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Abstract 
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This paper discusses the possibility of a Bianchi type V universe containing stiff matter and a 
source-free electromagnetic field which is, of necessity, found to be null. Physical and kinematical 
consequences of the model have also been considered. 

1. Introduction 

In a previous paper (Roy and Singh 1983) we examined the possibility of a 
source-free electromagnetic field coexisting with matter in the form of a viscous fluid 
and streaming neutrinos in the case of a locally rotationally symmetric (LRS) Bianchi 
type V universe. Being the natural generalization of FR W models with negative 
curvature, these open models are favoured by the available evidence for low density 
universes (Gott et al. 1974). The Bianchi type V universes have been considered by a 
number of workers including Schucking and Heckmann (1958), Ellis (1967), Hawking 
(1969) and Grishchuk et al. (1969). The LRS Bianchi type V space-time models 
containing stiff matter and an electromagnetic field were first considered by Ftaclas 
and Cohen (1978). Lorenz (1981) studied LRS Bianchi type tilted models with stiff 
fluid and an electromagnetic field. The relevance of the stiff equation of state, p = E, 

to the matter content of the universe in its early stages has been discussed by Barrow 
(1978). 

In the present paper we consider a general (non-LRS) orthogonal Bianchi type V 
space-time model containing stiff matter and a source-free electromagnetic field. The 
electromagnetic field is, of necessity, found to be null. We also discuss the physical 
and kinematical features of the model. 

2. Field Equations 

The line element describing the Bianchi type V space-time model is taken in the 
form 

(1) 

where the metric potentials A, Band C are functions of t alone. The matter content 
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with a source-free electromagnetic field is given by the energy-momentum tensor 

(2) 

where 
E j - F pJr I p pob.J 

i - ir - 4 ob Yi' (3) 

In (2) and (3) p is the isotropic pressure, E the matter density, E~ the electromagnetic 
energy tensor, P ij the electromagnetic field tensor and Vi the flow vector of the fluid. 
The flow of matter is taken orthogonal to the hyper-surfaces of homogeneity so that 
Vi = v2 = v3 = 0 and v4 = A-I. The field equations are 

and also we have 

Pij,k+ Fjk,i+ Pki,j = 0, 

J i - pij _ -cr i pk _.i 
- ;j- k JIT, 

(4) 

(5) 

(6) 

where <T~ is the anisotropic conductivity of the fluid, assumed to take the form 

(7) 

Equations (4) and (5) show that in this space-time the only non-vanishing 
components of Pi) are Fi2' Fi3' F24 and F34' satisfying the relations 

Fi2 = eF24' e = ±1. (8) 

The electromagnetic field is, therefore, null. We choose e = III (8) so that it 
represents an outgoing wave. From (5)-(8) we get 

JI = J4 = 0, (9) 

o=~ = -cr~ = -(C/B)4B/AC. (10) 

It can be seen that when Ji is equal to zero, the space-time has to be locally 
rotationally symmetric. Equations (5) with (9) reduce to the following: 

F34,1 + P34,4 = 0, 

(11, 12) 

(13, 14) 

In the above equations, the suffixes 1, 2, 3 and 4 preceded by a comma stand for 
partial derivatives with respect to x, y, z and t respectively. Equations (4), (11) and 
(14) show that the components of F';j are functions of x and t. The field equations 



--~--------
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(4), along with (5)-(14), give rise to 

2 B,44 C:44 
87TG(p+p)A = 1 - 11 - e 

87TGpA2 = 1 - (~4 }4- B~4 - AA2 , 

A (B e) B e 87TG(E+p)A2 = -3 + ~ ~ + ~ + ~ +AA2 
ABe Be ' 

B e A 
87T GpA2 = ~ + ~ - 2 ~ 

B e A' 

where p is the energy density of electromagnetic radiation given by 

Equations (15), (16) and (19) yield 

2A B e p 
__ ,4+~+~+~+2=0. 
ABe p 

The conservation equation for the energy-momentum tensor 

leads to 

dE/dT +(E+P)O = 0, 

765 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

where T is the cosmic time given by fAd t and () is the expansion scalar. Equation 
(22) shows that the matter density of the universe is decreasing with time during its 
expansion stage provided the weak energy condition E + P > 0 holds. If p satisfies 
the barotropic equation of state p = (y - l)E, where 1 " Y " 2, then equation (22) 
yields 

R3Y/R3y E = EO 0 ' 

where R3 = AB e and EO and Ro are the present day values of E and R respectively. 
Equations (15)-(17) and (19) give 

(23,24) 
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so that 

(25) 

where ~ is the shear tensor, cr its magnitude and a and f3 are constants. From 
equations (18) and (23)-(25), we get 

(26) 

Equation (26), together with (21)-(25), gives 

d8/dT = -127TG(e+p) - 167TGp - 3cr2 - 3/A2, (27) 

which is a consequence of the Raychaudhuri equation 

(28) 

From equation (26), we see that when A " 0 

assuming e > O. We also see that the presence of an electromagnetic field lowers 
the upper limit of anisotropy, as compared with those in the perfect fluid case. 
Equation (27) shows that the scalar of the expansion 8 is a decreasing function of 
time, provided the weak energy condition e + p > 0 holds for the matter distribution, 
whereas the Raychaudhuri equation (28) gives the same information when the strong 
energy condition holds (Hawking and Ellis 1973). Therefore we conclude that the 
model starts from the big-bang singularity and expands until T = 00 for A > 0 while, 
for A > 0, expansion ceases at T = TO and the model may go into the contraction 
phase to attain the second singularity. . 

