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Abstract 

Aust. J. Phys., 1985, 38, 929-59 

An active region was studied in detail during its period of decay from 3 to 8 August 1984 using 
Ha filtergrams and videomagnetograms acquired at the Big Bear Solar Observatory. The decay 
was initiated by a process of fragmentation in which very small knots of magnetic flux separated 
from larger concentrations of flux. The fragmentation was observed at discrete locations around 
the periphery of both the dominant areas of negative and positive field, but possibly occurred 
more frequently in the main polarity inversion zone. The fragmentation and migration of knots 
of magnetic flux were common predecessors to the disappearance of flux. 

The disappearance of magnetic flux was always observed when the small fragments of flux 
encountered other small fragments or concentrations of flux of opposite polarity. This type of 
disappearance of magnetic flux, called 'cancellation', is shared by both polarities of magnetic 
field. It was deduced that the disappearance of flux occurred either at or within 5 arcsec of 
the apparent dividing line between the opposite polarities. Cancellation was the only observed 
means of major loss of flux in the photospheric magnetic fields of the active region. Approaching 
fragments of opposite polarity flux always collided and, after apparent collision, permanent loss of 
magnetic flux was subsequently and invariably observed. Thus, cancellation is a highly predictable 
phenomenon. 

All of the 22 flares observed during the decay of this region were initiated around the sites 
where magnetic flux was cancelling or was deduced to be cancelling during the flares. The 
intervals of time during which magnetic flux was decreasing at the flare sites was very much 
longer than the duration of the flares. Abrupt changes in magnetic flux on the time scales of the 
Ha flares were not observed. Several flares started at a site of disappearing flux but spread to 
other locations of plage where no loss of flux was observed during the flares. We hypothesize 
that cancellation was a necessary condition, but not the only necessary condition, for flares to 
occur in this active region. 

1. Introduction 

When large active regions decay, it is well known that some of their magnetic flux 
gradually spreads over increasingly large areas of the Sun. In contrast to this picture, 
Zirin (1984) has recently shown an example of a decaying active region in which the 
areas of opposite polarity flux, as a whole, come back together and disappear. In 
addition, Wallenhorst and Howard (1982), Wallenhorst and Topka (1982), Wilson 
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and Simon (1983), and Topka and Tarbell (1984) have shown that some flux of only 
one polarity seems to mysteriously disappear in situ. 

During August 1984 at the Big Bear Solar Observatory, we recorded 
videomagnetograms and Ha filtergrams of the growth and decay of an active region of 
modest size (number 19425, Solar Geophysical Data). Remarkably, this active region 
displayed all three of the modes of decay cited above with the exception that the 
disappearance in situ always consisted of flux of both polarities. The most dramatic 
part of the decay was the opposite polarity flux reconverging and disappearing around 
the primary polarity inversion line in the active region. However, we also found 
during our analyses of the data that some of the magnetic flux of the active region 
dispersed around the periphery of the region. 

At the Colloquium we illustrated the evolution of this active region from 31 July 
to 8 August and its dramatic disappearance of magnetic flux in a time-lapse film 
of videomagnetograms taken on 2, 3, 4 and 5 August. Then, we further illustrated 
the details of the magnetic flux disappearance using selected magnetograms and Ha 
filtergrams from 3 to 8 August as illustrated in the present paper. The significant 
changes in the magnetic field of the active region take place on a relatively small 
scale. Following the details of the small-scale changes in the active region in the 
figures, however, is much more laborious than viewing the same changes in the 
time-lapse film. We also recognize that various readers will have differing degrees of 
interest in the fine observational detail. Therefore, we have organized the paper so 
that the following sections can be read independently as follows: Section 2 discusses 
the general evolution of the active region, while Section 3 presents a chronological 
description of the details of the disappearance of magnetic flux. Section 4 summarizes 
and discusses the primary results, including changes preceding the disappearance of 
flux, the disappearance of magnetic flux, and the association of Ha features and 
events with disappearing magnetic flux. The conclusions are presented in Section 5. 

2. General Evolution of the Active Region 

The general pattern of evolution of the active region as a whole is illustrated in Figs 
1 and 2. The region was born near the east limb on or before 30 July 1984 at a latitude 
ofS17. Its apparent transit of the Sun's central meridian was early on 5 August. The 
sunspots in the region reached their maximum area on 2 August; the positive polarity 
sunspots began their decay by 3 August; the negative polarity sunspots declined in 
area throughout 4 August and all of the sunspots had disappeared by 5 August. 

Fig. 1 shows the active region during its maximum development and throughout 
its decay in sections taken from the daily full-disc Kitt Peak magneto grams from 2 
to 8 August 1984. The magnetograms are shown in the form of contour maps made 
by us at Caltech using the digital data from Kitt Peak supplied on magnetic tape by 
staff members of the National Solar Observatory in Tucson. The contours given are 
the 20, 40, 80, 160 and 320 G levels (1 G = 10-4 T). In all illustrations here solar 
north is at the bottom and east is to the right. The leading negative polarity field is 
to the west (left) of the trailing positive polarity field in the most common orientation 
for southern hemisphere active regions during the current solar cycle. 

The active region stopped growing by 3 August. On 4 August, the opposite 
polarities ceased expansion and, in fact, are seen in Fig. 1 to have partially reconverged 
towards the centre of the region. There is also a notable elongation of the region 
in the north-south direction. The apparent general decline of the magnetic flux 
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Fig. 2. Videomagnetograms from the Big Bear Solar Observatory show the evolution of an 
active region from its early stage of growth on 31 July 1984 until its very late stages of decay 
on 8 August. The order of the sequence is shown from top to bottom in columns. Negative 
polarity is black and positive is white. The contours within each polarity begin at approximately 
50 G, with each successive contour representing a doubling of the field strength. The contouring 
system breaks down in the strongest fields containing sunspots. 

of the region continues until 8 August. Each day a large fraction of flux is lost until, 
on 8 August, only two small isolated fragments of positive polarity remain among 
the scattered network of negative polarity; Cloudy weather terminated our obtaining 
any further information on the fate of the last two fragments of positive polarity flux 
both at Big Bear or from Kitt Peak. From each daily Kitt Peak magnetogram, we 
measured the total flux in the concentrated fields in the central part of the region 
where the fields appeared to change markedly in total flux from day to day. The total 
magnetic flux consistently declined after 3 August. During the phase of decay from 
4-8 August, the average rate of magnetic flux lost from the Kitt Peak magnetograms 
is 1·3x 1020 Mx per day or 5x 1018 Mxhr-I. 

