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Mestel et al. (1985) have recently introduced an axisymmetric pulsar magnetosphere model in 
which electrons leave the star with speeds that are non-negligible, but not highly relativistic, and 
flow with moderate acceleration, and with poloidal motion that is closely tied to the poloidal 
magnetic field lines, before reaching a limiting surface, near which rapid acceleration occurs. 
This paper presents an analysis of flows which either encounter the limiting surface beyond the 
light cylinder or do not meet it at all. 

1. Introduction 

The canonical pulsar model consists of a steadily rotating neutron star with 
magnetic axis inclined to the rotation axis. To the extent that dissipative forces can 
be neglected, the equation of motion of the magnetospheric particles expresses the 
balance of the Lorentz force by relativistic inertia. In the consequent theoretical 
description, the inertial effects manifest themselves in two ways: through the existence 
of a 'non-corotational' electric potential, describing a part of the electric field which 
adds to that associated with the rotation of the magnetic field structure, and the 
occurrence of an 'inertial drift' of the flow across magnetic field lines (Mestel et al. 
1979; Burman and Mestel 1979). The Lorentz factor can become infinite beyond, 
but not on or inside, the light cylinder-the surface on which the speed of corotation 
with the star equals c, the vacuum speed of light (Burman 1980). 

Mestel, Robertson, Wang and Westfold (1985; henceforth denoted by MRW2) have 
recently introduced an axisymmetric pulsar magnetosphere model in which electrons 
leave the star with speeds that are non-negligible, but not highly relativistic, and flow 
with moderate acceleration, and with poloidal motion that is almost along poloidal 
magnetic field lines, before reaching a limiting surface, near which rapid acceleration 
occurs. They have developed a thporetical treatment of the outflow domain which 
neglects inertial drift and part of the effect of the non-corotational potential, as well 
as dissipative forces. Singularities of the resulting Lorentz factor define the limiting 
surface, signalling failure of this treatment, meaning that inertial or dissipative effects 
or both have become important. 
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In addition to these 'Class I' flows, a second type of moderately accelerated flow is 
found: 'Class II' flows do not encounter a region of rapid acceleration (Burman 1984). 
Class I flows may be subdivided into Classes lA, IB and IC, in which the limiting 
surface indicative of rapid acceleration is met respectively inside, on and outside the 
light cylinder. 

The purpose of the present paper is to study the flows that cross the light cylinder 
without meeting the limiting surface-that is, flows of Classes IC and II. 

2. MRW2 Formalism 

In this section, the basic formalism developed by MR W2 for the analysis of their 
model will be outlined. The system is taken to be axisymmetric and steadily rotating 
at angular frequency fl. The dimensionless cylindrical radial coordinate X is unity 
on the light cylinder, which has a radius cl fl. The unit toroidal vector is denoted by 
t. It follows from Faraday's law and \l.B = 0 that the electric field can be written as 
the sum of a part X B X t, associated with the rotation of the magnetic field structure, 
and a 'non-corotational' part - \l CP, with cP a gauge-independent potential. 

MR W2 developed their equations in dimensionless form by expressing distances and 
the flow velocity V in units of cl fl and c, and normalizing field variables in terms of 
the equatorial dipolar magnetic field strength at the light cylinder: B1 = i(fl rsl C)3 Bo 
where r s is the stellar radius and Bo is the polar surface magnetic field strength. The 
magnetic field and the charge density Pe are expressed in units of B1 and B 1/47TC. 

The poloidal parts of the magnetic field and electric current density are expressed 
in terms of Stokes stream functions: 

Bp = X-I t X \l P, 

with P and S measured in units of (cl fl)2 Bland c2 B 1 147T fl respectively. Charge 
separation is assumed, so jp = Pe V p. The poloidal part of Ampere's law reduces to 
B4> = - SIX. It follows from Gauss's law and the toroidal part of Ampere's law 
that 

(1) 

with cP expressed in units of CB11 fl. The subscripts </> and z denote toroidal and 
axial components. 

