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Abstract 

A discussion of waves in magnetic flux tubes imbedded in magnetic unstratified surroundings is 
given. Seven types of non-leaky wave are identified. Many more leaky waves, tube oscillations 
which drive waves in the external medium and thereby lose energy to it, are also found. The 
particular example of longitudinal and transverse oscillations in chromospheric fibrils is examined 
in detail. 

1. Introduction 

Interest in waves in the solar atmosphere centres on two main aspects, (i) the 
mechanical transport of energy and its role in heating the chromosphere and corona, 
and (ii) the explanation of observed oscillations and wave motions; for example, 
the five-minute oscillations, three-minute oscillations in sunspot umbrae, running 
penumbral waves, etc. 

Much progress has been made on the theory of waves in uniform or continuously 
varying media. In particular, a plane parallel vertically stratified model.for the solar 
atmosphere is often adopted with either a horizontal uniform magnetic field (e.g. 
Nye and Thomas 1976), a vertical uniform field (e.g. Thomas 1978; Leroy 1981; 
Leroy and Schwartz 1982; and many other related papers), or a uniform inclined field 
(Schwartz and Bel 1984). A simple spreading field has also been investigated (Cally 
1983; Schwartz et af. 1984). 

However, the theory is now being forced to come to terms with observations. It 
has been known for some time that the outer layers of the Sun are far from the 
simple planar slabs pictured in the above references; fine structure, especially that 
associated with magnetic fields, proliferates and in many contexts cannot be ignored. 
Oscillations in such features as coronal loops, chromospheric fibrils, intense flux tubes 
at supergranule boundaries, ephemeral regions, etc. demand attention. A theory of 
waves in magnetic flux tubes is required as a step in this direction. 

Some progress has been made, especially in the thin flux tube approximation 
(Defouw 1976; Roberts and Webb 1978, 1979; Roberts 1981; Spruit 1982) in which 
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the gravitationally stratified atmosphere problem is tractable. Furthermore, in the 
absence of gravity, much has been learnt of waves in tubes of finite width (Meerson 
et af. 1978; Wentzel 1979; Wilson 1981; Edwin and Roberts 1983). The results of 
both approaches show that tube waves differ substantially from their better known 
homogeneous or slowly varying atmosphere cousins. 

In such calculations, mathematically, the process of matching waves internal 
and external to the tube produces a complicated dispersion relation involving the 
longitudinal wavenumber k and the frequency w linked through various rational and 
Bessel functions. For each given k there is a discrete spectrum of allowed w values. 

Fig. 1. Typical structures of the total pressure perturbation in 
the two types of non-leaky tube wave, surface (l imaginary) and 
body (l real), and in a leaky tube wave. In the last of these the 
structure inside the tube is not significant, different behaviours 
may occur, but the outward propagating external wave is its 
defining characteristic; the growth in the external solution with 
distance from the tube is due to wavefronts further out having 
been excited earlier, when the tube oscillation was stronger. 

Most previous treatments have sought only real frequencies. These correspond to 
waves travelling along the tube without temporal decay, and are associated with an 
essentially exponential fall off of amplitUde with distance from the tube boundary in 
the surrounding medium (see Fig. 1). However, the possibility of complex frequencies 
has been discussed, in the thin tube approximation by Roberts and Webb (1979) 
and Spruit (1982), and by Meerson et af. (1978) for finite tube width, but under 
some rather restrictive conditions. A complex w value, with negative imaginary 
part wi' corresponds to leakage from the tube wave (Fig. 1); the internal motions 
drive an external wave which draws energy from them, and the mode decays in time 
as exp(wi t). Wilson (1981) has also been· concerned in large part with complex 
frequencies, treating a flux tube of finite width imbedded in a non-magnetic medium, 
though allowing for the possibility of an external parallel flow (with which we shall 
not be concerned). 
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It is the purpose of the present paper to discuss the fibril waves observed by 
Giovanelli (1975) in the context of tube waves. To this end, sufficient of the general 
theory of Cally (1985) is introduced to allow a qualitative and quantitative exposition. 
This general theory differs from the more advanced previous treatments, by Edwin 
and Roberts (1983) and by Wilson (1981) in particular, in a number of important 
respects: 

(i) It treats both leaky and non-leaky waves extensively in flux tubes surrounded 
by a background field. Edwin and Roberts were concerned only with non-leaky 
waves, whilst Wilson's flux tubes were magnetically isolated, thus allowing 
only acoustic waves to carry energy into the surrounding medium rather than 
the two (fast and slow) magnetohydrodynamic (MHD) modes which give rise 
to entirely new modes of oscillation (both leaky and non-leaky) and do not 
merely modify the existing ones .. 