In Fig. 2 we show a series of photographic magnetograms from the Big Bear 
Solar Observatory depicting the general evolution of the active region beginning on 
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31 July and continuing to 8 August. In this illustration and the remaining illustrations 
in this paper, the time sequences are given in order first from top to bottom and 
secondly from left to right. The universal time (UT) given on or adjacent to each 
photograph is ending time of the magnetogram. Negative polarity is black and 
positive polarity is white, except within the contours. The polarity of any contoured 
feature is distinguished by whether the feature is black or white around the periphery 
of the lowest contour. In this data set, the first contour represents approximately 
50 G. Each successive inner contour represents a doubling of the field strength with 
each change from black to white or white to black. The method of generating the 
contours is described more completely in the paper by Zirin (1985, present issue 961). 

The active region did not appear to be unusual until it began to partially reverse 
its pattern of growth on 4 August. We note again the elongation of the region in 
the north-south direction after the decay phase has become apparent on 4 August. 
However, the decay phase begins on 3 August with disappearance of the positive 
polarity sunspots; this is indirectly indicated in Fig. 2 by the reduction in the peak 
flux and the spreading of the positive polarity (white). In addition to the north-south 
elongation of both polarities, the decay phase differs from the growth phase in another 
respect; the flux does not become as compact and does not reconverge to a single 
central site as it disappears. 

3. Chronological Description of Details of the Disappearance of Magnetic Flux 

(aJ Detailed Description of the Early Phase of Decay 

In Fig. 3, we illustrate examples of the fragmentation of large concentrations of 
magnetic flux and examples of the migration and disappearance of small knots of 
flux. The six images in Fig. 3 were selected from the original film at intervals of 
about 1 to 2 hr throughout the observing day on 3 August. We first call attention 
to the deviations from the overall simple bipolar character of the active region as a 
whole. The polarity inversion zone in the middle of the region shows some mixing 
of opposite polarity fragments of magnetic field. Around the main concentration of 
negative field, other small fragments of both polarities can be seen. Magnetic flux 
loss takes place at nearly every site where small positive or negative fragments move 
into apparent contact with opposite polarity field. Most of the flux loss appears to 
happen exactly in the same way as on the quiet Sun (Livi et al. 1985; Part I, present 
issue p. 855). 

Positive fragment PI in the first frame of Fig. 3 is a clear example of the 
disappearance of magnetic flux in a fragment for which we have no previous history. 
It was already losing flux when the daily observations began. In the first frame of 
Fig. 3, it is nearly surrounded by negative flux. It is seen to gradually lose flux 
throughout the day and, by 0021, it has almost disappeared completely. 

This sequence in Fig. 3 is especially effective in showing the reality of the flux loss 
because the general sensitivity of the magnetograms is seen to be increasing throughout 
this day. Under this condition, we can be certain that any consistent reduction in 
magnetic flux observed in many frames of the original film is not due to variations in 
the quality of the data throughout the day. The slow sensitivity increase is apparent 
from the increasing area within the contours. It is important to examine isolated 
fragments of flux of either polarity, especially around the periphery of the region in 
Fig. 3 and the subsequent illustrations. In all areas where there is no contact 
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Fig. 3. Early changes in the decay of the magnetic fields take place in very small fragments 
denoted by P and N respectively for positive and negative. Positive fields are white and negative 
are black. PI is a disappearing fragment; P2, N2 and P3, N3 are approaching fragments of 
opposite polarity; P4, P5 and P6 are knots breaking away from the main concentration of positive 
flux; N7, N8, N9, NIO and Nll are knots breaking away from the main concentration of negative 
flux; PIO, PI2 and PI3 (also possibly negative knots NIO-Nll) are moving magnetic features 
emanating from the main concentration of negative polarity containing the sunspot. 
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between positive and negative fields, no major flux loss can be seen although minor 
changes in the shape of the isolated single polarity fragments do occur; the changes 
in shape are due partially to real migration of the flux and partially to changes in 
image quality from frame to frame. The examples of changes in the magnetic flux 
illustrated and discussed in this paper can be observed on many successive frames of 
the original film as well as in the digital magnetograms recorded on magnetic tape. 
The illustrated changes in magnetic flux, consistently observed over the course of 
many successive frames, are greater in magnitude than both the instrumental and 
background variations. 

An example of fragmentation and pre-disappearance motion is illustrated by 
fragments N2 and P2 (2009) respectively. P2 exists as a very faint positive fragment 
(or unresolved collection of fragments) below the main concentration of negative flux, 
while N2 is a negative fragment that is beginning to break away from the main 
concentration of negative flux at 2009. In the remainder of the series, N2 is seen as 
a successively elongated appendage of the main concentration of negative flux. As 
N2 moves towards P2, P2 is also slowly migrating towards N2. By the last frame, 
0021, the two opposite polarity features are in contact. Flux loss is expected to begin 
at this stage. The images in Fig. 4, from the next day's observations, verify the 
disappearance of P2. 

In Fig. 3, above the main concentration of positive polarity is another site where 
one or more knots of flux, designated as P3 at 2144, moves away from the main 
concentration and towards an opposite polarity fragment N3. P3 and N3 are somewhat 
diffuse in appearance and may be a collection of unresolved fragments which coalesce 
as the opposite polarities migrate towards each other. The two fragments come into 
contact by the end of the observing day (0021 in Fig. 3). 

In Fig. 3, P4, P5 (2009) and P6 (0021) are other examples of the fragmentation 
of flux located just below the main concentration of positive field .. In the first frame 
(1601), P4 is still an appendage to the main concentration. It separates from the 
main concentration before the time of the second frame at 1842 and, by 2009, it is 
in contact with the negative flux toward which it was moving. It is disappearing by 
2144, but its demise is not clear because it is followed by additional weak fragments 
of positive flux, notably P5, moving in its wake. Since there is no build-up of positive 
flux at the junction with the negative flux, we infer that flux is being lost when it 
comes into contact with the negative flux. At 0021, to the left of P4 and P5, is 
yet another example, P6, of a fragment of flux beginning to separate from the main 
concentration of positive polarity. 