In the domain under consideration, the flow is taken to be dissipation-free and 
inertial drift is neglected, so that the poloidal flow is along the poloidal magnetic 
field lines, meaning that S is a function of P only. In addition, the rigidly rotating 
pulsar crust is treated as a perfect conductor, and the particle flow speed at the 
surface is taken not to be highly relativistic. As a result of these approximations, 
the flow velocity, reduced by the local velocity of corotation with the star, is parallel 
to the magnetic field: V - X t = K B, with K a scalar. It follows from the equations 
V p = KBp and jp = Pe V p that Pe K = dS/dP (MRW2), which is constant on the 
poloidal magnetic field lines, which are also streamlines of the poloidal flow. 

MRW2 wrote dS/dP as -2 VO(P), so Pe K = -2 VO. Near the star, the 
\l2cp term in (1) can be neglected, leaving Pe = -2Bz/(I-XV4»; hence VplBp = 
(1- X V4» VOl Bz · But near the star X V4> ~ 1 and, provided the outflow emanates 
from a small polar cap, B p 'Z B z ; thus MRW2 identified VO( P) with the speed at 
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which the electrons, travelling along the lines of constant P, leave the star. This 
allowance for a significant emission speed is one of the key new features of their work. 

The steady rotation constraint implies the existence of a constant of the motion 
which (for electrons) has the dimensionless form (MRW2) 

G = 'Y(l-X Vel» - 4'/e; (2) 

the Lorentz factor is denoted by 'Y and the small parameter e represents alwg , 

with W g denoting the nonrelativistic electron gyrofrequency in the fiducial field B 1. 

Axisymmetry and neglect of inertial drift imply that G is a function of S only. 
The perfect conductivity boundary condition on the stellar surface means that the 
non-corotational electric potential has a constant value there, which can be taken 
to be zero. Hence, since X J4. < 1 at the star; G ::::: 'Yo. When the emission speed 
is nonrelativistic, the Endean (1972) integral G has a constant value, namely one, 
throughout the flow. 

Following the analysis of MRW2, elimination of the velocity between V - X t = te B 
and the definition 'Y-2 == 1- V2 of the Lorentz factor, together with the use of 
Bel> = - SIX, leads to a quadratic equation for te, yielding 

(3) 

Near the emission regions,·~ ::::: Va and J4. ::::: X so that l-X2 -'Y-2 ::::: V~; hence, 
for S > 0 and outflow, the positive sign before the radical has been taken (MRW2). 
The relation Pe te = -2 Va(P) now gives 

(4) 

while (1) becomes 

(5) 

where 

(6) 

These are the basic equations developed by MR W2 for the outflow domain. 
There is a minimum value 'Ym of 'Y for the above radical to be real: 'Y;;;:2 == 

1 - X2 + S2 I B2 (MRW2). For X < 1, 'Y m is always real; it is real for X > 1 provided 
B~ :> (X2-1)B~-the condition obtained by Goldreich and Julian (1969) for their 
flow to have a real Lorentz factor outside X = 1. 

The radical can be expressed as (BIS)('Y;;;:2_'Y- 2)L Note also that BI'Ym S = Foo ' 
where Foo denotes the function F for 'Y infinite: Foo == {I +(1- X2)B2 I S2) L Hence 
the radical is (1-'Y~,1'Y2)4 Foo. The MRW2 formalism expresses flow variables in 
terms of 'Y, which is bounded below by 'Ym. The basic MRW2 flow equations above 
show that, as functions of 'Y, the variables te, Pe and F are actually functions of 
'Y/'Ym· 

GJ flow (Goldreich and Julian 1969) is defined as flow satisfying the equations just 
listed, together with the additional restriction that the term '\124' in (5) be negligible. 
Putting '\124'= 0 there and writing Bz for BzI J.QS yields Bz = F, which, after 
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using the definition (6) of F, may be solved for the Lorentz factor: 

