smaller when compared with experiment. This 
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indicates that the friction factors f and geometrical loss factors K c and K D discussed 
in Appendix 2 are probably underestimates. 

The system of Fig. 5 a has an appropriate design for a domestic manifold. In order 
to generate the head of 1 ·03 m required to refill risers after drain-back the required 
total flow rate is 8 L min -\. Other performance details of this manifold are given in 
Table 1. 

1·4 (a) / (b) 
/ 

1·6 

0 / 
1·2 0 

/ 
1·2 

g o / 
"0 0·8 OJ 0·8 

" " ::z:: /' 
0·4 

0'/ 
0·4 

o 4 12 16 20 o 4 12 16 20 

Flow rate (Lmin-1) 

Fig. 5. Riser-static heads are shown as a function of volume flow rate for a single-header 
manifold with Dl = lh. = 1·71 cm: (a) D:3 = 0·64 cm and (b) D:3 = 0·80 cm. The solid 
curves and filled squares show theoretical and measured values of the riser head hs' while the 
dashed curves and unfilled squares show theoretical and measured values of total head loss hu. 

Table 1. Comparison of single- and double-header domestic and industrial systems 

Here DDH denotes a domestic double-header manifold with Dr = 3 mm, D; = 7 mm, 
Dl = I· 70 cm and D2 = 1· 69 cm. IDH denotes an industrial double-header manifold with Dr = 
3 mm, D; = 7 mm, Dl = 2·30 cm and D2 = 2·63 cm. The domestic single-header manifold 
(DSH) has Dl = lh. = 1·71 cm, D3 = 0·635 cm and Dr = 4·4 mm. The industrial 

single-header (ISH) manifold has Dl = lh. = 1·71 cm, Dr = 4·4 mm and D3 ;:::: 1·1 cm 

System Flow rate ~TmD ~Tr Power delivered 
(Lmin-l) ("C) ("C) by pump (W) 

DDH 3·6 5·2 <5·5 0·65 

DSH 4B I· 7 4·7 3·35 
8c 26·4 

IDH 18 5·2 <6·6 3·41 

ISHA 20 4·7 1·0 105 
28 227 

A The industrial single-header values are experimental; the other values are calculated. 
B Operation. C Refilling. D ~ T m is the temperature rise across the manifold. 

Refilling 
head (m) 

1·10 

5 ·12 
20·2 

1-16 

32·0 
49·6 

In Figs 5 band 6 we compare theoretical and experimental values of riser-static 
head for manifolds with D3 equal to 8 and 10 mm respectively. In the former 
case, agreement between theory and experiment is good, both for hs and hu (with 
the theoretical value being slightly too low for the total head), while in the latter 
the theoretical curves for D3 equal to 10·3 mm lie between the experimental head 
values for D3 equal to 10 and 12 mm. These measurements demonstrate clearly the 
sensitivity of manifold pressure to small changes in D3• We note also that the actual 
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profile of the pipe construction varies between theory and experiment. The technique 
used to form the constriction was to crimp down the copper tubing around a steel 
rod, giving a pipe profile only approximately like the idealized form of Fig. 4. 
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28 32 

Fig. 6. As for Fig. 5, but with the theoretical curves for D3 = 1·03 
cm, and with experimental points for D3 = 1·0 cm (squares) and for 
D3 = 1· 2 cm (circles). 

Table 2. Theoretical (t) and experimental (e) flow rates 
for refilling and pressure-advantage factors f3 as a function 

of D 3, with DI = 17 mm 

D3 Starting flow f3 
(mm) rate (Lmin -I) 

6·4 (t) 8·1 2·11 
6 (e) 7·9 1·6 
7·9 (t) 12·5 2·74 
8 (e) 12·6 2·0 

10 (e) 18·3 1· 8 
10·3 (t) 22·4 4·18 
12 (e) 27·6 3 ·1 
12 (e) 22·5 3·6 
10 (e) 17·2 2·0 

All theoretical and experimental curves of head loss against flow rate are roughly 
parabolic, so that the pressure-advantage ratio f3 is effectively independent of flow 
rate. In Table 2 we show how f3 varies with D3: both theoretically and experimentally, 
as D3 increases (i.e. as the constriction becomes more gradual), f3 increases. We note 
the low value of f3 for the 10 mm experimental manifold, which is probably associated 
with imperfections in the construction (e.g. increased wall roughness introduced 
during the crimping process). Of course, the starting flow rate associated with hs 
reaching 1·03 m increases with D 3• The trade-off between larger starting flow rates 
and reduced manifold head loss would be decided by practical considerations (such 
as the characteristics of available pumps). 
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Experimental Studies of Alternative Single-header Manifolds 

Having seen that the manifold of Fig. 3 b can provide satisfactory flow characteristics, 
let us see whether these can also be provided by other designs more easily constructed. 
The simplest possible design (Fig. 3 a) has already been dismissed, in that it provides 
riser heads at practicable flow rates which are too small to permit self-draining action. 
The design of Fig. 3 c shares the advantage of a uniform header pipe diameter with the 
design of Fig. 3 a. It was constructed and tested to determine whether the difference 
in riser penetration distance x gave an enhanced riser head. As Table 3 shows, the 
riser head increases with x but remains well below the values for the manifold of Fig. 
3 b. Note that the riser head and riser volume flow rate for the manifold of Fig. 3 c 
are roughly independent of the direction of the header flow stream. 