Fragmentation seems to occur with the highest frequency from the main 
concentrations of flux near the main polarity inversion zone. At 2009, N7 and 
N8 are representative examples of fragments that have separated from the main 
concentration of negative flux and are in contact with less distinct fragments of 
positive flux. They slowly lose flux during the remainder of the observing day as they 
also migrate closer to the positive flux. Note that the inner contour of N7 disappeared 
altogether by 0021. While N7 and N8 are losing flux, just above them, N9 in frame 
2238 is seen to have migrated into contact with the positive flux. 

Where the magnetic field is highly concentrated, especially in the middle of the 
region, the fragmentation and the disappearance is more difficult to see than around 
the periphery of the region. Sometimes, in the middle of the region, the fragmentation 
appears only as slowly changing appendages of both polarities. The fragmentation 
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Fig. 4. P14 (2006) and N15 (1527) are knots of flux that follow in the same paths as P6 
and N8 on the previous day in Fig. 3. Part of N16 (1603) intrudes into the adjacent area of 
positive polarity. P17 (1623) disappears as it moves into negative polarity flux. Nl8 (1623) 
is also cancelled completely by P19 (1834). Both N18 and P19 are part of a collection of the 
final 'moving magnetic features' emanating from the negative concentration of magnetic flux 
containing the final dying sunspot. 
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Fig. 5. El is a new growing ephemeral region first seen at 2121 in this series continuing from. 
Fig. 4. P20 (2325) cancels with N20 and moves into contact with Eln at 0135. N21 (0032) 
breaks away from a concentration of network and collides with Elp. N22, P23, P24 and N24 
are knots that break away from larger concentrations of flux and move towards opposite polarity 
field. 
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often results in the temporary interleaving of the positive and negative fragments or 
appendages in the middle of the region. This is very noticeable in the last frame of 
Fig. 3. In some circumstances, we cannot immediately see evidence of the loss of flux 
because the percentage change of flux can be too small to be detected. However, in 
most circumstances, the disappearance of flux can be inferred because of two observed 
conditions: (1) there is no long-term progressive build-up of flux in the polarity 
inversion zones and (2) the separated fragments typically do not reverse direction. 

There is one striking difference between the fragmentation of the positive flux 
which contains only tiny sunspots and the negative polarity field which contains a 
larger decaying sunspot on 3 August (Fig. 3). The fragmentation from the negative 
concentration containing the sunspot consists of features of both polarities. These 
fragments are the 'moving magnetic features' described by Harvey and Harvey (1973). 
PlO (1842), P12 and P13 (0021) are examples of positive polarity moving magnetic 
features which spontaneously appear and emanate from the perimeter of the dying 
sunspot within the concentration of negative flux. Fragments NW and NIl follow 
PlO.* 

Figs 4 and 5 show respectively further details of the changes in magnetic flux 
during the first and second halves of the observing day on 4 August. The most 
conspicuous overall change in the active region, since the previous observing day, is 
the reduction in distance between the main negative and positive concentrations of 
flux. By comparing frames of equivalent quality on 3 and 4 August, it is also obvious 
that there has been a substantial reduction in flux by 4 August. We can surmise that 
the fragmentation and loss of flux in the centre of the region has been substantially 
greater than the fragmentation and loss of flux around the periphery of the region. 
Additionally, there has been a general, slow migration of the opposite polarity fields 
towards each other. This general migration has followed in the same directions as 
illustrated for the individual moving knots of magnetic flux seen in the centre of the 
region on the previous day, 3 August. 

In Figs 4 and 5, we point out many new examples of opposite polarity fragments 
moving together and disappearing. At the same site as P6 on the previous day (Fig. 
3), another positive fragment P14 (2006) is seen to break away from the primary 
positive concentrations of flux and move into contact with the negative flux below. 
At approximately the site of N7 and N8 on the previous day, N15 (1527 in Fig. 4) is 
seen to be separating from the main negative concentration. Between 1834 and 2055, 
N15 gradually disappears. N16 (1603) which is at or close to the site of N9 on the 
previous day, breaks away from the main negative concentration of flux and follows 
the course of an obvious but weak protrusion of negative flux into the neighbouring 
positive flux. Continuing in Fig. 5, we see that flux is lost in the protrusion of N16 
into the positive flux and that the protrusion disappears by 2218. These examples on 
4 August are continuing the same pattern of fragmentation, motion, and flux loss as 
on the previous day. However, N16 reveals a different component of motion. It is 
slowly migrating towards the upper part of the field of view as well as toward the 
positive polarity. In Fig. 5, N16 is seen to merge with the negative field above it. 
Concurrently, it may be shedding very small fragments of its flux, at the threshold 

* In this paper we label the moving magnetic features in the same way as other fragments with a 
P for positive, or N for negative, followed by a number. Opposite polarity features which come 
into contact are labelled with the same number. Otherwise, the number following the N or P 
only denotes the approximate order in which each fragment is mentioned. 
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of our detection in these images, in the direction of the adjacent positive field. We 
suspect that a lot of action may be taking place in the weaker magnetic flux below 
our sensitivity threshold and spatial resolution in this set of data. 

Fragments P17, N18 (1623) and P19 (1834) on 4 August (Fig. 4) appear to be 
additional examples of moving magnetic features all following approximately the 
same path. The larger positive fragment P19 almost completely cancels the negative 
fragment Nl8 and continues its motion toward the negative field above it. P19 joins 
the remnant of P17; it may also be the composite of several smaller knots of flux. 
Continuing through frames 2121, 2218 and 2325 in Fig. 5, it appears that the rapidly 
moving P 19 is able to force the displacement of the more stable negative flux in its 
direction of motion until about 2325. After this time, P19 is obviously losing flux and 
some of the adjacent negative flux reoccupies its original position as these features 
interact with each other. 

Another interesting change in the vicinity of the positive fragment P 19 is the 
opening of a lane of little or no magnetic flux between it and the main concentration 
of positive flux. The lane is first seen in Fig. 5 at 2325 and it becomes slightly wider 
thereafter. 

