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Abstract 

The time dependence of the single mode hexagonal magnetoconvective system has been 
investigated numerically at high Rayleigh number. It is established that, in certain parameter 
ranges, the system has oscillatory solutions which not only have a periodic nature, but also develop 
into chaotic and intermittent solutions. Further, the system generates nonzero mean kinetic and 
magnetic helicity together with substantial magnetic field amplification. These features are shown 
to be maintained in time without any externally imposed rotation of the system. 

1. Introduction 

High resolution solar observations indicate that very strong, small scale magnetic 
fields exist in the photosphere and they are concentrated into ropes which emerge 
through it. Further, the scale of these ropes is estimated to be only a few hundred km 
across (Stenflo 1976) with their strength appraised to vary between 1000 and 2000 G 
(Harvey 1977). These features appear to have a well defined spatial relationship with 
the photospheric granular convection pattern. 

In sunspots, where the fields are considered to be stronger, normal convection is 
seen to be inhibited, and only oscillatory motions prevail. These oscillations have 
been directly accredited to the influence of the magnetic force (Chandrasekhar 1961). 
Several attempts have been made to account for these oscillations by using the linear 
theory of hydromagnetic convection, which establishes that the diffusivities play a 
major role in determining the nature of the instability (Cowling 1976). If the magnetic 
diffusivity 1] is small then the magnetic Reynolds number is large and the field lines 
are swept around with the convecting fluid inducing a disturbance field B* which 
exerts a stabilizing force and in turn tends to reverse the motion. If the magnetic 
diffusivity is smaller than the thermal diffusivity, linear theory predicts that the flow 
will be reversed and oscillatory motion with growing amplitude-overstability-sets 
in. 

However, it could be unwise to account for oscillatory motions such as those seen 
in sunspots, which clearly are finite amplitude oscillations, by extrapolating from 
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the linear theory. As pointed out by Weiss (1975), the quadratic restoring force is 
underestimated by the linear theory, since 

I(B.\7).BI > I(Bo.\7).BI, where B= Bo+B*, 

when the field is disturbed and enhanced. It is the quadratic nature of the magnetic 
force which encourages finite amplitude oscillations to develop. When the finite 
amplitude modal equations with hexagonal planform are considered in the absence 
of a magnetic field, we have established (Lopez and Murphy 1985) that the presence 
of a vertical component of vorticity also leads to finite amplitude oscillations which 
are not predicted from the linear theory. In the magnetoconvective Rayleigh-Benard 
model, which is considered in the present paper, both of these sources of oscillations 
are present and it is difficult to isolate and identify individual effects. 

The kinematic studies of magnetoconvection represent the next stage on from the 
linear theory, where the magnetic induction equation is solved with a prescribed 
velocity field. Although these models adequately describe the early stages of field 
growth, the later stages of flow-field interaction are recognized to be beyond the scope 
of the kinematic theory. However, it is at this stage of the time evolution where the 
nonlinear oscillations, which are of prime interest (e.g. in the study of umbral dots), 
manifest themselves (Knobloch and Weiss 1984). 

The two dimensional kinematic study by Weiss (1966) demonstrated the process 
of kinematic flux expulsion leading to the formation of flux sheets between the rolls. 
For the formation of flux tubes, however, a three-dimensional velocity pattern is 
clearly necessary. In this regard, Clark and Johnson (1967) pioneered the use of 
hexagonal velocity patterns in kinematic studies of the induction equation. The 
prescribed velocity is now only required to satisfy continuity, which in the Boussinesq 
approximation is \7. u = O. In the Clark and Johnson (1967) case, as well as in 
most other kinematic studies (e.g. Galloway and Proctor 1983), the structure of the 
velocity field satisfying continuity with a hexagonal planform has been taken to be 
as simple as possible. Consequently the forms taken for the velocity do not account 
for a vertical component of the vorticity, and hence have no mean kinetic helicity. 
In fact, the vertical structure of the imposed velocity is sinusoidal, a form which is 
representative of convective motions only very close to marginal stability. The value of 
this approach in modelling possible dynamos is limited, due to the restricted solutions 
for the velocity leading to zero mean kinetic helicity. However, this aspect could 
be compensated for by an externally imposed Coriolis force to generate asymmetries 
which may then lead to dynamo action. 