(ii) It provides a simple and complete graphical classification (cf. Figs 2 and 3 and 
Table 1) of non-leaky modes, which allows for instant recognition of all such 
tube waves in any situation. It is hoped that it will therefore be of substantial 
practical utility, firstly in understanding observed oscillations (as with _ the 
fibril waves considered here), and secondly in using these observations as a 
diagnostic tool to reveal details of the medium (e.g. field strength, density, etc.). 

(iii) It provides an almost complete asymptotic treatment of leaky waves (only part 
of which is reproduced here, cf. the 'Trig' modes of Section 3), which allows 
for a near complete rough sketch of the dispersion diagram pertaining to any 
situation to be drawn with little difficulty. Wilson's treatment was incomplete 
in this respect, even allowing for the neglect of external fields (see Section 3). 

2. Model and Equations 

A uniform magnetic flux tube of radius R consisting of straight field lines 
B = (0, 0, B) is embedded in a homogeneous atmosphere permeated by a parallel 
field Be = (0,0, Be)' Cylindrical coordinates (r, 0, z) are adopted throughout. The 
internal density p, Alfven speed a = (47Tp)-j B, and sound speed c, and their external 
counterparts Pe' ae and ce' specify the basic system. The density contrast D = piPe 
is determined, however, by the pressure equilibrium condition across R: 

where 'Y is the ratio of specific heats inside the tube, and 'Ye that outside. 
the following mathematical steps are taken: 

(1) 

(i) Perturbation quantities in the linearized adiabatic MHD equations are assumed 
proportional to exp! i( kz + mO - w t) J, where m is an integer, and only the r 
dependence remains to be determined. 

(ii) The resulting Bessel equation (Wentzel 1979) for the total pressure 
perturbations p' and p~, 

(
r < R), 
r> R 

(2) 

is solved subject to the conditions that the internal solution be well behaved at r = 0, 
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whilst the external solution must either vanish as r ---+ 00 (w real) or represent an 
outward propagation of energy (w complex). Here I and Ie are respectively the 
effective internal and external radial wavenumbers: 

(3) 

(4) 

where cT = ac/(a2 + c2)1 is the so-called tube or cusp speed, and its external 
counterpart is cTe = ae ce/(a~+ c~)~ (note that the tube speeds are both subsonic and 
sub-Alfvenic). The resulting solutions are 

p' a: Jm(lr) exp[i(kz+mO-wt)J, 

p~ a: H(:/(le r) exp[i(kz+ mO-wt)J, 

where H<:!/ is a Hankel function, and 

{
I, 

q= 
2, otherwise. 

(5) 

(6) 

(7a) 

(7b) 

The condition on q specifies the solution with outgoing energy flux as r ---+ 00. An 
outgoing phase velocity corresponds to q = 1, but this is not always the appropriate 
choice. 

(iii) The internal and external solutions are matched at r = R by requiring that 
the total pressure perturbation and the radial component of velocity be continuous 
across the boundary. 

This last step leads to a dispersion relation which is best expressed in terms of the 
dimensionless velocities 

the frequency 

n = wR/ce , (8b) 
and the wavenumbers 

K= kR, L = IR, (8c) 

The dispersion relation is then 

L J'm(L) 

<P = fi-A2K2 Jm(L) 
DLe H(:,>' (Le) = 1jJ. 

n2 - A~ K2 H(:'> (Le) 
(9) 

The primes denote differentiation with respect to the argument. Equation (9) is 
consistent with the dispersion relations obtained by many authors [see e.g. equation 
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(15) of Wentzel (1979), equation (22) of Wilson (1981) and equation (8) of Edwin 
and Roberts (1983)]. 