In addition to flux migration and disappearance from the existing flux of the active 
region, Fig. 5 reveals the development of a new ephemeral region. The characteristics 
of ephemeral regions are reviewed in Livi et al. (1985). The evolution of El is shown 
in the second to the sixth frames of Fig. 5. The separation of its opposite polarities 
occurs rapidly between 2121 and 2218. By 2218 the negative half, Eln, has merged 
with the nearby negative field, but its location is still identifiable. As the two halves of 
the ephemeral region continue their initial motion, we observe interesting coincidental 
changes in the pre-existing opposite polarity flux at the extremities of the ephemeral 
region at 2325. To the right of Eln, a pronounced appendage of positive polarity flux 
P20 has moved towards an existing negative fragment N20 in the general direction, 
but a little below, the negative field of Eln. At 2325, loss of flux is apparent in N20. 
By 0032, N20 has almost completely disappeared but the flux that we assume was lost 
in P20 is being replaced by positive flux flowing along the appendage established first 
by P20. The magnetic field gradient increases as the appendage of positive polarity 
moves close to Eln. The stage is set for flux disappearance between Eln and renewed 
P20 by the last frame at 0135. 

At the other end of the ephemeral region at 2325, the positive pole Elp has come 
close to the pre-existing negative field to its left. By 0032, the adjacent negative field 
has developed an appendage, N21, extending into contact with E 1 p. Again the stage 
is set for loss of flux. Elp has already lost flux by 0135, which is obvious from its 
reduced size, while Elp and N21 have completely disappeared by the beginning of 
the next observing day, as shown in the series of magnetograms in Fig. 6. 

To the right of Eln in Fig. 5, there are several significant sites where other 
fragments move toward concentrations of opposite polarity flux. Fragment N22 
(0032) has separated from the main concentration of negative polarity and moves 
towards the concentration of positive polarity to its right. The appendage of positive 
flux P20 that moved to meet the negative pole of E 1 is the most rapidly moving 
and last of three appendages that develop from the concentration of positive flux just 
below the centre of the frames in Fig. 3. The adjacent appendage P23 to the right of 
P20 was initiated by Pl4 (Fig. 4) while the third appendage P24 further to the right 
follows the path established by P4 and P5 (2009, Fig. 3). 
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Fig. 6. PN25 (1748) is an example of very rapid cancellation in which both polarities are seen 
to lose flux. P26 (2046) moves up in the field and cancels with a concentration of negative flux. 
N27 (2349) breaks away from the same concentration of negative flux and moves toward P27. 
N28 cancels with P28 while P29 merges with P28. N29 begins to cancel with P29. P30 moves 
toward N30. E2p and E2n (1829) are the poles of an ephemeral region. Both poles cancel with 
adjacent fields of opposite polarity (2209). 
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By the beginning of the next observing day, 5 August, shown in Fig. 6, radical 
change has also taken place in this part of the active region. A large amount of 
both positive and negative flux has disappeared. Only two fragments of positive flux 
remain in the vicinity of the concentration of flux with its three appendages P20, P23 
and P24 (see Fig. 5). The negative flux is clearly reduced and the remaining negative 
fragments have shifted in position. In this part of the region, there is only one site, 
PN25, where opposite polarity fields are in contact. 

In Fig. 6 and in the subsequent text, we designate sites of cancellation as PN 
(positive-negative) followed by a consecutive number which continues to designate 
the order in which the features are described in this paper. If referring to either half 
of a cancelling feature, such as PN25, we use either P25 or N25 to denote whether 
we refer to the positive or negative half. 

At all of the sites where we observe and can measure flux loss during our observing 
day, the loss takes place in exactly the way as illustrated by example PN25 in Fig. 
6. PN25 is seen to lose flux very rapidly. By 2349, P25 has completely disappeared 
and the flux of N25 is obviously much reduced. Between 1748 and 1829, prior to 
the interval of obvious flux loss, P25 was a part of a slightly larger concentration of 
flux which separated into two fragments. The upper fragment is designated as P26 
(2046). This splitting is already distinguishable at 1829. P26 moves up to meet a 
larger concentration of negative flux. Flux loss at PN26 is evident by 2349 and the 
fragment P26 has completely disappeared by 0031. At 2349, to the upper right of 
P26, fragment N27 is seen to be breaking away from the same concentration of flux 
with which P26 is cancelling. N27 begins to migrate towards P27. 

In the case of PN25, flux loss is initiated about the time that the centre or peak 
of flux in the smaller fragment is 5 arcsec or less from the first contour (50 G) of the 
larger concentration. As the magnetic flux is disappearing, a relatively high magnetic 
field gradient is established and maintained between the two polarities until all of the 
flux of the smaller fragment is completely gone. This behaviour is consistent with the 
way that flux disappears in much smaller cancelling fragments. From this behaviour 
we conclude that the site of disappearance is at or within a few arcsec of the dividing 
line between the opposite polarities, and that the disappearance of the flux in this 
narrow zone is accompanied by continued migration of the opposite polarity fields 
together until the smaller fragment has completely disappeared. * 

As a first step in estimating the rate of flux loss in the whole active region due 
to cancellation, we measured the rate of flux disappearance.in P25 and P26 because 
these are relatively isolated and distinct examples of flux disappearance at different 
rates. The measurements were made from digital magneto grams from the Big Bear 
Solar Observatory which were recorded about once an hour throughout the observing 

• For brevity and clarity in continuing our discussion of the observations, we call this type of 
observed loss in magnetic flux 'cancellation' and assign it the specific definition: 'the apparent 
mutual loss of magnetic flux in closely spaced features of opposite polarity'. We choose to 
use this term because the root word 'cancel' means to remove the effectiveness of something 
or alternatively that one factor offsets the effect of another. 'Cancel' does not mean 'destruct' 
and 'cancellation' is not synonomous with 'annihilation'. It is an appropriate observational term 
because it has a more precise meaning than 'disappear', yet it does not imply that we pretend to 
know exactly how the magnetic field is removed from the photosphere. Our intention is to leave 
the theoretical interpretation to be addressed subsequent to the presentation of the observations. 
The questions of whether the cancelling magnetic fields are really being submerged, expelled 
outward, annihilated, or some combination of these interpretations remain open. 
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day. P25 lost flux at the average rate of 5 x lOIS Mx hr- I, while P26 lost flux at the 
much slower and more typical rate of (1-2) Mx hc I. Assuming an equal rate of flux 
loss in the negative polarity concentrations with which P25 and P26 were cancelling, 
a conservatively estimated rate of cancellation for a small element exemplified by P26 
and its unresolved negative conterpart is 2 x lOIS Mx hc I. A high rate of flux loss is 
1019 Mx hr-I, as exemplified by P25, one of the fragments which in the time-lapse 
films appears to cancel rapidly. Assuming that the lower rate of 2xlOIS Mxhr- I 

is typical, only 2·5 sites of cancellation of this magnitude need to exist on average 
throughout the decay phase to account for all of the observed loss of flux during 
the decay phase of the active region, as measured from the Kitt Peak magnetograms 
(5 x 10 IS Mx hr -I ). Since it has been shown in Figs 3-6 that several cancellation 
sites frequently can be observed at the same time, we conclude that the general 
phenomenon of cancellation is of the correct order of magnitude to account for the 
flux that has disappeared from the photosphere during the decay phase of this active 
region. To verify this estimate a detailed accounting of all the measurable cancelling 
features in this active region is planned for a subsequent paper. 