Kinematic studies have also shown that the velocity field required for dynamo 
action is one which is characterized by a nonzero mean kinetic helicity (Childress 
1976), and its importance is now well accepted (Moffatt 1977; Hide 1982). In 
Rayleigh-Benard type dynamo models, the helicity of the system has in the past been 
externally generated by the imposed rotation of the system or by imposing a shear 
flow on the mean flow. Kennett (1976), using the concept of 'minimal systems', 
severely truncated the modal equations to a point where the vertical structures of 
the velocity and magnetic fields retained only one sine or cosine mode, depending on 
the boundary conditions, and one horizontal mode for which the coupling moments 
vanished. Nevertheless, she was able to show that this minimal system led to 
finite amplitUde oscillations, with nonzero magnetic field, which were claimed to be 
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suggestive of dynamo action. However, with the high symmetry of the solutions, 
no nonzero mean helicity is possible. Baker's (1978) modal calculations also suggest 
the existence of a convective dynamo effect in a Benard layer without rotation. His 
truncation of the modal equations is much less severe than that employed by Kennett 
(1976), and as a consequence the vertical structures of the velocity and magnetic fields 
can be accurately solved implicitly in the system. Further, the expansions adopted 
for the velocity and magnetic field are general for solenoidal fields, with \l . u = 0 
and \l. B = 0, giving zero mean horizontal values. The same formulation has been 
used throughout the present paper. However, Baker (1978) employed the 'mean 
field approximation' (see Van der Borght et al. 1972) in which a great deal of the 
nonlinearity of the modal system is lost. Possibly the most significant consequence of 
employing this approximation to a magnetoconvective system is that there can be no 
nonzero mean helicity. In the single mode mean field system there is not even any 
local helicity since the vertical vorticity vanishes. In Baker's (1978) calculations, a q 
mode and a 2 mode mean field approximation was used where the vertical components 
of vorticity are zero. In this case, a nonzero local helicity is now possible, depending 
on the choice of horizontal planform. However, the mean helicity still vanishes for 
these higher mode mean field solutions. Hence, at best, the Baker (1978) system 
may lead to a 'second-order dynamo', 'first-order dynamos' requiring a nonzero mean 
helicity (Roberts 1972). 

A hexagonal horizontal modal expansion enhances the role of the nonlinear terms 
in the modal equations leading to the generation of the vertical components of vorticity 
and of current density, depending on the values of the parameters of the system. This 
produces solutions for which there is an associated nonzero mean helicity, which we 
call type II solutions and which are required for the alpha effect in dynamo action. 
Baker and Spiegel (1975) were the first to note the existence of type II solutions in 
rotating non-magnetic modal hexagonal equations. However, the existence of type II 
solutions was directly accredited to rotation (Baker 1978), and it was not until the 
work of Lopez and Murphy (1983) that the possibility of a nonzero vertical vorticity, 
and hence a nonzero mean helicity, without the presence of rotation or a magnetic 
field was shown to exist. 

With the generation of the vertical component of current density, there is an 
associated mean twisting of the magnetic field, a mean magnetic helicity in essence. 
The observations of Babcock (1961) and Piddington (1983) suggest that the solar 
magnetic flux tubes could be helically twisted. Even though flux tubes are not a direct 
consequence of the single mode equations, due to the broad horizontal resolution, 
helically twisted fields do result from the type II solutions, and this is expected to be 
a feature of the full multimode equations. 

