
The Possibility of a Photospheric Dynamo* 

P. R. Wilson 

Department of Applied Mathematics, 
University of Sydney, Sydney, N.S.W. 2006. 

Abstract 
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Several recent observations are discussed which suggest that the current model for the emergence 
and decay of photospheric flux does not provide a complete account of all the processes involved. 
An elementary two-dimensional dynamo is discussed and it is shown how this may be adapted to 
photospheric conditions in order to provide a plausible kinematic account of these observations. 

1. Introduction 

For some time now we (see e.g. Wilson and Simon 1983) have been greatly puzzled 
by a feature of our observations on the evolution of small-scale magnetic field knots; 
i.e. that flux of a given sign appears to grow, both in intensity and in area (i.e. in 
total flux), without the appearance of an equivalent quantity of negative flux in the 
vicinity as part of the expected pattern of emerging flux loops. The possibility that 
this result may be due, at least in part, to instrumental polarization, to atmospheric 
seeing, to variations in equivalent width, or to other effects has been considered in 
some detail (Simon and Wilson 1985), but none of these possible explanations were 
considered satisfactory. 

All the details of these observations will not be repeated here. They have been 
discussed with many people, some of whom simply reject them while others, e.g. 
K. L. Harvey, H. P. Jones and J. K. Lawrence, admit to having seen similar 
phenomena in their own data, but which they consigned to the 'too hard basket'. As 
a result of a long discussion with A. M. Title and his group in 1983, some of their 
magnetograph data from Sacramento Peak were re-examined, and Topka and Tarbel 
(1983) found both flux increases and decreases in small unipolar magnetic regions 
with no obvious changes in any nearby opposite-polarity features. 

On a larger scale, Wallenhorst and Howard (1981) have found that the flux 
associated with the decay of a spot group actually decreases in situ, and that this is 
due to a real change in the field rather than to dispersion by random walk or other 
processes. More recently, van Ballegooijen et al. (1985) discussed the formation and 
decay of active regions and, although they regard the formation process as relatively 
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well understood, they concluded that some process, other than random walk and flux 
cancellation, is necessary to explain decay in which flux seems to disappear without 
any apparent motion towards neutral lines. The same mode of flux decay has also 
been observed in small-scale fields in our own data and also that of Topka and Tarbel 
(1983). However, here it appears to be simply the reverse of the growth process; a 
small knot of flux of one polarity appears to grow and then decay in situ without 
any lateral motion or apparent involvement with flux of opposite polarity. Thus, the 
question is raised of whether not only the decay but also the formation processes are 
completely and satisfactorily described by the current flux rope model. 

Again this model requires that the large-scale (i.e. unipolar) field arises from the 
decay and random walk of active region fields. However, McIntosh (1981) reported 
that the first major large-scale field patterns of cycle 20 appeared in the southern 
hemisphere before the formation of any major active region. Indeed, the first major 
spot group did not appear until four rotations after the establishment of the large-scale 
field and, while the group appeared at the appropriate neutral line of the large-scale 
field (in order to conform to Hale's law), it did not significantly alter the development 
of the large-scale field which proved to be one of the major features of that cycle. 
(Thus, according to existing concepts, McIntosh's result tells us that the cart appeared 
before the horse.) 

All of these observations therefore suggest that even if our current picture of the 
emergence of flux in the form of inert loops and their subsequent decay by random 
walk and cancellation is not entirely wrong, then there must at least be a serious 
omission. Altschuler (1973) has suggested that non-potential magnetic fields (i.e. 
electric currents) might be generated in the photospheric layers and that activity 
phenomena are the manifestations of local changes in these photospheric currents. 
More recently, Akasofu (1984) has suggested that, in place of the rising flux rope 
hypothesis, a photospheric dynamo associated with shear and vortex motions in the 
photosphere can supply the power needed for the formation of sunspot loops from the 
observed background (weak) field. Although these ideas have not yet been worked 
out in any detail and, in particular, although the rising flux rope hypothesis for 
the formation of the active regions cannot be rejected out of hand, the value of 
Akasofu's suggestion is in pointing out that the idea of the rising flux rope is simply a 
hypothesis and not an established fact. Further, in view of these recent observations, 
it is important to re-examine the basis of all our ideas concerning the evolution of 
magnetic fields, i.e. the hydromagnetic equation and, in particular, to see whether the 
growth and decay of photospheric fields in situ may be influenced by some form of 
local dynamo amplification process. 