1 1- X2 ( _ 1 - X2 B2) 
y2 = liz-I Bz+I- liz-I S2 ' (7) 

which may be written as y-2 = (1-X2)C/A, where A = (liz-I)2 and C = 
ff; - F'!" or as 

(7') 

The equations PeK = -2 Vo, V<j>-X = -KS/X and Pe = -2Bz/(1-XV<j» for 
GJ flow yield, on eliminating Pe' V <j> and K in pairs (MRW2), 

KS = (1-X2)/(liz -1), 

Pe = -2 Vo S(liz-I)/(I- X 2 ), 

2 - 2 V<j>/X = 1-(1-X )/(Bz-1)X . 

(8a) 

(8b) 

(8c) 

MR W2 introduced a surface S i' defined by putting \12 <1> = 0 and y 00 in 
(5), yielding liz = Foo' This surface is an outer limit for possible GJ, moderately 
accelerated, flow; inside it, neglect of \12 <1> in (5) is consistent with a finite Lorentz 
factor. In the vicinity of S i' the GJ flow approximation must fail: the actual flow will 
be rapidly accelerated there, its Lorentz factor becoming large but remaining finite; 
dissipation or inertial drift, or both, will quickly become important and most of the 
above equations will be inapplicable (MR W2). 

Near the star, taking ~2 < 1 and B~ < B~ shows that Foo :::::: Bp/ S, which is 
large; near the polar caps Bz :::::: Foo/ Vo > Foo' Within the light cylinder, Foo > 1; on 
it Foo = 1; beyond it Foo < 1 (MRW2). The four mathematically distinct types of 
GJ outflow may be distinguished by considering the behaviour of liz and Foo along 
an arbitrary poloidal flow line, remembering that Vo S is constant along each line 
(Burman 1984). On these lines, which are also poloidal magnetic field lines, liz may 
be thought of as behaving qualitatively as it would for a dipole field: it decreases from 
a large positive value, exceeding Foo ' at the polar caps, eventually passing through 
zero (on the Bz = 0 cones) to reach a maximum negative value on the equatorial 
plane. 

In flows of Classes IC and II, liz falls to equality with Foo on X = 1 (where they 
are both equal to one) so that C = 0 = A there. Provided (liz-l)/(I- X2) is finite 
on X = I, the Lorentz factor is finite on, as well as inside, the light cylinder. For 
Class IC flow, liz subsequently intersects either Foo or - Foo at some point beyond 
X = 1, so C again vanishes and y is infinite at this second zero of C. In Class II 
flow, liz is below Foo and above - Foo everywhere along the poloidal flow line beyond 
the light cylinder, so that Cvanishes only on the light cylinder: with the proviso that 
(liz-l)/(1-X2) be finite on X = 1, the Lorentz factor remains finite all along the 
flow line. 

The MR W2 treatment of GJ flow does not involve complete neglect of <1>, merely 
neglect of the \12 <1> term in the combined Gauss-toroidal Ampere law (1). The 
Endean integral (2) can be used to calculate <1> in GJ flow, so long as the result is 
consistent with neglect of the \12 <1> term in (I). 
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Inertial drift is neglected in the MR W2 treatment of GJ flow. It can be incorporated 
formally by replacing B with the magnetoidalfield B +E\l X (y V), denoted by B* 
(Burman 1985). Consistency of the neglect of inertial drift with a GJ outflow 
solution can be checked by making order of magnitude comparisons of the inertial 
and magnetic terms in B* (cf. Wright 1978). 

3. Class IC/II Flow 

In addition to the coordinates used above, Z will represent distance alonf the 
star's spin axis in units of the light cylinder radius and R will denote (X2 + Z2)2; the 
angular variables (J and <p are the remaining spherical polar coordinates based on the 
spin axis. The auxiliary variables P, U and Q, denoting - P, X 2I 3 and p/3, will be 
used where convenient. 