So far, in order to solve the magnetoconvective Rayleigh-Benard problem most 
authors have had to make geometric simplifications, mainly resulting from the 
inadequate size and speed of available computing facilities. The geometry of the 
convective planform adopted is of crucial importance as ropes and sheets have different 
dynamical properties. Further, ropes cannot be formed by a two-dimensional roll 
pattern. Proctor and Galloway (1979) have stated that an axisymmetric geometry can 
model a hexagonal planform. While there may be some clear advantages in using a 
cylindrical representation of a hexagonal cell, such as being able to solve explicitly in 
the radial direction, a modal representation is preferable in that interactions between 
neighbouring cells are simulated and the possible generation of mean helicity is also 
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included. The nonlinear diffusive terms in the momentum equation become more 
significant in a hexagonal representation of the planform than in the axisymmetric 
representation. This effect is measured in the modal representation of the momentum 
equation constant C, which is the third moment of the planform function. It takes 
the value C = vi - 0·408 for hexagons, while for cylindrical cells C - 0·176 and 
is zero in any mean field representation. 

The oscillations reported from the axisymmetric model of Galloway and Moore 
(1979) would correspond to the curvature force I (B. \7). B I as discussed by Weiss 
(1975), and do not include any of the finite amplitude oscillations which are associated 
with the generation of the vertical component of vorticity, and hence mean helicity, as 
described for ordinary Rayleigh-Benard convection by Busse (1972) and numerically 
investigated for the hexagonal situation by Lopez and Murphy (1985). 

2. Equations and Method of Solution 

The model considered in this investigation describes the interaction between an 
initially uniform vertical magnetic field and a horizontal layer of fluid which is 
heated from below and contained between two isothermal stress-free boundaries. The 
governing equations are given by the momentum equation (Chandrasekhar 1961) 

au 1 
P - +pu. \7u +\7 P-pG -J.L\72u + - J.L* H x (\7 x H) = 0, (1) 

at 4~ 

the continuity equation 

aplat +\7 .(pu) = ° (2) 

and the induction equation 

aHlat+'Y/\7x(\7xH)-\7X(uXH) = 0. (3) 

When the Boussinesq approximation is considered equation (2) reduces to 

\7.u=o, (4) 

and the heat transport equation takes the form 

pCv aTlat+pCv u.\7T-K\72T = 0. (5) 

Here the physical constants J.L, K and Cv represent the viscosity, coefficient of thermal 
conductivity and specific heat at constant volume. The magnetic permeability is 
denoted by J.L * with G defined in component form by (0, 0, g), 9 being the acceleration 
due to gravity. The modal equations which follow are derived from these equations in 
a manner described by Van der Borght and Murphy (1973) where the non-dimensional 
scalings are given; in this case only a single horizontal mode has been retained in 
the time dependent system, its horizontal extent measured by the non-dimensional 
horizontal wave number a: 

(6) 
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'OF/at = (D2-tl')F- WDTp-C(2WDF+FDW), (7) 

-(C/o-)( WDlJ1 + 2lJ1D W +3ZDZ)+ QTC(HDcf>+2cf>DH +3XDX), (8) 

lJ1 = (D2 - a2) W, (9) 

acf>/at = T(D2 - a2)cf>+DlJ1+ C(DHD2 W -D WD2 H + HDlJ1- WDcf», (10) 

cf> = (D2 - a2)H, (11) 

ax/at = T(D2-a2)x+DZ-C(2XDW-2ZDH-HDZ+ WDX), (12) 

~ az = (D2_a2)Z+ QTDX- QC(XDH-HDX)-(C/o-)(WDZ-ZD W), (13) 
0- at 

where D == a/az. 
In this sixteenth-order nonlinear system of partial differential equations the variables 

Z(z, t) and X(z, t) represent the scaled vertical components of vorticity and current 
density, while W(z, t), F(z, t) and H(z, t) define the vertical convective velocity, the 
temperature fluctuation and induced magnetic field. The mean temperature across 
the layer follows 1Q(z, t) and Ho designates the strength of the externally impressed 
magnetic field, taken as constant. Now the physical determination of the temperature, 
velocity and magnetic fields along with the vorticity and current density at any point 
within the convecting fluid layer are given at time t in terms of the quantities obtained 
from the solutions of these equations by the expressions: 

T(x, y, z, t) = 1Q(z, t) + F(z, t)f(x, y), (14) 