2. The Hydromagnetic Equation 

Based on the complete form of the hydromagnetic equation as given by Pert (1977), 
for example, it is straightforward to show (Wilson 1984) that the rate of change of 
flux <P associated with a given area of the photosphere S, such as that associated 
with a well-guided magneto graph, is given by 

- = curl VeXB-T}curlB+-VPe+-fLV(kTe) dS. d<P f ( C C ) 
dt s ene e 

(1) 

Here Ve is the velocity of the electron gas, B the magnetic induction vector, 'YJ the 
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magnetic diffusivity, and ne, Pe and Te the electron density, pressure and temperature, 
while /3 is the thermoelectric tensor (Braginskii 1965). The third and fourth terms in 
this integral, i.e. the pressure gradient term and the thermoelectric term, have been 
discussed elsewhere (Wilson 1984). For density and temperature gradients which 
appear to be reasonable under solar conditions, these terms contribute a growth rate 
of only a few G per year to a typical flux knot and thus cannot account for the 
observed flux changes. This is consistent with earlier estimates by Kopecky and 
Kuklin (1971). Thus, the change in the flux crossing S will be determined essentially 
by the first two terms. In the first we have Ve = u+ U e' where u is the plasma 
velocity and 

J being the current density [= (1/ 41T )curl B]. This term thus describes the induction 
of new flux due to the motion of electrons relative to the existing field, while the 
second describes changes due to ohmic decay. Although there are many different 
definitions of dynamo action (see e.g. Moffatt 1978; Hide 1981), it is essentially 
determined by the competitive interaction between these two terms. 

3. An Infinite Uniform Field 

In order to understand the model presented here, we consider first an infinite 
uniform field Bo k which is perturbed by a velocity field defined by 

u = ul(z/~)(cos wt)i + ~(xh"o)(sin wt)k. (2) 

. Here i and k are orthogonal unit vectors, ul and u2 are the velocity amplitudes and 
Xo and Zo are suitable cartesian scaling factors. 

We seek a solution to the hydromagnetic equation 

aB/at = curl{(u X B) -1jcurl BJ 

of the form 
B = ~(t) i + {~+ ~(t)J k, 

with bl (0) = 0 and b2(0) = O. 
Substituting equations (2) and (4) into (3) gives the exact equations 

d~/dt = {~+ ~(t)J(Ul/~)COS wt, 

d~/dt = ~(t)(~/~)sin wt, 

(3) 

(4) 

(5) 

(6) 

and these lead to second order differential equations of the Mathieu-type for bl and 
b2 • Although they cannot be solved analytically, they yield well-behaved solutions 
for a wide range of parameters Ul' U2' Zo and xo, an example of which is shown in 
Fig. 1. If ~(t)/ ~ < 1, then we have the approximate analytic solutions 

~(t) = (~ ul/w~)sin wt, 

~(t) = (~ul ~/2w2z~)(wt -i sin 2wt), 

(7) 

(8) 

and it is clear that the exact numerical solutions have a similar behaviour, except 
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that the amplitude of bl (t) increases slowly with t (dashed curves in Fig. 1), while 
~(t) fluctuates about an approximately exponential growth (solid curves). It should 
be emphasized, however, that these solutions are accurate only within the kinematic 
approximation, i.e. until the growth of the perturbed field requires a consideration of 
the interaction of B on u through the momentum equation, which we do not consider 
here. 
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Fig.1. Solutions to equations (5) and (6) for ul = 0·01, ZI7. = 0·01, 
w = 0·1 and Eo = 1, where one unit on the time scale corresponds to 
(a) 0·21 sand (b) 1· 68 s. The solid curves are for bl and the dashed 
curves for b2• 

