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Abstract 

A new treatment of the calculation of the dielectric tensor of a magnetized plasma in an extremely 
strong field, such as occurs in magnetized neutron stars, is presented. An accurate numerical 
scheme for the evaluation of the hermitian and antihermitian parts of the tensor is used to calculate 
the refractive index and absorption cross section for magnetic fields and plasma temperatures 
typical of pulsating X-ray sources and y-ray burst sources. 

1. Introduction 

The quantum effects produced by a strong magnetic field (> 1012 G) on the 
propagation of waves close to the cyclotron frequency in a plasma have been studied 
by several authors (Canuto and Ventura 1977; Kirk 1980; Pavlov et al. 1980) with a 
view to applications in various astrophysical situations involving magnetized neutron 
stars. In these papers, a nonrelativistic approach to the problem is adopted, since the 
energy corresponding to the magnetic field strengths of interest is typically one order 
of magnitude smaller than the electron rest mass energy, i.e. 

where n (= eBI me) is the electron gyro-frequency. 
On the other hand, there have recently been extensive investigations of relativistic 

effects upon the propagation of waves at or about the gyro-frequency in plasmas 
with a more modest magnetic field. Thus, Wu and Lee (1979) considered relativistic 
effects on the theory of the electron cyclotron maser when proposing a mechanism for 
the terrestrial kilometric radiation, and Fidone et al. (1982) and Airoldi and Orefice 
(1982) have been concerned with cyclotron absorption in laboratory plasmas. 

The main catalyst of these investigations has been the realization that the classical, 
nonrelativistic resonance condition for gyro-magnetic absorption 

(1) 
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is different in character from the (classical) relativistic condition 

w -silly -kll vII = O. (2) 

[In (1) and (2), w is the wave frequency, s is the harmonic number, kll and vII 
are the projections along the magnetic field of the wave vector k and the velocity v 
respectively, and y = 1/(1 - v2/c2)L In fact, equation (1) possesses a single root vII 
for given w, s, il and k II' whereas equation (2) can have either one root, two roots 
or no root at all. Consequently, the use of equation (1) can introduce errors into 
a calculation even if the frequencies and temperatures involved are nonrelativistic in 
the usual sense. 

This same situation occurs also when the nonrelativistic and relativistic resonance 
conditions are written for a quantum plasma. Herold et al. (1981) investigated the 
relativistic case using parameters appropriate for pUlsating X-ray sources. They found 
significant deviations from the nonrelativistic treatments mentioned above, mainly in 
the neighbourhood of perpendicular propagation. In particular, they noticed that 
the response function of the plasma is singular at a critical frequency unless the 
finite lifetime of the first excited Landau level is explicitly included in the calculation. 
This is a remarkable property of the quantum plasma. In more conventional 
plasmas, singularities in the response function are removed by the introduction of a 
finite temperature. Herold et al. were able to include finite (though nonrelativistic) 
temperatures in their calculations, but still obtained the singular behaviour. 

The aim of the present paper is to re-evaluate the response function for the strongly 
magnetized plasma. A slightly different approach to that of Herold et al. is adopted 
by using the method of Svetozarova and Tsytovich (1962). This approach, using 
statistically averaged propagators, has recently been clarified and extended in a series 
of papers (Melrose and Parle 1983 a, 1983 b; Melrose 1983). In the present evaluation, 
the nonrelativistic approximations employed by Herold et al. are lifted, allowing 
more accurate computation of the refractive index in the case of the application 
to pulsating X-ray sources, as well as permitting the calculation of new results of 
interest in relation to the theory of y-ray bursts. In addition, the behaviour of the 
response function close to the singularity is examined in detail. The classical limit 
of the antihermitian part of the response function is then obtained, and compared 
with the results of Fidone et al. (1982). This calculation is particularly instructive, 
as it demonstrates how the singularities in the quantum expression merge into the 
continuous, finite classical result. 