In most of the examples cited thus far, the cancellation of flux was preceded by 
fragments breaking away from larger concentrations of flux. Sometimes, however, 
cancellation is preceded or accompanied by the merging of knots of flux of the same 
polarity. An example of the coalescence of fragments preceding and accompanying 
cancellation is shown in the upper part of the active region in Fig. 6. A cluster of 
fragments of negative polarity merges throughout the day. One of the fragments, 
labelled N28 at 2046, moves into contact with adjacent P28. N28 cancels completely 
with P28 by the end of the day and loss of flux is also apparent in P28. In addition, 
while N28 is cancelling with P28, P29 can be seen to merge with P28 between 2209 
and 2349. Merging of the negative polarity fragments to the left of P29 also can be 
seen to slowly take place during the day. At 2349, we denote the merged cluster 
of negative fragments as simply N29 and the merged positive fragments as P29. 
By the last frame at 0031, N29 and P29 have almost moved sufficiently close for 
cancellation to begin. By the beginning of the next observing day (see Fig. 11 in the 
next subsection), all of P29 has completely disappeared along with most of N29. 

Fig. 6 also reveals the dramatic effect of the fragmentation of the main concentration 
of negative flux. The main concentration has entirely dissipated at the site where 
the decaying sunspot was present on 3 August. In Fig. 6, the site of the previous 
concentration appears to be the centre of one or more newly forming network cells. 
The small concentrations of flux around the periphery of the cell are, on average, 
equivalent in magnitude and peak flux to the scattered negative flux in the rest of the 
field of view. 

In the centre of the region and to the left of the polarity inversion line in Fig. 6, 
we observed the appearance of a new ephemeral region E2, whose poles are labelled 
E2p and E2n at 1829 in Fig. 6. The negative pole is growing in the upper end of 
a larger area of adjacent negative flux. The ensuing separation of the two poles, 
E2p and E2n (2209), is typical behaviour for ephemeral regions, as already shown 
for El in this paper and for other examples in the paper by Livi et al. (1985). E2p 
moves left and upward into adjacent negative flux, while E2n moves right into the 
main concentration of positive flux. Steady, obvious loss of flux occurs in E2p and 
the adjacent negative flux. The negative flux with which E2p is cancelling becomes 
identifiable as fragment N31 at 2349. By 0031, E2p has almost disappeared. In the 
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other pole of the ephemeral region E2n, flux loss is not obvious. However, it can be 
seen in Fig. 6 that E2n forces a slight change in the shape of the interface with the 
positive flux. The polarity boundary appears to be locally shifted to the right as E2n 
moves right. In such cases where cancellation is expected along the main polarity 
inversion line, flux change cannot immediately be seen because it is a small percentage 
change in a large concentration of flux. In these cases, flux loss can only be verified 
after a sufficient length of time during which the percentage change increases enough 
to be recognized and measured. By the next observing day, it is seen that E2p and 
E2n are gone, as well as all of the concentrations of flux around E2p and E2n. 

Before proceeding to the description of the magnetic field changes in the late stage 
of decay of the active region, we present in Figs 7-10 events seen in Ha filtergrams 
that occurred at the sites of cancelling magnetic flux. In Fig. 7, we show a small 
flare at the site where N16 in Fig. 4 (2006) protrudes into neighbouring positive flux. 
The site of the flare in Fig. 7 is· enclosed with a dashed oval on both the Ha image 
and the magnetogram. The flare is seen to straddle N16, its protrusion into the 
neighbouring positive field, and the adjacent positive field below the protrusion. Fig. 
5 shows the series of magneto grams for several hours after this flare and reveals the 
flux loss indicated by the absence of the protrusion of N16. By 2325, the positive 
flux at the flare site below the protrusion has moved to occupy the previous site of 
the protrusion. Although magnetograms were acquired continuously throughout the 
flare, we found no impulsive changes in the line-of-sight magnetic field either at or 
around the flare site during its lifetime. The loss of flux is a gradual change taking 
place in a period of several hours encompassing the interval of the flare, in agreement 
with the findings of Harvey et al. (1971). 

In Fig. 8, the larger dashed oval encompasses a low intensity flare centred at the 
site where P20 meets N20. At the same time in Fig. 8, a microflare also coincides 
with Elp and a fibril or flare loop in absorption connects Eln and Elp. These features 
are enclosed within the smaller dashed oval. 

A flare is seen in Fig. 9 around the site where the negative pole of the ephemeral 
region E2n (Fig. 6) pushes into the neighbouring positive flux. One of the flare 
elements appears to lie over the positive flux adjacent to E2n and the other over the 
negative flux just below E2n. Due to the high concentration of magnetic flux, the 
small percentage reduction in flux, expected where E2n pushes into the neighbouring 
positive field, is not seen in the magnetograms in Fig. 6. However, it is clear in 
the magnetograms that there is a slow build-up of magnetic field gradient, beginning 
before the flare and continuing after the flare and through the remainder of the 
observing day. By the next day, a large amount of both positive and negative field 
have disappeared. We infer that a slow loss of flux, which in other cases is distinct 
when observing small fragments, must be taking place as the gradient of the field 
increases on this day. The change in gradient and loss of flux occur in exactly the 
same way as illustrated for PN25 (Fig. 6, 1748-2209), where the field gradient also 
increases as the flux obviously disappears. 

These examples of flares around the sites where ephemeral regions meet a pre­
existing magnetic field, confirm the finding of Marsh (1978) that 'ephemeral region 
flares' do not occur between the poles within the ephemeral regions, but rather 
are related to the sites where their poles encounter opposite polarity magnetic flux. 
However, some flare configurations that we have observed in relation to ephemeral 
regions obviously differ from the configuration suggested by Marsh (1978). In the 
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Fig. 7. A flare in Ha (left image) occurs where a negative fragment intrudes into a positive 
polarity field and loses flux. The Ha image is intentionally over-exposed to better show the flare 
in contrast to the Ha plage and background. 