4. A Cylindrical Model 

Of course, the result in Section 3 is not very controversial, but neither is the 
cartesian model with linearly increasing amplitudes particularly appropriate for solar 
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velocity fields. However, let us consider now a uniform (weak) magnetic field ~ k 
within the region r < r2 and zero outside and assume that this is perturbed by the 
velocity field defined in polar coordinates by 

U = u1 sin(z/~) n(r,cp) cos wt + ~f(r)(sin cp sin wt)k, (9) 

where 

n( r, cp) = g( r)(sin cp) r + { r g( r) J'(cos cp)4>. 

The functions f(r) and g(r) need not be specified exactly but should be zero at the 
origin, increase monotonically to unity at some value r = ro and thereafter decrease 
to zero at r = r1 where, for mathematical convenience, we take r1 < r2 • We note 
that in the region defined by z/~ .( 1, f(r) ::::: r/ro ::::: 1, g(r) ::::: 1 and cp = ~7T, 
the velocity corresponds to that defined by equation (2). However, this velocity field 
is confined within the region r ..;; r1 and may be taken to be uniform outside the 
region - ~/7T < z < ~/7T. Thus it describes an oscillatory transverse shear in the 
direction n(r, cp), which is approximately the cp = ~7T direction, together with a 
non-axisymmetric vertical oscillation which is 90° out of phase, as shown in Fig. 2. 

Velocity field 

Transverse component Vertical component 

Radial variation 

ro ... --....... _-" rl 

Fig. 2. Relative vectors for the transverse and vertical components of 
the velocity as a function of </>. Possible forms for f(r) and r f'(r) are 
also illustrated. 

Although not typical of photospheric fields, these components may well be present 
from time to time in the Fourier components of a convective eddy when in the 
presence of a large-scale shear. 
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We now seek an appropriate solution of equation (3) of the form 

where 

B = ! bl(t) cos(z/-'{) + ~(t)f(r) sin </> sin(z/-'{)J n(r, </» 

+! Eo + ~(t) h(r, </» .cos(z/-'{)J k, 

P. R. Wilson 

(10) 

(11) 

If bl(t) and ~(t) are as given by equations (7) and (8), the condition bl(t) ~ Eo 
for all t implies that uI/w-'{) ~ 1. According to equation (8), ~(t) increases at first as 
(wt)3 and subsequently as wt. However, provided wt t 1, the condition ~/w-'{) ~ 1 
implies that M t) ~ bl (t). 

Thus, if equation (10) is substituted into equation (3) under these conditions, the 
left side is of order ~(t) wand this is equal to the right side provided that terms of 
order ~(t) ~/ -'{) and the diffusion term are negligible compared with ~(t) w. The 
first term is automatically satisfied by the assumed conditions while the diffusion term, 
which for g(r) = 1 becomes 

is negligible compared with ~(t) w provided that 

Thus, to the accuracy of the approximation, the induced field consists of a 
transverse oscillatory component proportional to bl (t) and a monotonically increasing 
component proportional to ~(t), the form of which may be inferred by studying the 
r, </> independence of h(r, </» (equation 11) and noting that, of course, div B = 0 for 
both oscillatory and increasing components. 

Within the region r';;; ro, j'(r) and! r g(r)J' are positive and the induced field is 
thus positive and in the k direction when z/-'{) ~ 1. However, for ro < r < rl , j'(r) is 
negative while! r g( r) J ' may be either positive or negative so that the induced field will 
be negative for most, but not all, values of </>. Reference to the transverse component 
at z/ -'{) ;:::; 1 and the zero divergence condition shows that the increasing component 
of the induced field takes the form of a system of field loops, most having the positive 
footpoints within r .;;; ro and negative in appropriate ranges of </> in ro < r < rl' the 
loops being entirely contained within the volume r < rl ; - 47T -'{) < z < 47T -'{). This 
is illustrated in Fig. 3. 