2. Plasma Susceptibility 

The linear reponse of a plasma may be characterized by the susceptibility tensor 
X ij' related to the dielectric tensor g' ij by 

In the case of a strong magnetic field, it is also necessary to include the linear response 
of the vacuum: 
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where n is the refractive index, 

a (B)2 
8: = 4577 Be ' 

Be is the critical magnetic field strength (=4.414x1013 G), k and jj are unit vectors 
along the direction of wave propagation and the magnetic field respectively, and a is 
the fine-structure constant (Gnedin et aZ. 1978; Melrose and Stoneham 1976; Meszaros 
and Ventura 1979). Equation (3) is valid only when B/ Be .( 1 and fzw/m2- .( 1. 

The susceptibility of an electron plasma, summed over electron spin, is given by 
(Pavlov et aZ. 1980) 

w~ J+oo 00 (Qt{f(E)-f(E')! 
Xij = - - dp l: 

w2 -00 n,n'=O E -E' +w +iO 

+ Qij f(E) + Qij f(E') ) 
E +E' +w +iO E +E' -w -iO' (4) 

Here, E: = (1+p2+2nB)4, E': = (1+p'2+2n'B)4, p' = p+k ll and f(E) is the 
electron distribution function, normalized such that 

gn = 2-8 n,o' 

The quantities E and E' are energies expressed in units of the electron rest mass me2• 

Similarly, the frequencies wand wp (the plasma frequency) and the momenta p, p' 
and fzkll are in units of me2 /fz and me respectively, and the magnetic field B is in 
units of Be' The parameter Qij is given by 

± 1( - l+ PP') 2 2 2B, 1 
Qxx = -2 1 + --- (F n'_1 n+Fn' n-l) ± -(nn )2Fn'_1 n Fn' n-l' EE' , 'EE' " 

(5a) 

+ + _ 4B ,1 
Qy-y = Q~x + -(nn )2Fn'_1 n Fn' n-l' 

. EE' " 
(5b) 

± 1( _l-PP') 2 2 _2B ,1 
Qzz= -2 1+--- (Fn'_ln_l+Fn'n)+-(nn)2Fn'_ln_lFn'n' 

EE' , 'EE.f " 
(5c) 

Q± Q± 1'( - 1 + PP') 2 2 
xy = - yx = -2 1 1 + ~ (F n'-I,n -F n',n-l)' (5d) 

Q± Q± _. (k) i (1 1 { 1 , 
Y z = - zy = +Slgn x - -2 B )2 n2p (Fn'_1 n-l Fn'_1 n -Fn' n Fn' n-l) 

EE' '" , 

(5e) 

,1 

+ n 7. p(Fn',n Fn' -I,n + Fn' -I,n-l Fn',n-l)!' (5f) 
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where Fn',n is related to the associated Laguerre polynomials L~(x) (Abramowitz and 
Stegun 1965) by 

= (_I)n+n'F ' n,n 

for n ;> n'. Here, u: = k;/2B = kI/2B, since the wave vector k is assumed to 
lie in the z-x plane, with the magnetic field along the z-axis. In order to facilitate 
discussion of the symmetries of Qu' the dependence on the sign of k x has been given 
explicitly in equations (5e) and (St). 

The expression (4) may be simplified somewhat by noting the property of Q=fj 
under the exchange of n, p and n', p': 

Qt(n, n', p, - k) =, Qt*(n', n, p - kll' k), 

so that 

Xu = : X~]>(w, k) +X~]>*( -w*, - k) 

with 
(I) . _ w~ Joo d ~ ( Qt f(e) Qij f(e) ) 

X·· .- -- p ~ . + . 
lJ w2 -00 n,n'=O e -e' +w +10 e +e' +w +iO 

(6) 

Since only frequencies around the gyro-frequency w ;:::: B will be considered, and 
we shall assume B -< 1, the second term in equation (6) is nowhere resonant and 
is insensitive to the effects of a finite electron temperature. Consequently, we may 
replace f(e) by 8(p)8 n,o in this term, obtaining . 