Fig. 8. A weak flare in Ha (left image) occurs around the site where positive flux, P20 (see 
Fig. 5), moves into negative fragments. The larger of the two closest negative fragments is the 
negative pole of ephemeral region El in Fig. 4. Concurrent with this flare in the larger dashed 
oval, a microflare is seen in the positive half of ephemeral region El, shown in the smaller of the 
two dashed ovals. 
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Fig. 9. A flare occurs where E2n in Fig. 6 moves into the main polarity inversion line. 

Fig. 10. This flare in Ha occurs after P29 has moved into contact with N29 and also after the 
cancellation P28 and N28 in Fig. 6. 
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Marsh model, the chromospheric flare foot points would be connected by coronal 
flare loops extending from one pole of the ephemeral region to the closest adjacent 
opposite polarity field. It is clear in some of our magnetic field and Ha images that 
one chromospheric foot point of the flare occurs near or on one pole of the ephemeral 
region, as suggested by Marsh, but that the other flare foot point is found in an 
opposite polarity field further from the site of collision of the ephemeral region pole 
with opposite polarity field. The flare in Fig. 9 is such an example. 

In Figs 5 and 6 respectively, El and E2 are the only ephemeral regions identified 
during the decay phase of this active region.. In both cases, the net effect, after the 
eventual complete cancellation of both poles of the ephemeral regions with neighbouring 
magnetic field, has been the removal of magnetic flux from the photosphere. 

Another example of a flare at the site of approaching and cancelling fields of 
opposite polarity is shown in Fig. to. The flare starts near the juncture of N29 and 
P29, where N28 previously cancelled with part of P28, while P28 was merging with 
P29 as shown in Fig. 6. The flare is brightest around the site of PN29. However, we 
note in this case, the outer extensions of the flare, near the ends of the encompassing 
oval in Fig. to, are in adjacent areas. The lower end of the flare lies in negative flux 
including N31 (see Fig. 6). The upper part of the flare extends across two fragments 
of weak positive flux. 

From these observations it appears that flares might represent a rapid readjustment 
of the magnetic field necessitated by cancellation. 

(b) Detailed Description of the Late Phase of Decay 

Our designation of the days from 6-8 August as the late phase of decay is partially 
arbitrary, but we make this distinction because there are several general differences 
worth noting between this phase and the earlier phase of decay from 3.;..5 August. 
First, the active region has evolved entirely into a cellular structure. The effects of 
convection in contributing to the motion of the magnetic fields has become obvious in 
the 6 August magnetograms in Fig. 11. Secondly, major flux loss has unquestionably 
occurred. In the late phase, there is a smaller number of sites of fragmentation, 
merging, and cancellation. However, the processes of fragmentation, migration, and 
the disappearance of magnetic flux continue in the same way as observed during the 
early phase. 

In Fig. 11, examples of merging fragments are P32 and P33. Cancellation takes 
place between P33 and N33. Another site of cancellation is between P34 and N34. 
An example of fragmentation can be seen at the right side of the remaining highest 
concentration of positive flux, where P35 has almost become a separate fragment by 
1942. P36 and N36 (1942) are approaching fragments of opposite polarity where flux 
loss will predictably occur before the next observing day. 

In Ha, large changes were also noted on 6 August, as shown in Fig. 12. Most 
notably, strands of a filament have formed concurrently with the opening of the region 
into a cellular network. The filament strands display mass motion and associated 
structural change throughout the day. At 2t05, the filament appears very dense. 
This is a prelude to its eruption with the occurrence of a flare beginning at 2120 as 
seen in Fig. 13. Two additional images of the filament are shown in Fig. 13 to show 
its position relative to the flare and its degree of change before the flare. The flare 
importance rating should be only about IN (normal) or IF (faint) on the commonly 
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Fig. 11. P32 and P33 are merging fragments; N33 cancels with P33 and N34 cancels with 
P34. P35 (1810) establishes its identity as a separate fragment breaking away from a larger 
concentration of positive flux. 

used relative scale of I to 4 in area. However, in relation to the previous flares in this 
active region, it is a major flare in the sense that it brightens almost every fragment 
of plage in the whole active region. Flare points are even seen over the. network in 
the lower right of the image at 2139, an area of old network that was not a part of 
this active region. 

The significance of the flare in Fig. 13 is that it is not unusual. It is a common 
'garden variety' two ribbon flare; the ribbons are discontinuous rather than continuous 
as should be expected when the underlying network and plage is also fragmented 
(Tang 1985). The filament eruption was also not unusual. It was continuously 
recorded on film at a 15 s interval through a 1/4 A passband Ha filter. The filament 
was observed to erupt in the most common style. At the start of the eruption, the 
centre of the filament first expanded outward with the extreme ends retaining their 
footing. Then it developed the classic arch form as it disappeared from view against 
the solar disc. 
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Fig. 12. A filament is able to form where gaps have developed between the fragments of flux of 
opposite polarity. Development of the filament accompanies the cancellation of magnetic flux. 

Three important factors are seen in the association of this flare in Fig. 13 with the 
underlying pattern and changes in the photospheric magnetic field: (1) the flare starts 
at the main site where magnetic flux is disappearing, as seen in the line-of-sight fields 
in the photosphere; (2) the flare is brightest in the vicinity of the cancellation sites; 
and (3) the flare foot points develop throughout the active region where no magnetic 
flux is being lost at the time of the flare. The first two factors are important because 
they are common to all of the flares observed in this active region during its decay 
phase. Hence, we need to learn if these factors are common to flares in general. The 
third factor is significant because it offers possible evidence of the storage of energy 
in the active region as a whole, or alternatively of the possibility of the transport of 
flare energy from a localized site to the remainder of the active region. 

The active region magnetic fields continue to decay in the established pattern on 7 
and 8 August, as seen in Fig. 14. Only two distinct sites of flux loss are visible at the 
beginning of the observing day on 7 August. Flux is decreasing at PN37 and PN38 in 
Fig. 14. At 1739, PN38 is recognized to be two cancelling sites. The site to the right is 
identified as PN39. By 2224, PN39 ceases to be a cancelling site because the 
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Fig. 13. The active and developing filament in Fig. 12 ends its short-lived existence by erupting 
in association with the flare beginning at 2120. The flare begins near cancelling fields N34 and 
P34 in Fig. 11 and spreads throughout the remainder of this decaying active region. 

negative part of PN39 has completely disappeared. N40 approaches P39 to initiate a 
new site of cancellation designated as PN40 at 2356. Another very minor site of flux 
loss, PN41, also develops late in the day (2356). 