In a first approximation, the poloidal magnetic field in the domain of Goldreich
Julian outflow can be taken to be dipolar: 

Bp = (X2 +4Z2)!/ R 4 , 

Bz = (2Z2 - X2)/ R 5 • 

(9a, b) 

(9c, d) 

It is useful, in order to follow the variation of quantities along the poloidal field/flow 
lines, to use X and P, rather than X and Z, as the independent variables. The dipole 
magnetic field is described by (MRW2) 

(lOa,b) 

Its field lines, P = constant, have the equations PR = sin2 (J = Q U. Their 
dimensionless radius of curvature is given by 

It follows that Class Ie/II flow, for which Bz = Vo S on the light cylinder 
(corresponding to C = 0 = A there), is described by the relations (MRW2) 

- 9 ! S(P) = 2P(1-"8 Q)2 , 3 9! Vo(P) = (1- '2 Q)/(l-"8 Q)2 . (12a, b) 

The Lorentz factor corresponding to V 0 is· given by 

Y6 = (8/15 Q)(1- ~ Q)/(1- ~ Q); (13) 

it is singular on the axis. 
For Class IC/II flow, in the dipole approximation, (12a) and (lOa) for Sand Bp 

show that 

(14) 

The definitions of Y m and Foo can be expressed in terms of the ratio B<t/ Bp by 
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For Class IC/II flow, the poloidal motion is along lines of constant P with Q 
bounded by zero and ~; these limits correspond to particles emitted from the poles 
and to particles which cross the light cylinder at Z2 = ! (where Bz = 0). That 
is, Class IC/II outflow comes from inner polar cap regions, bounded by colatitudes 
given by sinO! = (~)3/4sinOo, or O! = 0.7400' where 00 denotes the boundary of 
the GJ polar cap, and symmetrically in the other hemisphere. (The GJ polar cap is 
bounded by the foot of the dipole magnetic field line which is tangential to the light 
cylinder, corresponding to P = 1 = Q.) On Class IC/II flow lines, Bz > 0 inside 
the light cylinder. 

The flow analysis used here is based on the relation V - X t = KB, the toroidal 
part of which involves taking the Endean integral to be constant throughout the flow 
rather than merely constant on each poloidal flow line. According to (12b), which 
gives the unphysical result Va = 1 on the axis of symmetry, the present theory of 
Class IC/II flows is inapplicable to the parts that emanate from the innermost cores 
of the polar caps. 

For convenience and clarity in writing some of the formulas, the following functions 
will be used: 

M(Q) = 2!3Q-1, (17a,b) 

The function M(Q) varies from 00 to 0 as Q goes from 0 to ~, corresponding to the 
axis and the outer limit of IC/II flow. 

Note from (12) .and (17a) that 

Va S = 3PQM(Q). (12') 

This and (1Ob) for Bz give 

Bz = U-\l- ~ Q U)/(1- ~ Q), (18) 

from which it follows that 

(19) 

The ratio on the left-hand side of (19) recurs throughout the MRW2 theory of GJ 
flow; it appears in (7) for y and in (8) for KS, Pe and V 4>; equation (19) provides a 
helpful separation of its X and P dependences for the case of Class IC/II flow in a 
dipole magnetic field. In particular, (19) shows that 

which is finite for Q < ~. 
On using the decomposition (19), equations (8) can be written as 

KS = U3 11 +H(U)/M(Q)J-!, 

Pe = -(6PQ/U3){M(Q)+H(U)J 

-2Bz { 1-(1- H)~ QJ/(l- ~ Q U), 

V<j>/X = 11 +M(Q)lH(U)J-!; 

(20) 

(21) 

(22) 

(22') 

(23) 

equations (12') for Vo Sand (1Ob) for Bz have been used in obtaining (22) and (22'). 
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Substituting (21), together with (lOa) for Bp and (12a) for S, into Vp = KBp gives 

or, on using (12b) for Vo' 

VplVo = (1_~QU)411-(1-H)~Q}-1. 

It follows from (18) for Bz that 

M(Q) U3(Bz +1) = 1- U +(1+ U3)M(Q), 

M(Q) U3(Bz -1) = (1- U)11 +M(Q)IH(U)}. 