JOO dp i ( Qij f(e). + Qij f(e) . );:::: 8.+0(B). 
-00 n,n'=O e +E' +w +10 e +e' -w -10 IJ 

The problem of evaluating Xu is eased by observing that the potential applications 
of the calculation are in problems in which w~1 w2 -< 1. The refractive index differs 
only slightly from unity in this case, and we may restrict our attention to real values 
of wand k with w ;:::: 1 k I. It follows that the antihermitian part of X u is obtained 
by taking the semi-residue of the integrands in equation (4) evaluated at the roots of 
the resonant denominator 

and the hermitian part is given by the principal values of the integrals. 

(a) Resonance Condition 

Before proceeding with the calculation, it is instructive to consider the resonant 
denominator in more detail (Melrose et af. 1982). The classical resonance condition 

w -sBly - kll vII = 0 
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may be represented as a semi-ellipse in vCvl1 space, with its centre at 

with eccentricity 

and semi-major axis parallel to the Vi axis: 

The evaluation of the plasma response, given the distribution function of particles in 
velocity space, reduces to an integral along the physically relevant sections of this 
ellipse. 

In the quantum case one may construct a similar diagram by defining the quantities 
V II and vias follows: 

VII: = piE, 
1 

Vi : = (2nB)'-/E. 

Although these quantities have in general no physical meaning, they coincide with 
the classical velocity in the classical limit. The resonance condition takes the form 

(7) 

and is once again represented by a semi-ellipse in vCvl1 space, in this case centred 
at 

This ellipse is called the resonant ellipse. 
However, the particles themselves are not distributed uniformly in vi-vII space, 

but are confined to lie on curves determined by the condition 

VTI + vI(1 + 1/2nB) = 1, (8) 

i.e. on ellipses centred at Vi = v II = 0 and contained within the unit circle. These 
ellipses are called • n-ellipses'. The evaluation of the plasma response, given the 
distribution function of particles in p and n, reduces to a summation over the points 
of intersection of the resonant ellipse (equation 7) with the n-ellipses (equation 8). 
These intersections can be found by defining three additional functions similar in form 
to D I : 

One then obtains a quadratic function D of p with roots PI and P2: 
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with 

2 2 e q := CU - II' 

PI,2 = -~kll P+(E~-E~VlJ±..:1, (9) 

where 
1 

En: = (1 +2nB)2 , 

If q2 > (En+ En,)2 or q2 < (E n-E n,)2, then PI and P2 are real (for real cu) and thus 
represent the momenta of resonant particles. Both roots belong to the product DI ~ 
provided that q2 < (E n -E n ,)2 (Melrose et al. 1982), but occur singly, i.e. one root 
for DI and one for D2 if q2 < 0 (or n = n'). As the only denominator of interest 
in equation (4) is D I , and since we shall obtain wave solutions in which kll < cu, it 
suffices to consider the range 

in which case 

for (n' - n)cu > O. 
Clearly, a point of special interest occurs where q is such that ..:1 = 0 and it is 

here that Herold et al. (1981) encountered the singularity of the response function 
(for n' = 1 and n = 0). However, each pair of Landau levels nand n', such that 
In-n'l = 1, defines a value of qn;:::; B at which..:1 = O. Expanding En and En' in 
powers of nB and n' B gives 

qn = Bp - ~(n+ n')BJ . (11) 

Thus, for waves propagating at an angle e to the magnetic field, and assuming 
I k I = cu, the points defined by equation (11) occur at the frequencies 

cu n = p-~(n+n')BJB/sin e. 