3. Some General Results 

Two approaches to the dispersion relation suggest themselves. The first is to specify 
the wavenumber K and derive the frequency n, which if complex with 1m n < 0 
corresponds to temporal decay. This is generally appropriate for the initial value 
problem in which the tube suffers an initial perturbation along part of its length, due 
for example to random turbulent buffeting, and oscillates freely thereafter. For the 
boundary value problem though, for example when a wave is being driven by steady 
overstable convection in a thin subphotospheric layer, n should be prescribed and 
K deduced; complex K then describes spatial decay. For concreteness, the former 
approach will be adopted here; extension to the latter is straightforward (cf. Wilson 
1981). 

With the dimensionless longitudinal phase speed V = nl K and the wavenumber 
K both real, Land Le are either real or purely imaginary (cf. equations 3 and 4). 
Consequently, <j> is always real, whilst ljJ is real only if Le is imaginary (cf. Wilson 
1981). Equation (9) therefore indicates that any real phase speed V must lie either 
below Cre or between Ae and 1 [i.e. wi k < cTe or min(ae, ce) < wi k < max(ae, ce)]· 
Hence the upper bound on the longitudinal phase speed of a non-leaky tube wave is 
determined by the external, not the internal, plasma. 

A number of other quite detailed conclusions concerning non-leaky waves may 
be drawn by sketching <j> and ljJ (see Figs 2 and 3). If one takes the appropriate 
part of Fig. 2 (i.e. 2a if A < C and 2b otherwise), mentally adjusts the V axis 
scaling, and fits over it a similarly adjusted Fig. 3, the points of intersection <j> = ljJ 
correspond to the discrete real eigenfrequencies. Such a mental exercise allows the 
identification of seven types of non-leaky tube wave (see Table 1), each of which 
is denoted by a letter, either'S' or 'B' depending on whether it is a surface (L 
imaginary) or body (L real) wave, a superscript '+' or '-' indicating that it is 
externally fast [min(Ae, 1) < V < max(Ae, 1)] or slow (V < Cre), and a subscript' +' 
[ V > min(A, C)] or '-' [ V < min(A, C)] referring to the relation of the phase speed 
to the characteristic internal velocities. 

However, this is by no means the full story. Many varieties of leaky mode may 
also exist. Of particular interest are the so called 'Trig' modes (Cally 1985), which in 
the high frequency limit I n I > K, AK, CK, AeK, I L I > 1 and I Le I > 1 are given 
by 

n n - (A2 + C2)~ (I m+2n+ 1 + i sgn(X -1) J i1T - ii In I ~ ~; I), (10) 

where n is an arbitrary integer consistent with Re n > 0 and I n I large, and 

(11) 

An infinite number of these modes always exists, though sometimes the first few 
eigenfrequencies, for which the asymptotic approximations above are not valid, may 
in fact be real. In this case (see Fig. 4) the real modes are the Bt waves mentioned in 
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Fig. 2. Schematic diagram of the left-hand side <j> of the dispersion relation (9) when the phase 
speed V and wavenumber K are both real (non-leaky waves): (a) for A < C and (b) for 
.4 > C. Sausage (rn = 0) and other (rn > I) modes are distinguished when their behaviours are 
qualitatively different, but in general the full curves represent arbitrary rn. 
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Fig. 3. As in Fig. 2, but for the right-hand side I/J of equation (9). Those phase speeds for which 
I/J is complex, and therefore <p = I/J is impossible, are marked forbidden region. If Ae > 1, the 
curves for 1 < V < Ae in the upper half plane are appropriate, whilst if Ae < V < 1 the lower 
curves apply. The behaviour for V < Cre is common to both cases. 

Table 1; as n increases fl n moves off the real axis and tends asymptotically towards 
the horizontal line 1m fl = (flj)asym, the imaginary part of the right-hand side of 
equation (10). The corresponding asymptotic decay rate is (in s) 

2 2l 1+X I I -I 

Tasym = 2R(a +c )dn I-X) , (12) 

indicating that thin tubes leak more profusely than do wide ones. It is also of interest 
that leaky waves of arbitrarily large phase speed exist, whereas non-leaky modes are 
restricted by V < max(Ae, 1). 