Equation (26b) for Bz -1 shows that A, defined as (Bz -1)2, is given by 

(24) 

(25) 

(26a) 

(26b) 

(27a) 

Equations (26), together with (16) for Foo ' show that C, defined as B;- F~, is given 
by 

On using (27), together with (14) for - B~/ X Bp' it follows that 

~QH(U)11 +M(Q)IH(U)}2,},-2 = 2-(1+ U)~Q 

-(1_~Q)2(1-~Q)-1(1-~ U)/H(U). (28) 

Thus, the MRW2 Lorentz factor becomes infinite on U = 1 for Q = ~,on U = ; 
for Q = ls and on U = 2 for Q = 4; in the first case, '}' is infinite where Q U = 3' 
corresponding to Bz = 0; in the last case, '}' is infinite where Q U = 1, corresponding 
to the equatorial plane. The range from 4 to ~ of Q corresponds to Class IC flow; 
for 0 < Q < 4, the flow is of Class II, with the Lorentz factor finite everywhere. 

Note from (23) for V cf> that 

1-XVcf> = (1-~QU)lI1-(1-H)~Q). (29) 

Since Q < ~ and H > 0, the denominator is always positive for Class IC/II flow. 
Therefore, 1 - X Vcf> changes from positive to negative on the Bz = 0 cones beyond 
the light cylinder. Equation (23) shows that X ~ increases monotonically away from 
the star along the poloidal field/flow lines. 

So long as the flow is only moderately accelerated, appropriate dimensionless 
length scales for variation of '}' V p and '}' V cf> t, in the sense of forming the .quantities 
\l X (')' V p) and \l X (')' V cf> t), are p and R. Thus, the ratio of inertial to magnetic 
terms in the toroidal and poloidal parts of B* may be estimated by the 'magnetic 
Rossby numbers' Et and E~, defined as E'}' Vp/( - Bcf»p and E'}' Vcf>/ Bp R (cf. Wright 
1978). 
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4. Light Cylinder and Beyond 

In this section, the behaviour of Class IC/II flow will be demonstrated by evaluating 
quantities on certain surfaces, namely the light cylinder, the Bz = 0 cones (beyond 
X = I) and the equatorial plane (beyond U = 2). A discussion of inertial effects 
will be included at the end of the section. 

(a) On the Light Cylinder 

On X = 1, the function His! and Q is 1/(1 + Z2). Equation (14) shows that 

This ratio varies from 1 at Z = 00 to y ~ at Z2 = ~, corresponding to Q values 
of 0 and ~ respectively: for Class IC/II outflow, the toroidal magnetic field, which 
is vanishingly small at the star, is, on the light cylinder, equal to between 71 % and 
lOO% of the poloidal field. 

Equation (20) states that (Bz -l)/(I-X2) = Z2/(Z2_~) on X = 1. Equation 
(28) yields 

y2 = (8/5 Q)(I- ~ Q)(I- Qi /(1- ~ Q)(I- to Q) 

= 4Z4(8Z2 -1)/(lOZ2 + 1)(2Z2 -1) on X = 1, (31) 

demonstrating the real and finite nature of y on X = 1 for Z2 > ~, as required for 
Class IC/II flow. This equation and (13) for Yo give 

(Y/YO)2 = 3(1- Q)2(1_ ~ Q)/(I- ~ Q)(I- to Q) on X = 1. (32) 

Thus, on the light cylinder, the ratio y/yo varies from y3 for Q -+ 0, through 1·48 
for Q = ~, to 00 for Q -+ L The values of Yo in these three cases are 00, 1·08 and 
1 respectively. 