{(
D W(z, t) af(x, y) + Z(z, t) af(x, y)) 

~~~~O= ~ , 
ax a2 ay 

( D W(z, t) af(x, y) _ Z(z, t) af(x, y)) (15) 
a2 ay a2 ax ' 

{ W(z, t)f(X,Y)}}, 

H( ) _ "_{(DH(Z, t) af(x, y) x(z, t) af(x, y)) 
x, y, z, t -""'0 2 + 2 ' 

a _ ax a ay 

( DH(Z' t) af(x, y) ~ x(z, t) af(x, y)) (16) 
a2 ay a2 ax ' 

{1 +H(z, t)f(X,Y)}}, 
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{ (
DZ(Z, t) af(x, y) 

w(x, y, z, t) = a2 ax 
(D2 - a2) W(z, t) af(x, y)), 

a2 ay 

(
DZ(Z, t) af(x, y) (D2 - a2) W(z, t) af(x, y)) 
-----::-----+ 2 ' 

a2 ay a ax 
(17) 

(Z(Z, t)f(x, y)) }, 

{ (
DX(Z, t) 

~(x, y, Z, t) = Ho a2 
af(x, y) 

ax 

(D2 - a2)H(z, t) af(x, y)) 

a2 ay' 

(
DX(Z, t) af(x, y) (D2 - a2)H(z, t) af(x, y)) 
-~- ---+ 2 ' 

a2 ay a ax 
(18) 

(X(Z, t)f(X,y))}. 

In addition to a, which can only take values within a finite range, there are four 
further free parameters in the set of equations (6)-(13) which control the degree of 
instability and ultimate time evolution of the convective regime. They depend upon 
H 0' the depth of the fluid layer d, the temperature difference !:i T maintained across it 
and the physical properties of the electrically conducting fluid medium. Specifically, 
they are defined by 

R = gad3!:i T /KV the Rayleigh number, 

the Chandrasekhar number, 

(J"" = V/K the Prandtl number, 

the magnetic Prandtl number, 

where a is the coefficient of volume expansion, K the coefficient of thermal diffusivity, 
v the viscous diffusivity and 7J the magnetic diffusivity. 

The geometry of the convective planform is determined by the choice of f(x, y), 
which satisfies the Helmholtz equation 

2 2 a f(x, y) a f(x, y) --- + = -a2f(x,y), 
ax2 ay2 

(19) 

and the cell aspect ratio is defined by a = kd, k being the horizontal wave number. 
For self-interacting cells of hexagonal type f(x, y) is given as 

f(x,y) = V~P cos(!v3ax) cos(!ay) + cos(ay)) 

and the planform constant C, defined by the ratio 

C = JJ f3(X, y) dx dY /' fJ f2(x, y) dx dy, 
cell J. cell 

has the numerical value vi. 

(20) 

(21) 



Hexagonal Magnetoconvection 891 

For steady convection the Nusselt number 

N = FW-Dl'o, (22) 

which gives a non-dimensional measure of the heat flow, is constant at all points 
across the layer. However, in this case we are determining the time evolution of 
N(z, t) and its numerical value is obtained at any particular time step by averaging 
over the grid in the z direction. It is felt that this manner of evaluation is consistent 
with following the time variation of the dependent variables. 

Within the modal expansion framework and for a single mode, the mean kinetic 
helicity, which is defined as the volume integral over a cell of u. (\1 X u) is now given 
by 

1 

Hy = Jo [WZ+(l/a2){D WDZ-Z(D2_t?) W}1 dz. (23) 

Analogously, a mean magnetic helicity is defined as the volume integral over a cell 
of H • (\1 X H), giving 

1 

Hm = Ho Jo [HX+(l/a2){DHDx-x(D2- t?)H}] dz, (24) 

where H o, as defined previously, is the strength of the initially uniform vertical 
magnetic field. From equation (24) H m establishes a measure of the total twisting 
of the magnetic field in the same sense that H y is a measure of the total twisting 
of the velocity field. It is important to note that H y and H m are nonzero only if 
nonzero vertical components of vorticity and current density respectively follow from 
the solution of the system of equations (6)-(13). 

Specifically, the method of solution is based on an implicit second-order backward 
finite difference scheme with coordinate stretching being used for the spatial integrations 
together with forward differencing in time. The resulting band matrix is then solved 
iteratively for the nonlinear· terms with an efficient algorithm specifically developed 
for systems of second-order equations (Van der Borght 1980). The initial conditions 
employed to start the time integrations mimic small perturbations on the conductive 
state. 

3. Boundary Conditions 

The system (6)-(13) has been solved utilizing the stress-free boundary conditions, 
which requires 

W(O, t) = W(I, t) = D2 W(O, t) = D2 W(I, t) = DZ(O, t) = DZ(I, t) = 0. (25) 

Further, the boundaries are taken to be isothermal, and hence 

F(O, t) = F(1, t) = 0, 1'0(0, t) = 0, 1'0(1, t) = -1. (26) 

The appropriate form of the electrical boundary conditions follows from the 
requirement that the boundaries should be current-free, so the current density satisfies 
(Chandrasekhar 1961) 

X(O, t) = X(I, t) = 0. (27) 