At frequencies cu > CUo there are no real roots of DI for any nand n' such that 
I n - n' I = 1. The momenta of particles resonant at CUo is, according to equation (9), 

PI = P2 = 10 n cos e / I sin e I 

for n' > n. At low temperatures only particles with P < 1 are of importance. In 
this case the singularity appears at angles of propagation close to ~7T where sin e ;:::; 1 
and, consequently, CUo ;:::; B. In terms of the pictorial representation of the resonance 
condition as a resonant ellipse in vCvl1 space, a singularity appears when one of the 
n-ellipses touches the resonant ellipse. A singularity of this kind does not arise in the 
classical treatment in which particles are assumed to be evenly distributed in vCvl1 
space. 
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Using the properties described above, the denominator in equation (4) may be 
rewritten as 

(12) 

It remains to determine the position of the contour of integration with respect 
to the poles in equation (12). Two cases must be considered. Firstly, if 
Real{ q2-(En-En,)2] > 0 then no resonant particles exist for that particular n, n' 
transition; the integration contour remains the real p-axis in this case. Secondly, if 
Real { q2 - (E n - En' i] < 0, resonant particles do exist, and the location of the contour 
is found by considering w to have a small positive imaginary part. In complex p-space 
this corresponds to placing the PJ. pole below the contour and the p;. pole above it, 
when Ll is defined such that 

Real(2q2 Ll/w) > 0, PJ. - p;. = 2Ll. 

This prescription can be written 

1 ~ ~ D4 (1 1) 
Dl +iO = 4q2{PJ._p;') p-p;'-iO - p-PJ. +iO 

(13) 

for Real(q2) < (En-En,)2. 

(b) Hermitian Response 

Equation (13) may be used to rewrite the first term in equation (6), resulting in 
expressions for the elements of the resonant part of X~j> which are of the form 

J+OO dp i ~( I _ 1 ). 
-00 n,n'=OPJ.-P;' p-PJ.+iO p-p;'-iO 

(14) 

The hermitian part of the response tensor is then found from the principal part 
of these integrals. An approximate expression may be obtained by replacing 9ij as 
follows: 

( , k) -p'lI2T( 2 ) 9ij n, n ,p, ::::: e ~+ pal + P ~ , (15) 

wh~re ao, al and a2 are the coefficients of the first three terms in the Taylor series of 
ep'l12T 9jj. The result can easily be expressed in terms ofthe plasma dispersion function 
(Fried and Conte 1961). This approximation is accurate provided the temperatures 
considered are nonrelativistic, i.e. 

(16) 

It has the advantage of preserving the exact form of the resonant denominator; 
only the numerator is subjected to the nonrelativistic approximation. However, the 
momenta of particles resonant at the critical frequency wo become large for small 
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angles of propagation, so that the expansion (15) is inadequate there. Another widely 
used approximation scheme (Wu and Lee 1979; Herold et af. 1981; Fidone et af. 1982) 
consists of expanding the resonant denominator in equation (6) to second order in p 
as well as expanding the numerator. The resonant ellipses are thus approximated by 
circles and the range of validity of the results is once again reduced by the requirement 

(17) 

(Hewitt et aZ. 1982) .. This approximation is often termed 'semi-relativistic'. Since 
both approximations fail at small 0, we adopt a numerical evaluation of the integrals 
in equation (14). In the examples presented in the following section, the summations 
over nand n' are performed explicitly up to limits determined on the one hand by the 
electron distribution amongst the Landau levels and, on the other, by the exclusion of 
all terms which are not resonant close to the fundamental frequency B. In addition, 
the small gyro-radius approximation is employed which, in our notation, uses the 
smallness of the quantity nkI/2B to justify retaining only the leading term of the 
Laguerre polynomials contained in Qt of equations (5). At frequencies close to the 
gyro-frequency one has 

(18) 

so that the small gyro-radius approximation applies provided that equation (16) is 
fulfilled. 

(c) Antihermitian Response 

In contrast to the hermitian part, X~·, it is relatively simple to obtain an exact 
expression for the antihermitian part, X~, of the plasma susceptibility. To this end, 
the resonant denominator in equation (4) is replaced according to equation (13), and 
the semi-residue taken at each pole. The resulting expressions are simplified by noting 
that for many distributions of interest (including thermal equilibrium) one has 

f(E') = e-wlT f(E) hn' (hn , = 0 or 1) (19) 

and that for positive values of w only those terms in which n' > n contribute to the 
double summation. Thus, we have 