Of course, the resultant field at, for example, t = 7T / w will be given by the vector 
sum of Eo k and the induced field and, since the solution is valid only for ~ ~ Eo, will 
correspond only to a deformation of the initial uniform field, the field being increased 
within ro and non-uniformly decreased in ro < r < rl . Only if the perturbed field 
continues to increase and the effects of finite resistivity permit reconnection across an 
X-type neutral point in the annular region between ro and rl can dynamo action be 
seen to have occurred. 

5. Comparison with Observation 

We now consider whether the flux changes obtained above permit an explanation of 
the observations by Wilson and Simon (1983). Consider first the small knot of 



Photospheric Dynamo 

Case 1 

Pattern of 
induced 
magnetic 
field 

Fig. 3. Polarity pattern of the increasing component of the 
induced field illustrated as a function of <I> in plan (top), in vector 
form at z = 0 (case 1) and at z :::; ~ 2() 'IT (case 2). 
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magnetic flux enclosed within the box in Figs 2 and 3 of their paper and the subsequent 
development of this knot as shown in their Figs 4, 5 and 7. Initially (i.e. at 15 : 22 : (0) 
one intense and several weaker knots are observed in the field. The strongest parts 
of these knots have an intensity of - 500 G against a background 'noise' of order 
± 100 G (1 G == 10-4 T). Although some areas of negative flux are observed in the 
region outside the box, they rarely exceed this noise level. During the next 90 min 
the original bright (i.e. intense) knot and several of the weaker knots have greatly 
increased in both intensity and area, a particularly good example being the knot in 
the upper right centre which can just be seen at 15: 22 : 00 and by 16: 56: 30 is the 
dominant feature of the pattern. During this time the rate of growth of field intensity 
within this region is of order 100 G hc 1. Neglecting the other bright features, we 
postulate a velocity field, such as that given by equation (9), centred on this knot and 
extending over a region of transverse dimension ro corresponding to the transverse 
dimensions of the knot, i.e. - 1000 km, and of vertical extent 20, where 20 is assumed 
to be comparable with roo Thus the increasing positive flux predicted by the model 
for r < ro would account for the brightening (i.e. intensification) of this feature. 
Substituting equation (10) into (1) yields for the rate of growth of flux within S, taken 
to be a circle of radius ro, 

(12) 

Taking ~ - 102 G, Ul = 1'2 = 1·0 km s-l, ro = 1000 km, 20 = 1000 km and 
w = 10-2 s-1 gives a growth rate of8x 1013 Mxs- 1 (1 Mx == 10-8 Wb)or, averaging 
over the region r < ro, 20 G hc 1 which is comparable with the observed rate. 
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Although the dynamical problem of the interaction between the velocity and 
magnetic fields cannot be discussed here, it is worth noting that the kinematic 
energy density of the postulated velocity fields at unit optical depth is ~ 103 erg cm - 3 

(1 erg = 10- 7 J), which is comparable with the magnetic energy density of the initial 
field of ~4x 102 ergcm- 3 . 

It is important to note, however, that while the model may, in part, explain some 
of the recent observations, it does not yet constitute dynamo action since the net 
result is an increase in flux concentration in one region with corresponding decreases 
in others. Within the limits of the approximation, no new field lines can be identified 
within the region. Only if the induced field continues to increase and reconnections 
across an X-type neutral point take place can new flux be generated within the region. 

However, for simplicity, only a uniform background field has been considered for 
the model and, as is well known, solar magnetic fields tend to occur in discrete knots 
or flux tubes. In a more recent study the effects of oscillatory velocity fields on 
spatially varying initial fields have been investigated and these will be reported in a 
later paper. 
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