It follows from (15) and (30) that 

y~ = (2-¥Q)/(I-~Q) = (16Z2+1)/(8Z2-1) on X = 1. (33) 

Equation (22) gives 

(34) 

while (22 ') shows that 

(34') 

Equation (25) for Vp/ ~ shows that 

i.e. the poloidal flow receives net acceleration between the star and the light cylinder 
by a factor of less than 3/y2 or 2·12. 
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Equations (24) and (23) for V p and V <j> show that 

Vp = ! (l-~ Q)/(I-~ Q)}~ !(1-~ Q)/(I- Q)} 

! (4Z2 + 1)!2(8Z2 -I)} ~(2- Z-2) on X = 1, 

V<j> = Q12( 1 - Q) = ~ Z - 2 on X = 1. 

757 

(36) 

(37) 

On the light cylinder, V p varies from 0 at Z2 = ~ to 1 as Z ---->- 00, while the angular 
speed of the flow normalized to that of the star varies from 1 to O. 

Equation (31) demonstrates that l' on the light cylinder is large at large Z. 
Equations (37) and (35) for V <j> and Vpl Va on X = 1 show that this is not because 
of the toroidal flow speed (which is large only near Z2 = ~) or the acceleration that 
the poloidal flow has received. Rather, it is because of Vo: the specified emission 
speed becomes very large as the poles are approached. 

Inserting (32) and (37) for 1'/1'0 and V <j> on X = 1 into the Endean integral (2), 
with G equated to 1'0' yields 

"r 6 3 9}" <l>IEl'o = 32 ((1-5 Q)(1- 2Q)/(I- 1O Q) 2-1 on X = 1. (38) 

This is positive for 0 < Q < 0·39 and negative for 0·39 < Q <~. For Q ..( 1, 
equation (38) shows that <1>190 ::::: (3~ -1) on X = 1. 

On X = 1, R = 1/ Q4 while the following hold for Q ..( 1: l' ::::: (8/5 Q)t, Vp ::::: 1, 
V<j> ::::: ~ Q, Bp ::::: 2 Q3/2 ::::: - B<j> and p ::::: 413 Q. Hence, on flow lines with 

Q..( 1, Et ::::: 3E/(2x 1O~ Q) and Ett ::::: E/(lOQ)~ on X = 1. 

(b) On the Bz = 0 Cones 

All Class ICIII flow lines cross the Bz = 0 cones outside the light cylinder. 
Equation (lOb) for Bz shows that Q U = ~ on these surfaces; hence M = U-l 
there. Equation (l4) gives 

(39) 

This ratio increases monotonically from 2 - ~ to 00 as X goes from 1 to 00; from 
U = 1·14 outward, corresponding to Q < O· 59, B<j> on these cones is of larger 
magnitude than Bp. Equation (22) gives 

Pe = -6(2/3 U)5/2 H( U) on Bz = O. (40) 

Equation (25) shows that 

VplVa=2- t(1+U- 1+U-2) on Bz=O. (41) 

Comparison of (41) with (35) at corresponding values of Q shows that, for Q < 0·41, 
the poloidal flow receives net deceleration between the light cylinder and the Bz = 0 
cones; for 0·41 < Q < ~, it is very slightly accelerated, by no more than a few per 
cent. For U = 1, 1 and 00, corresponding to Q = ~, ~ and 0, the ratio (41) is 2.12, 
1·64 and 0·71; it has fallen to 1 at U = 3·17, corresponding to Q = 0·21; for 
smaller values of Q than this, there is net deceleration of the poloidal flow between 
the star and these cones. 
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Inserting (12b) for Vo into (41) shows that 

3 1 1 
Vp = (1- U- )/22(1-3/4U)2 on Bz = O. (42) 

This varies from zero for U = 1 to Y i as U ---+ 00; for U = j, corresponding to 
Q = i, equation (42) gives Vp = O· 62. Equation (23) gives 

V<j> = 1/ X on Bz = O. 