In many other instances as well, when one of the real modes of Table 1 does not 
exist for a particular wavenumber or tube parameters, its counterpart may be found 
off the real axis. Yet other complex frequencies exist which do not appear to be linked 
with any erstwhile real mode. The analysis of fibril waves in Section 4 provides some 
examples of these behaviours. 

Another asymptotic case which may be considered is the thin tube approximation, 
in which I fl I < 1 and I K I < 1 are assumed, leading to I L I, I Le I < 1 in general 
(except if V - Cr or CTe)' Wilson (1981) treated this case, assuming Ae = 0, 
and used it as the basis for a numerical search procedure for thick tube solutions. 
However, only certain modes may be found in this way (see modes a and b in Fig. 6 
for example); the Trig modes and their offshoots, as well as other types of wave 
found in tubes other than fibrils (see Cally 1985) do not show up in the thin tube 
approximation, and so were missed by Wilson. 
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Fig. 4. Schematic diagram of the typical positioning in the complex frequency plane of the B+ modes and their complex extension. The asymptotic behaviour for large Re n is given by 
equation (10). 

4. Fibril Waves 

Ha fibrils are ubiquitous on the solar disc. They are generally associated with active 
regions (in the penumbra and superpenumbra of sunspots in particular) and plagettes 
(magnetic field concentrations at supergranule boundaries), and are believed to be 
aligned with the magnetic field. They may extend almost vertically into the corona 
(the spicules when seen on the limb), or lie nearly horizontal in the chromosphere. 

Motions within fibrils take two distinct forms. Firstly, longitudinal velocities 
are observed, vigorous in spicules, more· gentle in chromospheric fibrils. These are 
possibly due to longitudinal (i.e. essentially acoustic) waves generated by convective 
buffeting at the base of the photosphere. In spicules, acoustic waves would shock 
and may then drive the observed flows of up to 30 ktn s -1. Smaller amplitude back 
and forth oscillations in horizontal fibrils are possibly the unshocked 'sound' waves 
themselves. 

Secondly, Giovanelli (1975) also observed basically transverse waves in 
chromospheric fibrils. These typically have phase speeds of around 70 km s -1 and 
wavelengths of about 12 Mm (i.e. 12x 106 m). Giovanelli interpreted them as Alfvlm 
waves and thereby inferred an Alfven speed within the fibril of about 70 km s -1. 

However, as the wave front appears to be essentially confined to the fibril, Wentzel 
(1979) and Edwin and Roberts (1983) have identified them as tube waves, and the 
Alfven speed estimate must be regarded with suspicion. 

A reliable model of fibrils, and their surroundings, is not currently available. It is 
widely believed though that they are cool dense structures with little if any difference 
in magnetic field strength across their boundaries. By assuming B =. Bc (around 
10 G say), C = ! ce and 'Y = 'Y c' the density contrast D = 4 can be inferred, and 
consequently a = ! ac• Even in a relatively weak field, the Alfven speed in the high 
chromosphere may be expected to comfortably exceed the sound speed, say ae = 7 cc. 
The relevant parameters are then 

A = 3·5, Ae = 7, C = 0·5, C T = 0·495, C Tc = 0·990, D = 4. (13) 

With an assumed fibril half-width of R = 500 km and the observed wavelength of 
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Fig. 5. Dispersion diagram for the first two Bt sausage (m = 0) 
modes for the model fibril defined by equations (13). The real and 
imaginary parts of the first mode (solid curve) are plotted in the lower 
and upper graph respectively, and similarly for the second (dashed 
curve). 
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Fig. 6. Dispersion diagram of some kink modes (m = 1) for the model 
fibril. Each mode is referred to in Section 4 by its label a-f. Note that 
the first Bt mode a is real for all K. 

P. S. Cally 

around 12 Mm, the wavenumber K = O· 25 is appropriate. Even though these precise 
numbers cannot be regarded with any confidence, the qualitative behaviour of tube 
waves depends primarily on the ordering of the various speeds, not their exact values, 
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and the assumption 

C T < C < C Te < 1 < A < Ae (14) 
is probably correct. 

Of the non-leaky modes, a perusal of Table 1 shows that only Bt and B= may 
exist under these conditions. Of these, the latter has a phase speed below the internal 
sound speed and therefore well under the observed value of 70 km s -1. Only the Bt 
mode, with V > A, provides a possible explanation of the transverse waves (this is 
the class of mode discussed in some detail in Section 3; see also Fig. 4). 