The null electromagnetic field has geodetic and. shearing rays defined by the null 
vector Ii in the axial direction having components (1,0,0, -I). The expansion 0 and 
shear fT for the null ray are given by 

8 = fl· = A2 2 + -' +-' A • l( B4 C4 ) 
;1 B C' 

fT = 2~2 (~4 _ ~4)-
The Raychaudhuri equation for the null geodesic is given by 

which shows that the null rays converge at the big-bang singularity, assuming the 
weak energy condition to hold for the matter distribution, where u is an affine 
parameter along the null geodesic. 
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If we take the matter content of the universe to be a stiff fluid, we get the metric 
(1) in the following form due to (15)-(19): 

ds2 = T- 2(2k+l)(T4_i M )k+l(dX2 _ dT2/T2) 

+e2X T-2(T4 _ .!M){(T2 - i~4)LdY2+(T2 - iM}4)-L}dZ2 , (29) 
4 T2+.!M'i T2+.!M'i 

2 2 

where k, Land M are constants and M > o. The distribution of matter, 
electromagnetic energy density and kinematical parameters for the model (29) are 
given as follows: 

M(2k+3 - L2) T2(2k+3) 
8TrGp = 8TrGE = (T4 _ iM)k+3 

Mk 
8Tr Gp = - -..,-----.---;-_::_ 

(T4 - iM)k+2' 

(12 T4 +2M k+3M) T 2k+1 
0= , 

4(T4 - iM)4(k+3) 

(3M L2 T4 +.! M2 k2)4 T 2k+ 1 
0"= 4 

3~( T4_ i M)4(k+3) 

Magnitudes of the electric and magnetic parts E and H of the free gravitational field 
are given by 

T 4(2k+l) 
E2 = {4(k+L2)2M2T8+3ML2T4(2T4+'!M+Mk)2J 

3(T4 _ i M )2(k+3) 2' 

M L2 T 8(k+l) 
H2 = 2(T4 _ iM)2(k+2) . 

The expansion e and shear a- for the null ray are given by 

M~LT4(k+l) 

a- = (T4 _ i M )k+2 . 

3. Discussion and Conclusions 

In the model (29) we see that p > 0 implies k < 0 and the reality condition E > 0 
requires 2 k + 3 > L 2• We also find that T4 > i M in the model. The model starts 
expanding with a big bang at T = 2-4 Mt and continues to expand until T = 00. 

The singularity at T = 2-4 Mt corresponds to proper time T = o. The singularity 
in the model is point type when k+ 1 > 0 and I LI < 1, barrel type when k+ 1 > 0 
and L = ±1 or k = -1 and ILl < 1, cigar type when k+1 > 0 and ILl> 1 
or k+l < 0 and ILl < 1, and pancake type when k = -1 and L = ±l. The 
occurrence of a pancake type singularity in the model is the result of the presence 
of electromagnetic radiation. We find that when 2k = L2 - 3, the metric (29) 
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represents the universe containing only electromagnetic radiation. In this case, when 
k = -1 and L = ± 1, the singularity in the model is of pancake type and the 
space-time is of Petrov type N. In general, however, the metric is of Petrov type I. 

We also see that matter always dominates the electromagnetic field when 
3(k+ 1) ;;;. L2, while the electromagnetic field dominates for the time period T4 > 
MkI4(3k+3 - L2) when 3(k+l) < L2. It can be seen that (J"IO,E/02 and EI02 

are finite at the initial singularity which decrease and tend to zero as T -+ 00, while 
HI02 is zero at both limits. The model, therefore, evolves to an isotropic universe. 
Moreover, we find that EIE tends to a finite constant at the initial singularity while 
this ratio becomes infinite at late times, which shows that the electric part of the free 
gravitational field is comparable with the matter field at the big-bang singularity, while 
the electric part becomes dominant at late times (cf. MacCallum 1971). It is also 
to be noted that HIE -+ 0 as T4 -+ ~ M, whereas HIE -+ 00 as T -+ 00. Therefore, 
the matter field is dominant over the magnetic part of the free gravitational field at 
the initial singularity, while the magnetic part dominates at late times. We also find 
that at the initial singularity, the electric part is dominant over the magnetic part of 
the free gravitational field, whereas they are comparable at late times. In the model 
there exists a particle but not an event horizon along the axial direction. We also see 
that the magnitude J of the current 4-vector J i , given by 

2( - k)~ M L T 4(k+l) 
J= , 

(T4 _ ~M)~(2k+5) 

is infinite at the big-bang singularity, whereas it tends to zero as T -+ 00. Nonzero 
components of the conductivity tensor ~ of the fluid are given by 

-2 -3 
(J"2 = - (J"3 

2 M~L T 2k+3 

(T4 _ ~M)~(k+3) , 

which are infinitely large at the initial singularity, while they gradually decrease and 
tend to zero at late times. 
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