(20) 

where E' = E + w, and j,,( E) is here understood to represent a distribution at 
temperature T such that 

(21) 

with the constant A determined by 

(22) 
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(d) Behaviour at Threshold 

Several properties of the singularity encountered by Herold et aL (1981) can be 
deduced from expressions (14) and (20). At a singular point we have PI = P2 and 
~ = O. For higher frequencies, ~ is purely imaginary. The lack of real values of PI 
and P2 implies that no resonant particles exist so that, denoting the frequency of the 
singularity by wo, one has 

xt = 0 for w > Wo . (23) 

On the other hand, as w -+ Wo from below, equation (20) shows that xt diverges: 

(24) 

provided that I k I ::::: w. Thus, the frequency Wo is a threshold for the onset of 
absorption. 

Turning to the hermitian part of the response (14), with the replacement indicated 
by equation (15), leads one to expressions of the form 

x~ - bo+ i bIReal[{pf- 1 w( -P\)+pi-' W(~)}/(pI-P2)]'(25) 
1= I (2 T)"i (2 T)"i 

where W(z) is the plasma dispersion function (Fried and Conte 1961) and the bl are 
well-behaved at the point PI = P2. Defining 

a: = PI-P2 

one has a purely imaginary for w > Wo and purely real for w < woo As a -+ 0 
equation (25) yields 

X~ - bo + i bIReal[pi- 1 
{ w( -P21)+ w(~)} 

:J 1=1 a (2 T)"i (2 T)"i 

+(U- 1)p l - 2 _ pi) w( -P2 ) + 2pi- ' ]. (26) 
2 T (2 T)! (2 T)i 

Application of the symmetry property 

W(z) = - W*(-z*) 

to equation (26) enables the second term to be written as 

i bIReal[pi-' {w(~)- W*(~)}]. 
1=1 a (2T)"i (2T)"i 

For w < wo, this term vanishes, and X~ tends to a finite limit as a -+ O. However, 
for w > wo, one has 

H ~-I Xij - U 

(27) 
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In summary, xt is zero above the frequency Wo and x~ is finite below it; xt 
diverges below Wo and x~ above it. However, the divergences are sufficiently weak 
that a bounded quantity can be constructed by averaging over a finite bandwidth in 
frequency. Thus the quantities 

1 fW+OW 
<xt>w: = 28w dw' xt(w,) , 

w-ow 
(28) 

1 fW+OW 
<x~>w : = 28w dw' x~(w') 

w-ow 
(29) 

are bounded for all w provided 8w =1= O. 

(e) Classical Limit 

The antihermitian part of the plasma susceptibility may be obtained from equation 
(20) by taking the limit n, n' -+ 00 with s: = n' - n finite and B, wand I kl-+ O. 
The momenta of the resonant particles PI and P2 take on the form 

P = sBk /q2 +W(S2 B2/q2 _E2)i/q 1,2 II - n (30) 

and the summation over n, which is converted in this limit into an integral, extends 
up to a maximum value given by the condition that PI,2 remain real: 

(31) 

The singularity obtained when PI = P2 is lost in this conversion of the n-summation 
into an integral. To see this, one first defines 

(32) 

Then, in a procedure exactly analogous to that used in treating equation (20), one 
expresses the singular quantity 

(33) 

as an integral: 

(34) 

(35) 

which is non-singular, and trivial to evaluate: 

(36) 
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Straightforward calculations of this kind lead from equation (20) to the following 
expression for the antihermitian part of the response tensor in the classical limit: 

XA = 2 17T l:e-sBw1q'-T due-Un, w2 . JH 
w 4TK2(1IT) I kill s _~ 

where K2 is a modified Bessel (McDonald) function, 

with 

and 

n= 

In equation (40) the notation 

~: = al klll/qT, 

.2sBEl , 
-1--J J k s s 

1 

. (k)2sBP J2 sIgn x -- s 
kl 

(37) 

(38) 

(39) 

(40) 

is used, the argument of the Besselfunctions J sis kl Ell Band J; represents d/dz(J s(z». 
In the small gyro-radius approximation, the Bessel functions are expanded in a power 
series of their argument, which enables the remaining integration to be performed. 
The results obtained are in agreement with those presented by Fidone et al. (1982), 
when allowance is made for the fact that Fidone et al. retained terms of first order 
in the small parameter kf T I B2 in some elements of xt, whilst omitting them in 
others. 