Extensive numerical investigation allows the plotting of dispersion diagrams for 
the various waves. For the so-called sausage modes, m = 0, this is done for the 
first two Bt modes (see Fig. 5). The first has complex frequency for wavenumbers 
below about K = 1·5 (i.e. wavelengths longer than around 2· 1 Mm), and is real 
thereafter. The second is leaky below about K = 3 ·3, and so on, each successive 
mode remaining leaky below progressively larger wavenumbers (smaller wavelengths). 
The value of fl in the long wavelength limit K = 0 is given approximately by 
equation (10). Of particular interest is the fact that no Bt sausage mode is non-leaky 
at the wavenumber in question of K = 0·25. However, they are strongly transverse, 
being almost pure pulsation modes with the longitudinal velocity being no more than 
about O· 1 % of the radial velocity, either internally or externally. 

The B= modes are of a different character. As is obvious from Figs 2b and 3, 
there are an infinite number of B= modes accumulated at V = Ci. Outside the tube 
these have roughly equal longitudinal and transverse velocity amplitudes, but inside, 
at r = R-, they are almost totally longitudinal with amplitudes some hundreds of 
times the internal and external transverse values. They represent therefore a type 
of slow compressional wave moving along the inside of the tube. As C T is almost 
indistinguishable from C in a fibril, such oscillations might easily be mistaken for 
sound waves. It is possible that the m = 0 B= modes are the back and forth 
oscillations observed in chromospheric fibrils. 

Turning now to the kink modes, m = 1, we see that the B= waves very much 
resemble their sausage counterparts. The situation otherwise, however, is quite 
different. A number of modes are illustrated by their dispersion curves in Fig. 6, and 
are discussed in turn: 

(a) fl = 1·0944 at K = 0·25: The curve labelled a is real for all K. It 
represents the first Bt mode, and is almost totally transverse, having a longitudinal 
component of less than 1 % at K = 0·25. It is the mode identified by Wentzel 
(1979) and Edwin and Roberts (1983) as Giovanelli's transverse fibril wave. If 
this interpretation is correct, and the phase speed w k = 70 km s -1 is assumed, 
the external sound speed in the model atmosphere is ce = w K / fl k = 16 km s - 1 . 

Equations (13) then specify the other speeds: a = 56 km s -1, ae = 112 km s -1 and 
C = 8 km s - 1. In this case, a 20% error would result from identifying the Alfven 
speed with the phase speed. 

(b) fl = 1·0943-0·019i at K = 0·25: This is a leaky wave which bifurcates 
from the a mode at K = 0, though the two remain close until K ~ 0·5 say. For 
K = 0·25, the decay of the wave due to leakage would be too small to be readily 
observable (T ::::: 27 min compared with a wave period of 3 min). However, it rapidly 
becomes a more important effect as K is increased (e.g. T = 14 sat K = 1· 5, where 
the period is 73 s. The mode ceases to exist above about K = 2·58. 
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(c) n = 13 - 2·0 i at K = 0·25: The second B! mode, this and the subsequent 
harmonics behave much as the B! sausage modes, i.e. n n is complex at K = 0 
(cf. equation 10), but approaches and eventually coalesces with the real axis as K 
increases, the critical K being larger for larger n. Again these modes are almost 
totally transverse. 

(d) This mode does not exist at K = O· 25. As with b, this mode bifurcates 
from a B! mode., this time the second, precisely at the critical wavenumber at which 
its parent eigenfrequency becomes real (K = 2·235 in this case). It is transverse to 
within a few per cent. Beyond about K = 4, it tends asymptotically back towards 
the real axis, yet never reaches it. 