In Fig. 15, we illustrate four successive flares at 1505, 1550, 1712 and 1902, which 
involve cancellation sites PN38 and PN39 in Fig. 14. Minor filament activity also is 
seen. We specifically note at 1902, the formation of a small active filament between 
PN38 and PN39 just as the cancellation is nearly complete. The filament remains 
active until the flare at 2156 involving the fields near PN40. In the final frame of Fig. 
14, we observe a faint flare and surge at PN41. 

The last frame in Fig. 14 is from 8 August, more than 17 hours after the preceding 
frame on 7 August. By 8 August, only two isolated fragments of positive flux remain. 
The site of this decayed active region was observed for a few hours on 8 August. 
During the relatively short interval that the site of this decayed active region was 
observed, no significant change was seen in the magnetograms and no further transient 
events were observed in Ha. 
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Fig. 14. Final sites of magnetic field cancellation observed are PN37, PN38, PN39, PN40 and 
PN41 on 7 August. The last frame is the following day 8 August. The remaining fragments of 
positive flux are at least temporarily isolated but probably eventually collide with surrounding 
negative flux to totally remove all flux of this active region from the Sun. 
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Fig. 15. Sequence showing that flares and minor filament activity continue in association with 
the cancellation sites in Fig. 14, even though very little magnetic flux remains. By 8 August, all 
Ha activity ceased when the cancellation of flux also temporarily ceased. 
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Table 1 lists the approximate time of maximum of all of the flares observed during 
the decay of this region. The decay phase begins on 3 August. The primary cancelling 
fragments directly beneath or beside the brightest flare elements are listed in columns 
to the right of each column of flare times. It is seen that all of the flares are spatially 
related to one or more of the sites of cancelling magnetic flux. 

Table 1. Flare time and related cancellation sites during the decay of active region 19425 

3 August 4 August 5 August 6 August 7 August 
Time Site Time Site Time Site Time Site Time Site 

2129 N9 1813 N16 1954 E2n 2012 P/N36 1435 PN38 
PN39 

2146 N9 1830 N16 2131 PN25 2140 P/N34 1528 PN37 
P27 PN38 

PN39 

2023 N16 0032 P/N29 <0046 P/N34 1719 PN38 
N30 P/N33 
E2p 

2142 Eln 0107 P/N33 1808 PN37 
P20 

2243 Eln 2156 PN37 
P20 PN40 

(2247) Elp 

2325 Eln 2201 PN41 
P20 

(2343) Elp 

0050 N22 

Number of flares per observing day: 

2 7 3 4 6 

Total number of flares observed: 22 

We end our description of the details of the decay of this active region, having 
illustrated an inescapable association between the cancellation of magnetic flux and 
solar flares commonly observed in Ha. Since the time scales of flares and cancelling 
fragments of magnetic flux are different, we are left with fundamental puzzles. Is 
magnetic flux accumulating in the transverse component of the field when it is 
disappearing in the line-of-sight component? How much magnetic energy is converted 
to flare energy? 

Where all of the cancelled flux goes and exactly how it is lost remain open 
theoretical questions which need to be addressed. A more detailed quantitative 
analysis is being carried out as a follow-on to this presentation, which is primarily a 
qualitative description. Our following observational summary and discussion is just 
a beginning step in suggesting factors that need further investigation. 

4. Summary and Discussion of the Primary Results 

(a) Changes Preceding the Disappearance of Magnetic Flux 

Fragmentation of magnetic flux. The first significant process observed during the 
decay of the active region was the fragmentation of the two main concentrations of 
positive and negative magnetic flux. At discrete locations around the periphery of 
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each pole of the region, small and initially unresolved fragments of magnetic flux were seen to separate from larger concentrations of flux and thereby reveal their identity 
as discrete knots of flux. The motion associated with the small knots was often, but 
not always, in the direction of a feature of opposite polarity. In the negative half 
of this active region, the fragmentation from the strongest concentration of magnetic 
flux containing Ii sunspot was seen to be synonomous with the generation of 'moving magnetic features' around sunspots as previously described by Harvey and Harvey 
(1973). The knots identified as moving magnetic features consisted of either polarity, 
but otherwise were not recognized to be different from other fragments that originated 
from concentrations of flux not containing a sunspot. The majority of the fragments were very small with low values of total flux, typical of the 'knots' described by 
Zwaan (1978) having a flux of 1019 Mx or less. Such knots might correspond to a 
cluster of several facular points. 

Fragmentation appears to be a recurrent sporadic occurrence, rather than a 
continual streaming or uniform flow of magnetic flux from one site to another. At a 
given location it is highly directional. The fragmentation that occurs around the entire 
periphery of the active region was confined to the apparent boundaries of network 
cells. 

In the early stages of the decay of the specific active region described here, 
fragmentation and subsequent losses of flux seemed to happen more frequently in the 
polarity inversion zone in the middle of the active region than within any equivalent 
area around the periphery of the region. The fragmentation around the periphery of 
the region is confined to the boundaries of network cells. However, in the polarity 
inversion zone between the main concentrations of negative and positive magnetic 
flux, the fragmentation and ensuing migration do not appear to be confined to a 
pattern resembling network boundaries, at least when decay of the region first begins. 
In the early stage of decay, there is no distinct polarity inversion line in the middle of the region. Rather, there is a zone of interleaving of opposite polarity fragments 
which is continuously changing (see Fig. 3, 0021 UT). However, in the late stages of 
decay, when cell structure is evident in the middle of the region, the fragmentation 
does appear to be confined to specific paths that probably coincide with the boundaries 
of network or supergranule cells: In addition to fragmenting, knots of magnetic flux 
of similar polarity are equally able to merge with other knots and lose their individual 
identity within the resolution of our magnetograms. In this paper, we restrict our 
use of the word 'merge' to the apparent joining of fragments of the same polarity. When fragments merge, there is no apparent loss in total flux. The fragmentation and 
merging of the knots of flux in the decaying active region is the same as the splitting and joining offragments of magnetic network on the quiet Sun (Martin 1984). During 
the decay phase of the active region, we note that fragmentation is dominant while 
on the quiet Sun the occurrences of fragmentation and merging are more nearly equal in number. 