3. Wave Properties 

In astrophysical situations the density of the plasma of interest is usually so small 
that the refractive index differs very little from unity. This is the case for the accretion 
columns of X-ray pulsars, for example, where 

n being the refractive index. It is then a simple matter to solve the wave equation to 
lowest order in the parameter [) n, and one finds, in agreement with formulae given 
by (amongst others) Pavlov et al. (1980): 

(41) 
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Fig.1. Real part of the refractive index n of a plasma. Plotted is the quantity (n-I)w~/w~ 
where w B is the cyclotron frequency and wp the plasma frequency. The parameters are such 

that fiWB = 55 keY, w~/w~ = 107 and the temperature is 20 keY. The angles of propagation 
are (a) 55°, (b) 650, (c) 75° and (d) 85°. These curves result from a numerical integration of 
equation (14). Around the critical frequency, given by Wo = (El -1)/ sin e, accuracy is lost, and 
this region is indicated by the shaded zone. 
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Fig. 2. Imaginary part of the refractive index of a plasma, expressed as an absorption cross 
section in units of the Thomson cross section. The parameters and shaded zone are explained in 
Fig. I. 
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with 

n, = i(x yy + Xxx cos2 8 - Xxz sin 28 + Xzz sin2 8), 

nL = i( - Xyy + Xxx cos2 8 - Xxz sin 28 + Xzz sin2 8), 

nc = ! i(XXY cos 8 + Xyz sin 8). 
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In this notation the polarization vectors of the normal modes in cartesian coordinates 
with k along z and x in the plane defined by k and B are given by 

(42) 

where 

(a) X-ray Pulsar 

As a first application of our calculations, we may compare the refractive index 
for parameters corresponding to an X-ray pulsar with the results of Herold et al. 
(1981). Fig. 1 shows the real part of the refractive index for four different angles of 
propagation, and for an electron temperature of 20 keY. All electrons are assumed to 
be in the Landau ground state. Significant deviations from the results of Herold et 
al. (cf. their Fig. 6) occur only for angles of propagation well away from 8 = 90°. 
This is to be expected, since the semi-relativistic approximation employed by Herold 
et al. (which they term 'pz-quadratic') applies only when equation (17) is satisfied, 
i.e. at angles such that cos 8 ~ 1. 

At angles close to 90°, our results agree, except that the damping introduced by 
Herold et al. leads to a refractive index which is continuous across the singularity, 
whereas our calculation produces a discontinuity at this point, as discussed in Section 
2d. Fig. 2 displays the imaginary part of the refractive .index. The discontinuity at 
the singularity is the dominant feature of this function. The exclusion of any damping 
of the first excited Landau level results in a kinematic restriction upon those electrons 
which are permitted to absorb a photon and, therefore, there is no absorption at 
frequencies greater than the critical frequency. 

(b) Classical Cyclotron Absorption 

The expressions derived for Xi} in Section 2 apply also in more conventional 
plasmas, with lower magnetic fields. Quantum effects are generally neglected in such 
plasmas, but it is nonetheless interesting to observe the fate of the singularity of the 
quantum response when conditions become more classical. 

Fig. 3 shows the absorption coefficient, averaged over polarizations, in a magnetic 
field B = 10-6 (=4.4x107 G). At the adopted temperature of lOkeY, over 105 

Landau levels are populated. Nevertheless, only electrons in the lowest levels can 
contribute to the absorption at frequencies close to the critical frequency, as can be 
seen from equation (31). The lower the frequency, the larger the number of electrons 
able to contribute. Each time a new threshold frequency is reached, the absorption 
goes through a singularity similar to that of Fig. 2 and emerges at a higher level. 
The spacing in frequency of these steps is wB or 1O-6w in the present case, and the 
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singularity is, in practice, a spike with a width, given by the finite lifetime of the 
excited Landau levels, roughly equal to 1 % of the step spacing in the case of the 
highest frequency spike. For comparison, the absorption obtained with the classical 
expression for the antihermitian part of the susceptibility tensor is also shown in 
Fig. 3. Both the curves were obtained under the small gyro-radius approximation 
(see Section 2b). 