Table 3. Static riser heads for various manifolds (Dt = 17 mm) for two flow rates 

Manifold Head (m) 
type Qh = 16·6 Lmin- 1 Qh = 8·8 L min - 1 

Fig. 3 b D3 = 12 mm 0·40 0·13 
= 10 0·90 0·26 
=8 Flowing 0·55 
=6 Flowing Flowing 

Fig. 3c x = 10 mm 0-17 0·04 
= 15 0·27 0·06 

Fig. 3d 0·29 0·04 

Fig. 3e D3 = 12 mm 0·67 0·33 
= 10 1·00 0·46 

The design of Fig. 3 d generates similar values of riser head to those of Fig. 
3 c, but would be more difficult to construct. For both types of manifold, the 
pressure-advantage factors are close to unity. 

Hybrid designs such as that of Fig. 3 e combine header constrictions with 
modifications of the riser geometry. In this way, riser heads and f3 values may both 
be increased. The largest f3 value we have measured of 3·6 was for a manifold of the 
type Fig. 3 e (see Table 2). 

4. Conclusions 

We have considered two different types of self-draining manifold for solar collectors. 
We have presented simple theoretical models for both types of manifold and shown 
them to be in general agreement with experimental results. As Table 1 shows, the 
parallel geometry of the double-header manifold permits smaller refilling heads and 
operating power losses than the series geometry of the single-header manifold. The 
latter design offers the compensating advantages of lower materials costs and a priori 
flow balancing in the sense discussed above. Both designs are practical alternatives as 
self-draining manifolds, with the choice between them depending on factors specific 
to the site. 
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Appendix 1. Flow Properties of the Double-header Manifold 

We consider fluid entering the manifold of Fig. 1 in the header of internal diameter 
D I . We are given the .initial header flow rate Q~, so the flow speed v~ before the 
junction with riser 1 can be found from 

(AI) 

If we assume a value for the temperature rise Ll TI of fluid in its passage between 
points (i) and (ii) of Fig. 1, we can find the flow speed v~ in riser 1 from 

(A2) 

where PT is the flow of thermal energy per unit time in the fluid between points (i) 
and (ii), p is its density and Cv its specific heat. The header flow speed V~ after the 
junction with riser 1 is then 

(A3) 

Next, we calculate the fluid pressure PI and the dynamic pressure head .9 1 at the 
point (i). To do this, we assume that the pressure P 2 at the point (ii) is equal to the 
atmospheric pressure Po, and relate PI and P 2 as given by McPhedran et al. (1983): 

where we assume laminar riser flow to calculate f r and take the flow-independent 
estimate of 0·40 for C TD' The dynamic pressure head .9 1 is 

9 1 = (PI - Po)lpg - Lr cos (J (A5) 

or 
(A6) 

with }-t denoting the fluid viscosity. 
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Having calculated 9], vh, v~ and Vh for riser 1, we proceed with the corresponding 
quantities for riser 2. The pressure difference 9 2 - 9] receives a contribution 
from frictional losses associated with the header flow (which is assumed completely 
turbulent), and a second contribution which is a regain term associated with the 
decrease in header flow speed from vh to Vh: 

(A7) 

where f is the header friction factor, for which we use the estimate 0·055. Let us 
define the two constants for the manifold 

a = (1+ CrD)/2g, (A8) 

(A9) 

Using the analogue of (A6) for riser 2, we find that 

(A 10) 

We continue this process by calculating 9 3' v~, v; and V~, stepping along the 
header until we: 

(a) reach the end of the header with a flow speed which differs significantly from 
zero--this indicates our estimate for f:j. T] is too large; 

(b) fail to reach the end of the header before our flow speed becomes negative-this 
indicates we should increase f:j. T]; or 

(c) we reach the end of the header with a flow speed essentially equal to zero--this 
indicates the iteration may be terminated, with the calculation of flow properties 
being complete. 

Appendix 2. Flow Properties of a Single-header Manifold 

The flow properties of the manifold shown in Fig. 4 are obtained by equating two 
expressions for the pressure difference P3 - P6 between x = ~ and L 6• The first of 
these is obtained by going along the header and, written in terms of known 152 and 
unknown 153 flow speeds, this is 

(All) 

where, as a consequence of arguments given by McPhedran (1983), the coefficients 
T], T2 and T3 are 

(AI2) 

(A 13) 
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(AI4) 

Expressions for the flow coefficients 'Y 1 and 'Y 2' friction coefficients f 3 and f 4 and the 
pressure correction coefficient Ksc Kc have been given by McPhedran (1983). 

The expression for P3 - P6 based on riser flow is 

(AI5) 

where 

(AI6) 

and where the quantity M is not strongly dependent on the flow speed 13r• The 
equation for continuity of flow is 

(AI7) 

Equating (A 11) and (A 15) and using (A 17), we obtain an equation linking 133 and 
132 , which can be solved by a bisection method. Given 133 , it is a straightforward 
matter to evaluate Il.Pr and Il.Pt (McPhedran 1983). 
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