Equations (42) and (43), together with (13) for Yo, give 

1'2 = 2(1-3/4U)/(1- U- 3 )(1 + U- 3 -3/2U) 

(43) 

on Bz = 0, (44) 

(1'/1'0)2 = (5/2U)(1-4/5U)/(I- U- 3)(1 + U- 3 -3/2U) on Bz = O. (45) 

On these surfaces, the ratio 1'/1'0 varies between 00 at U = 1 and zero (because of 
the divergence of Yo when Q ---+ 0) as U ---+ 00; the Lorentz factor itself approaches 
y2 as U ---+ 00. 

Substituting (39) for - B<j>/ Bp on Bz = 0 into (15) and (16) shows that 

y~ = (2 -3/2 U + U- 3)/(1 -3/2 U + U- 3) on Bz = 0, (46) 

F~ = (1-3/2U + U- 3)/2U3(1-3/4U) on Bz = O. (47) 

Equation (43) for V <j> shows that the Endean integral (2), with G equated to Yo, 
gives <I>/EYo = -Ion these surfaces; comparison with (38) for <I> on X = 1 shows 
that, for 0 < Q < 0·39, the non-corotational potential changes sign between the light 
cylinder and the Bz = 0 cones. 

On these cones, V<j> = (~Q)3I2, Bp = Y2(~)3 Q9I2, P = y ~ Q-3/2 and R = 

~ Q-3I2, while the following hold for Q < 1: I' ::::: y2, Vp ::::: y i and - B<j> ::::: 

3y ~ Q3. Hence, on flow lines with Q < 1, Et ::::: y2 E/3 Q3/2 and Etr ::::: y~ E/Q3/2 
on Bz = O. 

(c) On the Equatorial Plane 

Class II outflow reaches the equatorial plane beyond U = 2. Equation (9a) for P 
shows that Q U = 1 on this plane. Hence, (14) gives 

1 

-B<j>/Bp = 2X(1-9/8U)2 on Z = 0; (48) 

this ratio increases monotonically with X from the value 3·7 on U = 2. Equations 
(22) and (22 ') give 

Pe = -(2/ X 3)(2_ Q- Q2)/(1 + Q+ Q2) 

Pe/( -2Bz) = -(2- Q- Q2)/(1 + Q+ Q2) 

Equation (25) shows that 

on Z = 0, 

on Z = O. 

on Z = O. 

(49) 

(49') 

(50) 
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Thus, on the equatorial plane, Vp/ Va is ~ at U = 2, corresponding to Q = i, 
and tends to i as U - 00, corresponding to Q - O. Equations (35), (41) and (50) 
for Vp / Va on X = 1, Bz = 0 and Z = 0 show that the poloidal flow suffers net 
deceleration both between the light cylinder and the equatorial plane and between the 
Bz = 0 cones and the equatorial plane. 

Substituting (12b) for V 0 into (50) gives 

Equation (23) shows that 

V<j> = (3/X)(2_Q_Q2)-1 on Z = O. (52) 

Equations (51) and (52) show that, on the equatorial plane, Vp varies from 0·53 at 
U = 2 to i as U - 00, while V <j> varies from 0·85 to 0; the quantity V<j>/ X, the 
angular speed of the flow normalized to that of the star, varies from -to to O. 

Equations (51) and (52) for Vp and V<j> on Z = 0 give 

where D = 3-~Q+iQ2+~Q3. Substituting (13) for 'Yo into (53) gives 

The Lorentz factor on Z = 0 varies between 00 on U = 2 and 2/V 3 or 1·15 as 
U _ 00; the former case, corresponding to Q = i, belongs to Class Ie flow. The 
ratio 'Y/'Yo varies from 00 on U = 2 to zero (because of the divergence of 'Yo when 
Q _ 0) as U _ 00. 

Substituting (48) for - B<j>/ Bp on Z = 0 into (15) and (16) shows that 

'Y~ = (4_~Q_Q3)/(3_~Q+Q3) on Z = 0, 

F200 = ~Q3(3_~Q+Q3)/(I_~Q) on Z = o. 