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Recently, in their studies of magneto convection, a number of authors (e.g. Rudraiah 
1981; Sharma and Sharma 1982) have employed an approximation to these boundary 
conditions on the magnetic field disturbance, using instead the conditions 

DH = 0 at z = 0 and z;::::: 1. (29) 

By making a direct comparison of the two sets of results obtained, the 
differences arising from employing these two forms of boundary conditions on 
the magnetoconvective system can be demonstrated. It is readily observed that the 
apparent slight difference in magnetic boundary conditions results in not only a 
quantitative but also a qualitative difference in both the evolution and the structure 
of the solutions. 

For the particular case of R = lOS. Q = 102, CT = 1, T = 1 and a2 = 10 
the most obvious difference is that the D H = 0 solutions evolve into a periodically 
oscillating system, whereas the DH+aH = 0 solutions evolve to a steady state, 
which is illustrated in the time evolutions of the vertical velocity shown in Figs 1 a and 
1 b for the two different boundary conditions. However, of more physical importance 
is the difference in structure of the velocity and magnetic fields which evolve in the 
two cases. For DH = 0, the vertical components of vorticity, as well as the vertical 
current density, decay very rapidly from their initial values. At t = 0 they were 
given values of _10-6 and at the point where the integrations were concluded they 
had values of _10- 25 and were still decaying. This means that the flow structure is 
of type I, as described by Lopez and Murphy (1983), and the magnetic field inside 
the cell is predominantly vertical. Whereas, for the D H ± aH = 0 case, both the 
vertical components of vorticity and current density, after a time -0·25, have grown 
to dynamically significant values and the solutions have taken the type II form. In 
particul~r, these solutions have very desirable astrophysical features, especially the 
form of the magnetic field which now, due to the presence of the vertical components 
of vorticity and current density, possesses a mean helical nature. 

Hence, the nature of the boundary conditions on H is crucial, and the approximation 
from D H ± aH = 0 to D H = 0, which is usually made in order to facilitate the use 
of series expansion methods, should be avoided wherever possible. 

4. Results 

The exhibited time dependence of the solutions of equations (6)-(13), subject to the 
stated boundary conditions, may be due to a number of different effects. However, the 
presence of overstability is not necessarily one of them. Overstability is the term used 
to describe the state of the system at critical points of stability where the growth rate of 
the disturbance is complex. In nonlinear studies of magnetoconvection, overstability 
theory is no longer relevant, since the system is at a point in parameter space which 
is supercritical. Of course, the disturbances may still have real or complex growth 
rates, and initially will grow kinematically according to those growth rates. However, 
once they grow to a certain level, the nonlinear terms are no longer negligible, and 
the growth of the disturbances is halted. Up to this stage, the evolution has been 
controlled by the initial growth rate, but once the nonlinear terms become comparable 
in magnitude with the linear terms in the equations, the form of the evolution takes on 
a different character. It is this new character which is relevant to studies of nonlinear 
magnetoconvection. 
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The nonlinear behaviour of the evolutions depends critically on all the five 
parameters describing the system. Previously the non-magnetic system was described 
in a three-parameter space (Lopez and Murphy 1985) and a global classification of the 
system was found to be a formidable task. Here, the situation is further complicated 
with the addition of the Chandrasekhar number Q and the magnetic Prandtl number 
T. A direct comparison with the results from the simplified truncated two-dimensional 
model of Knobloch et al. (1981) is not really feasible. The nonlinear terms in the 
equations which are responsible for the time dependence, and whose effect we are 
primarily concerned with, are neglected in their model, where they retain only a 
single Fourier sine or cosine mode in the x and z directions. Moreover, having been 