(e) n = 4·9-6·0i at K = 0·25: Another transverse wave, this one is very 
leaky for large wavelengths (7 - 5 s with a period of about 40 s), though it becomes 
asymptotically less so (in a rather erratic fashion) as the longitudinal wavelength 
decreases. The phase speed lies between those of the first two B! modes. 

if) n = 0·247-5x1O- 4 i at K = 0·25: At small K, this mode is strongly 
longitudinal and basically confined to the tube (there is a weak external motion 
which is primarily transverse). In this respect it resembles the B= modes, though on 
the other hand it is distinguished by its greater phase velocity V;:::; Cre compared 
with CT' It is peculiar that the phase speed of a wave which exists almost entirely 
within the fibril should be determined by the external tube speed. The f mode leaks 
substantially only for small wavelengths, for which its character is altered to become 
both longitudinal and transverse in roughly equal proportion (K = 5). 

In light of the above remarks, the following suggestions may be proffered: 

(i) The observed back and forth motions in chromospheric fibrils may be non-leaky 
B= waves, probably m = 0 modes since for m ;> 1 there would simultaneously 
be flow in both directions in different sectors of the tube, which is not observed. 

(ii) Giovanelli's (1975) transverse fibril waves are likely to consist of at least two 
modes, the non-leaky first B! mode a and its almost identical slightly leaky 
companion b, at least for the m = 1 component [the m ;> 2 components 
behave somewhat similarly; see Cally (1985)]. There is no m = 0 transverse 
wave with the required phase speed and wavelength. 

(iii) A variety of transverse waves, for all azimuthal wavenumbers m, are found to 
be very leaky. (In particular, an infinity of long wavelength B! modes have 
decay times of around 7 asym ;:::; 16 s. It is not surprising that no longitudinal 
wave is found to leak significantly as it is the transverse pulsations at r = R 
that excite waves in the external medium.) It seems reasonable to suggest that 
such waves excite sympathetic oscillations in neighbouring fibrils. Observations 
of this phenomenon would be of interest. 

Of course, all these conclusions can only be tentative in the absence of a wave 
theory which includes gravity. A generalization to twisted and bent flux tubes would 
also be useful. 

5. General Discussion 

Some of the complexity of tube waves has been demonstrated, especially by the 
particular example in Section 4. The main lesson to be drawn from this work is that 
caution must be exercised when interpreting observations of waves in magnetically 
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structured regions. It will almost certainly be misleading to identify them as sound, 
Alfven, fast or slow waves of the types familiar in homogeneous atmospheres. It 
is also hoped that a more complete understanding of tube waves, especially when 
gravitational stratification is successfully incorporated into the theory, will allow the 
use of wave observations as a probe into the structure of many solar features. 

Acknowledgment 

The author would like to thank Peter Wilson for a number of useful comments, 
and for bringing earlier work (Wilson 1981) to his attention. 

References 

Cally, P. s. (1983). Sol. Phys. 88, 77. 
Cally, P. S. (1985). Sol. Phys. (in press). 
Defouw, R. J. (1976). Astrophys. J. 209, 266. 
Edwin, P. M., and Roberts, B. (1983). Sol. Phys. 88, 179. 
Giovanelli, R. G. (1975). Sol. Phys. 44, 299. 
Leroy, B. (1981). Astron. Astrophys. 97, 245. 
Leroy, B., and Schwartz, S. J. (1982). Astron. Astrophys. 112, 84. 
Meerson, B. I., Sasorov, P. V., and Stepanov, A. V. (1978). Sol. Phys. 58, 165. 
Nye, A. H., and Thomas, J. H. (1976). Astrophys. J. 204, 573. 
Roberts, B. (1981). In 'The Physics of Sunspots' (Eds L. E. Cram and J. H. Thomas), p. 369 

(Sacramento Peak. Observatory: Sunspot, NM). 
Roberts, B., and Webb, A. R. (1978). Sol. Phys. 56, 5. 
Roberts, B., and Webb, A. R. (1979). Sol. Phys. 64, 77. 
Schwartz, S. J" and Bel, N. (1984). Sol. Phys. 92, l33. 
Schwartz, S. J., Cally, P. S., and Bel, N. (1984). Sol; Phys. 92, 81. 
Spruit, H. C. (1982). Sol. Phys. 75, 3. 
Thomas, J. H. (1978). Astrophys. J. 225, 275. 
Wentzel, D. G. (1979). Astron. Astrophys. 76, 20. 
Wilson, P. R. (1981). Astrophys. J. 251, 756. 

Manuscript received 11 March, accepted 20 June 1985 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 

I 

I 
I 
I 
I 