\ 

10 

\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 

1~_75~--_-4~~--_~3--~-_~2~~--~_71--~~O--~~ 

(w sine -1)/ B 

Fig. 3. Imaginary part of the refractive index of a plasma with a magnetic field of 
4· 4x 107 G. Shown are the results of a purely classical calculation (dashed curve) 
and of the exact quantum mechanical calculation, including the first few Landau 
levels (solid curve). The temperature is 10 keY and the angle of propagation 85°. 
Along the abscissa, e is the propagation angle (in this case 85), w is the frequency 
in units of the cyclotron frequency and B (in this case 10 - 6) is the magnetic 
field in units of Be (= m2 c31f1e = 4·4 x 1013 G). In the theory presented here, 
the plotted quantities in this and all subsequent figures are infinite at the critical 
frequencies mentioned in Section 3 (the finite values shown are an artefact of the 
plot software). 

(c) Gamma-ray Bursts 

Although the hermitian part of the response tensor X~ is calculated in Section 2 b 
under the restriction T < 1, the antihermitian part xt is obtained exactly. Since 
it is xt which is responsible for gyromagnetic absorption, it is possible to obtain 
exact results for the absorption cross section at all electron temperatures from these 
calculations; the hermitian part operates only in determining the polarization vectors 
of the normal modes. To see this, note that the imaginary part of the refractive index 
given by equation (41) may be averaged over polarizations to obtain 

<Im( n» = Im( n,) , (43) 

which is completely determined by xt. If polarization dependent cross sections 
are required, these are also easily obtained from xt. Thus, linear polarization is 
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obtained when the xy and yx components of X~ are zero in the cartesian coordinate 
representation used in equation (42). This corresponds to 

(44) 

[cf. equation (42)]. Consequently, the cross sections for linear polarization in the 
plane containing Band k and perpendicular to it are obtained from 

(45) 

Of course, these cross sections just reproduce well-known results from the theory 
of gyromagnetic emission in most parameter ranges. However, there seems to be a 
range of parameters of interest in the theory of y-ray bursts for which no accurate 
results are available. Liang (1982), for example, has used formulae for synchrotron 
radiation given by Petrosian (1981) to fit the observed spectra ofy-ray bursts between 
20 keY and 2 MeV. However, as noted by Liang, these formulae apply only when 

and T<l (46) 

and thus cannot be employed near the gyrofrequency. Since many of these bursts 
display features thought to be cyclotron lines (Mazets et al. 1982) an extension of the 
formulae is desirable. However, standard treatments of the first few harmonics (see 
Bekefi 1966) make the additional (nonrelativistic) assumption B..( 1 which prohibits 
their use in the present context. Hameury et al. (1984) have calculated the emission 
without using the restriction T ..( 1, but their results do not include the quantum 
terms which are needed at low harmonics when B - 1. By using the calculations of 
Section 2, the polarization averaged cross section can be computed from the following 
electron distribution function 

f(E, n) = Ae-<IT 

=0 (n < 0 or n > nmax), (47) 

with E = (1 + p2 + 2 nB)~ and where the normalization constant is given by 

(48) 

I 
with En = (1 + 2 nB)2. Thus, for nmax > T / B the distribution is close to its equilibrium 
value, and results are obtained which are applicable to the case T - B - w. 