(55) 

(56) 

Equation (52) for V <j> on Z = 0 shows that 1- X V<j> < 0 there; hence, the Endean 
integral (2), with G replaced by 'Yo, implies that tP/e < 0; more precisely, 

On the equatorial plane, Bp = Q9/2, P = ~ Q-3/2 and R = Q-3/2, while the 
following hold for Q..( 1: 'Y ::::: j, Vp ::::: i, V<j> ::::: ~ Q3/2 and - B<j> ::::: 2Q3. Hence, on 

flow lines with Q..( 1, et ::::: e/ Q3/2 and e~ ::::: 2e/ Q3/2 on Z = O. 

(d) Limitations 

Examination of the magnetic Rossby numbers calculated above indicates that the 
inertial and magnetic terms in both the toroidal and poloidal parts of B* are of the 
same order, on the Bz = 0 cones and the equatorial plane, for poloidal flow lines 
with Q = O(e2 / 3). It is interesting to note that, on these lines, the calculated <I> is 
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still very small: it is positive of order E2/3 on the light cylinder and negative of the 
same order on the B z = 0 cones and the Z = 0 plane. 

These results suggest that the present theory of Class IC/II flow fails, because of 
inertial drift generated in the vicinity of the Bz = 0 cones, on poloidalfield lines 
having Q ~ E2/3 and hence 'Yo ~ E- 1I3 . Since E is roughly in the range from 10-6 

to 10- 11 for different pulsars, the corresponding limiting 'Yo is about 102_104 . 

This does not imply failure of the MRW2 treatment of GJ flow: it merely reflects an 
inconsistency, expressed by the divergence of 'Yo on the axis, between the assumptions 
of IC/II flow and constancy everywhere of the Endean integral. The conclusion is 
this: Either outflow from the innermost core of a polar cap is of Class IA/IB, or 
flow-line dependence of the Endean integral must be incorporated. 

5. Concluding Remarks 

Flows which cross the light cylinder without encountering the MRW2 limiting 
surface are emitted from an inner (Class IC/II) polar cap region, having about ~ of 
the radius of the standard GJ polar cap. The requirement that their Lorentz factor 
be finite at the light cylinder, together with the assumption of a dipole form for the 
poloidal magnetic field, leads to a well defined mathematical description of these flows 
(MR W2). Since the Lorentz factor corresponding to the emission speed diverges 
at the poles, there is a tiny inner core of each polar cap in which the theoretical 
treatment used here fails. This divergence needs to be removed, either by taking the 
flow from that core to be of Class IA/IB, or by relaxing the constraint of constancy of 
the Endean integral throughout the flow: in order to describe Class II flow emanating 
from the innermost core of a polar cap, the flow-line dependence of this integral will 
need to be incorporated. 

Of the flows studied here, the higher latitude (Class II) flows, emanating from the 
inner 80% by radius of the IC/II polar cap, do not encounter a limiting surface. The 
Class IC flows, emanating from the remaining ring of the IC/II polar cap, reach a 
limiting surface beyond the light cylinder; it extends from where Bz = 0 on X = 1 
out to the equatorial plane at X = 23/2 (MRW2). 

The boundary of the IC/II polar cap is defined by the vanishing of the Class IC/II 
emission speed. Perhaps emission at infinitesimal speed occurs in the outer ring of the 
GJ polar cap, external to the IC/II cap. Such flows are subject to rapid acceleration 
in the vicinity of the Bz = 0 surfaces (Jackson 1978; Mestel et al. 1979; Burman 
1981), which they meet inside the light cylinder. The equation Bz = Foo for the 
MR W2 limiting surface reduces to Bz = 0 if the emission speed is neglected. 

These considerations suggest an MR W2 model in which the limiting surface consists 
of the northern and southern Bz = 0 cones inside the light cylinder, connected by a 
surface extending from where they meet the light cylinder out to the equatorial plane 
at about 23/2 times the light cylinder radius from the star. 

Only a global solution will show whether or not IC and II flows are realized in 
actual magnetospheres. In any case, their well defined analytical description makes 
these flows an attractive subject for study and a potentially useful basis for future 
comparison with other flows. 
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