solved by using a perturbation method, their results would only be valid near the 
critical state. Clearly, from the large values of the Nusselt number N, being typically 
of order 10, the results presented here are from a system well beyond the critical 
state. 

A small selection from the available fivefold parameter space has been made 
illustrating some of the typical nonlinear oscillations which are present at Rayleigh 
numbers larger than the critical Rayleigh number. In the sequences shown in Figs 
2, J and 4, the Rayleigh number has been set at 105, the Chandrasekhar number at 
103 and the Prandtl and magnetic Prandtl numbers at 1·0, while the aspect ratio 
a has been systematically varied from 1·5 through to 4·5 in steps of 0·5. Fig. 2 
gives the evolutionary trajectories which illustrate the phasing between the maxima of 
the vertical components of velocity and magnetic field disturbance (top), the maxima 
of the vertical components of vorticity and current density (middle), and of the 
mean kinetic helicity and the mean magnetic helicity (bottom). Fig. 3 illustrates 
the corresponding time series for the maximum values of the vertical components of 
velocity, magnetic field disturbance, Nusselt number, vertical components of vorticity 
and current density, and the mean helicity. Finally, Fig. 4 gives the corresponding 
time series for the mean magnetic helicity. 

At the smallest aspect ratio considered with a = 1.5, which represents the widest 
cell size, the system is in a periodic oscillatory state which is evident from the limit 
cycles in Fig. 2 a. The corresponding time series plots given in Fig. 3 a demonstrate 
a phase transition from type I oscillatory to type II oscillatory behaviour, this being 
marked by the growth of the vertical components of vorticity and current density. 
The growth rates of the velocity and magnetic field disturbances are real while those 
of the vorticity and current density have an associated complex component which 
results in an oscillatory growth. The change in the amplitude of the velocity and 
magnetic field disturbance, as well as in the Nusselt number is obvious from Fig. 3a. 
As well; there is an increase in the period of the oscillations associated with the 
transition from type I to type II. A low frequency modulation is also observed, and 
is most pronounced in the Nusselt number. This modulation is apparent in the 'limit 
cycle' between W max' the maximum over z of W(z, t), and H max' the maximum 
over z of H(z, t), in Fig. 3a where it creates regular arcs making up the complete 
cycle. 

The oscillatory nature of the mean kinetic helicity and the mean magnetic helicity 
is different from that exhibited by the other quantities. Whereas the others resemble 
a sinusoidal oscillation, both helicity oscillations are very 'spiked' at the extreme of 
their amplitudes, and broaden out near zero amplitude. This can be accounted for 
in that the helicities are nonlinear combinations of velocity and vorticity in the case 
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of kinetic helicity, and of magnetic field and current density in the case of magnetic 
helicity. In both cases, one component has a period twice as large as that of the other; 
i.e., W max has twice the period of Zmax, and Xmax has twice the period of H max' 

The corresponding helicities acquire the larger of the two periods, and their spiked 
nature near the maxima of the amplitudes is due to the nonlinear combination of the 
two different oscillators. The limit cycle between the two helicities demonstrates the 
complicated phasing between them, as well as their periodic nature. Further, a close 
examination of their time series displayed in Figs 3 a and 4 clearly shows them to 
have the same period but with a slight phase shift. 

Reducing the horizontal scale of the cell, by increasing a to 2·0, now reduces the 
time the system remains in the periodic type I state, before a transition to an aperiodic 
type II state occurs. The time series of the variables given by Fig. 3 b, especially that 
of Zmax' shows the chaotic nature of the system. However, Fig. 2b shows that there 
is still some coherency in the phasing, and portrays a perturbation of the limit cycles 
in Fig. 2 a for the smaller value of a. 

As a is further increased to 2·5 and 3·0, the transition to type II results in 
intermittent behaviour. The initial type I phase is still periodic as it was observed in 
the wider cells considered earlier. In the intermittent phase, the 'burst' segments are 