Fig. 4 displays the gyromagnetic absorption cross section averaged over polarizations 
for a magnetic field such that the energy of a photon of the cyclotron frequency is 
100 keY. The temperature is also 100 keY, the angle of propagation 60°, and 20 Landau 
levels were included in the electron distribution function. In these calculations, the 
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small gyro-radius approximation is relaxed. The most notable feature of the cross 
section is the sharp dip at the frequency 

w = {(1+2B)~ -1 JI sin 0 = 106 keV, (49) 

where the contribution of the fundamental frequency (n' - n = 1) cuts out. In 
addition, the splitting of the fundamental is clearly seen; the difference in frequency 
between the transitions n = 0 ---+ 1 and n = 1 ---+ 2 being 

.:lw = {2(1+2B)t-(1+4B)t-1J/sin 0 = 14 keY. 

10 
4 5 6 7 8 9 

10' 

Frequency (keY) 

4 5 6 7 8 9 

IOJ 

Fig. 4. Gyromagnetic absorption cross section averaged over polarizations for a 
magnetic field of 8 ·6x 1012 G (liw B = 100 keY) and a temperature of 100 keY. 
The angle of propagation is 60°, and the lowest 20 Landau levels are included in 
the calculation. 

(50) 

In a separate calculation Hameury et al. (1984) have evaluated the absorption 
cross section averaged over polarizations for a gas in which all electrons occupy the 
lowest Landau level, despite having a velocity dispersion along the field lines which 
corresponds to a temperature of 500 keY. Only the transition n = 0 ---+ 1 is included, 
and the absorption cross section in the rest frame of an electron is taken from the 
nonrelativistic expression given by Daugherty and Ventura (1977). Following this 
procedure, one arrives at the result 

37TB 2 e- y ,IT(1 +cos2 OJ 
16uK!(1IT)w2 i:! 'Yil,8i - cos 01 ' 

(51) 

where (T is the absorption cross section, (TT is the Thomson cross section, u is the 
fine structure constant, 'Y i and ,8 i are the Lorentz factor and velocity (in units of c) 
of resonant electrons, and 0 i is the angle of propagation of the photon in the frame 
of a resonant electron. 
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Equation (51) provides a good approximation for the cross section of the first 
harmonic provided B .( 1. Fig. 5 displays both the approximate expression (51) and 
the exact expression for the distribution function given by equation (47) with lZmax = O. 
For the relatively low magnetic field strength under consideration (corresponding to 
1012 G) the two curves are indistinguishable at the first harmonic. However, the cross 
section at the higher harmonics remains considerably in excess of the Thomson cross 
section up to energies of about 50 keY. 

3456789 

10 

Frequency (keY) 

Fig. 5. Gyromagnetic absorption cross section averaged over polarizations for a 
magnetic field of 1012 G and a temperature of 500 ke V. The angle of propagation 
is 89°. Shown are the approximate expression for the first harmonic (dashed 
line) and the exact expression (solid curve) for all harmonics. In both cases all 
electrons are assumed to occupy the Landau ground state. 

4. Conclusions 

In this paper we present a new treatment of the calculation of the dielectric tensor 
of a magnetized plasma, with particular care taken to ensure validity in the case of an 
extremely strong field, such as is commonly thought to occur in several astrophysical 
objects. The advantages of the present calculation over previous work in this field 
(Kirk 1980; Pavlov et al. 1980) are that it employs an accurate numerical scheme for 
the evaluation of the hermitian part of the tensor, and that the antihermitian part is 
obtained exactly for arbitrary temperatures. Several applications of this calculation 
are discussed. The results of Herold et al. (1981), in which the response tensor is 
found to possess a singularity on the real axis, are confirmed. Further investigation of 
the nature of this behaviour shows that the singularities persist in the classical (high 
quantum number) parameter regime, but that their integrable nature ensures that 
non-singular results are obtained in the classical limit itself. Finally, we indicate that 
the evaluation of the antihermitian part of the dielectric tensor can be used to obtain 
results in a parameter range which has so far not been extensively investigated and 
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which is of interest in the theory of 'Y-bursts .. As an example, the exact absorption 
cross section is displayed in two cases and compared with the results obtained from 
an approximate treatment (Hameury et al. 1984). 
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