closely related to the type II oscillations found in the a = 1· 5 and 2· ° cases. This 
is observed by comparing Figs 2b and 2c where the large amplitude 'cycles' in Fig. 
2c correspond to the 'burst' and have a similar 'structure' to those in Fig. 2b. The 
quieter sections have oscillations with much longer period than that of the 'burst' and 
have zero helicities associated with them. 

Weiss et af. (1984) in their idealized dynamo model, which is essentially a complex 
generalization of the third-order 'minimal' systems of Lorenz (1963), have found 
aperiodic solutions where the magnetic field has bursts of cyclic activity separated 
by quiescent episodes during which the field is drastically reduced in amplitude and 
varies on a much slower timescale. Also, a limit cycle found by these authors (Fig. 3 
of Weiss et al. 1984) between the magnetic field and the shear velocity is qualitatively 
very similar to that found in Fig. 2a for a = 1· 5 between lfmax and W max' 

As the cells become narrower, given by the values a = 3·5 and 4·0, the 
intermittency of the second phase of the evolution has almost disappeared. The initial 
phase follows the same pattern as observed for the wider cells, periodic type I. Then, 
at about t = 0·75, the vertical components of vorticity and current density, and 
consequently the mean kinetic and magnetic helicities give a high energy burst which 
lasts a relatively short period of time, and marks a transition from type I periodic to 
type I steady. These bursts of activity seen in the helicities are similar to those noted 
by Fautrelle and Childress (1982) in their Fig. 10 where the magnetic and kinetic 
helicities of their convective dynamo model have large bursts. 

At even narrower cells, when a = 4· 5, the system appears to stay in the periodic 
type I state. At t = 2·25, the vertical components of vorticity and current density 
grow considerably. However, judging from both the time series (Fig. 3g) and the 
'limit cycle' in Fig. 2g, their growth does not have any noticeable effect on the nature 
of the evolution of W(z, t) or H(z, t), which continue in what is very nearly a 
periodic state with a low frequency modulation. 

It is now evident that the influence of the vertical component of vorticity is reduced 
as the convective cells become narrower, and for large enough aspect ratio the system 
is no longer able to generate a vertical component of vorticity. 
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5. Conclusions 

Overall, we have been able to produce periodic solutions with magnetic field 
amplifications, and further, obtain aperiodic solutions which Kennett (1976) was 
unable to detect but only suggest their possible existence. This was achieved without 
the introduction of rotation. 

The nonlinearities introduced to the system by nonzero mean helicities appear 
necessary in order to generate aperiodic behaviour (Weiss et 01. 1984), and their 
presence in kinematic dynamos is also required for dynamo action to be possible 
(Moffatt 1977). Here, a magnetoconvective model has been presented which allows 
for the generation of mean helicities and hence produces the aperiodic behaviour 
which is found in dynamo models and resembles the aperiodic nature of the solar 
magnetic cycle. Weiss et 01. (1984), in their reduced dynamo system, were able to 
isolate a bifurcation structure which mimicked the magnetic cycles in the Sun and 
further, they hoped that the same features would be found from the relevant partial 
differential equations. Our modal system has a similar temporal character, and it 
is anticipated that a closer understanding of the Sun's magnetic cycles may emerge 
from further investigation. 

Knobloch and Weiss (1984) on re-examining some aspects of linear and nonlinear 
magnetoconvection models concluded thatumbral dots could originate through 
convective motions, their oscillations being qualitatively matched by the nonlinear 
oscillations from magnetoconvective models considered by Weiss (19810, 1981b, 
1981 c). However, the nonlinear oscillations referred to result from a two-dimensional 
cellular structure. The oscillations found in our model may now provide a worthwhile 
extension to the understanding of the processes in umbra! dots, although the effects 
of compressibility, boundary conditions and modal truncations are expected to have 
important consequences on any conclusions. 
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