The net result of the fragmentation and migration of the magnetic flux of this active region was that the centroids of the opposite polarity fields moved together 
during the decay of the region. 

Migration of fragments of magnetic flux. All of the reasons for the migration of 
magnetic flux are not definitively revealed by our study, but the data allow us to 
identify some factors that could lead to the observed motions. Possibly the most 



954 
S. F. Martin et al. 

important factor contributing to fragmentation and subsequent motion of knots of 

flux during the decay of the region is the action of convection around and beneath 

the active region. The sites of formation of new supergranule cells could make a 

significant difference in how much of the flux is able to flow into the polarity inversion 

zone. If supergranules develop exactly in the zone, they might inhibit the motion of 

opposite polarity fields towards each other, leaving the flux to be dispersed mostly 

outward around the periphery of an active region. However, if the new supergranules 

form within the concentrations of flux, they might push opposite polarity fields 

together and limit the amount of outward dispersal of magnetic flux. The latter is a 

conceivable circumstance for the region described in this paper, because this region 

is unusual in its rapidity of decay and in the minor role that outward dispersal plays 

in its general pattern of decay. The effect of supergranules on the migration of flux 

warrants further study in this and other decaying regions. 

Another possible factor contributing to migration is induced motion related to 

the local cancellation of flux. When flux disappears, however it happens, we might 

expect a local drop in magnetic pressure at the site of flux loss. If a drop in magnetic 

pressure occurs, adjacent flux could be induced to move toward that site to re-establish 

magnetohydrodynamic equilibrium. The continued migration of additional knots of 

flux toward some sites of disappearing magnetic flux might be explained in this way. 

Under some conditions there is evidence of an attraction of opposite polarity 

fields, a situation anticipated by Gold and Hoyle (1960). If motion is induced by 

magnetic attraction, two necessary conditions are suspected: (1) that the opposite 

polarity fields first move within a critical distance of each other, a distance not yet 

observationally specified, but probably less than the approximate average diameter 

of a supergranule cell (30000 km), and (2) that the opposite polarity fields are not 

magnetically connected, at least initially. An especially good example of apparent 

attraction presented here is the motion of pre-existing flux towards both poles of 

ephemeral region El, as shown in Fig. 5. 

In the case of newly emerging active regions or ephemeral regions there is an 

inherent motion associated with the growth of the regions. This motion can be just 

due to the pre-existing loops of the active region emerging through the photosphere. 

In the case of ephemeral regions, however, this motion often continues after the 

region stops growing and results in a widening space of intranetwork field between 

the poles of the ephemeral region. The inherent motion associated with the growth of 

newly emerging magnetic flux regions is not obviously inhibited by convective motion 

associated with supergranules. However, pre-existing network or any other fragments 

of relatively strong flux can block or inhibit this motion associated with the growth 

of new flux, as shown for ephemeral regions on the quiet Sun by Wang et al. (1985). 

(b) Disappearance of Magnetic Flux 

Our observations confirm the speculation by Zwaan (1978) that 'apparently magnetic 

flux disappears from the photosphere whenever opposite polarities meet'. Throughout 

the decay phase of the active region studied in detail, the disappearance of magnetic 

flux was only seen or deduced to happen at or within a few arcsec of the junction of 

opposite polarity fields which had migrated together. The magnetic flux was seen to 

disappear within and around this active region in exactly the same way as we have 
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already observed on the quiet Sun and in other active regions (Martin 1984; Wang 
et al. 1985). We conclude that Zwaan's deduction is true in general for all solar 
fields. 

It is relevant to the interpretation of how the flux disappears to know the possible 
origin of the fields and the circumstances that bring opposite polarity fields into 
juxtaposition. For the active region studied, the opposite polarity fields originated 
from four possible sources: (1) fragments of network or older active region fields 
present before the development of the active region under study, (2) fragments of the 
active region, (3) new ephemeral active regions developing within the active region, 
and (4) 'moving magnetic features' (MMFs) from the decaying sunspot-some of 
which are opposite in polarity to the spot (Harvey and Harvey 1973). Sources (1), (2) 
and (3) are just active regions that have originated at different times in the same field 
of view. We regard them as independent sources of field which initially contribute 
to the total flux in the field of view. Source (4), the MMFs, are presumably not 
independent fields, but rather are thought to be part of the flux of the active region 
and represent some type of topological change in the geometry of the magnetic field 
as a sunspot decays (Harvey and Harvey 1973). We list them as a fourth source 
because they represent opposite polarity fields that we observe to disappear in the 
same way as the opposite polarity fields from any of the other three sources. 

The disappearance of magnetic flux takes place in a specific way that we call 
'cancellation'. The term 'cancel' implys no physical model of how the flux disappears. 
It is a descriptive term which we define as 'the mutual apparent loss of magnetic 
flux in closely-spaced features of opposite polarity' (in observations of only the line­
of-sight component of magnetic fields). Cancellation is almost invariably preceded 
by prior motion of the opposite polarity fragments towards each other. When 
the pre-cancellation phase is observed, we often see that the fragments involved in 
cancellation were preceded by a period during which one or both features moved 
toward the other with no apparent loss of flux until the fragments were within a 
few arcsec of each other. From the pre-cancellation migration patterns of isolated 
fragments and their subsequent motion during cancellation, we deduce that the 
observed loss of flux occurs at or within a few arcsec of the interface between the 
opposite polarity fields. 

Before opposite polarity features first move into apparent contact, the gradient of 
the magnetic field is seen to be about the same everywhere around their periphery. 
That gradient is presumably the decrease of field from a point source or cluster of 
point sources of magnetic field, whose real strength is unknown and depends on the 
true size of the magnetic elements. The measured flux from the source magnetic field 
is smeared by seeing and telescope guiding errors. Hence, the true gradient is reduced 
to an apparent gradient which we can observe and measure. In our magnetograms, 
having spatial resolution of 2-3 arcsec, cancellation begins when opposite polarity 
fragments appear to come into contact. At the same time we observe a steepening of 
the apparent magnetic field gradient between the opposite polarity fragments. As the 
cancellation proceeds, the gradient seems to increase to some limiting value which 
may depend on the speed of prior motion or the quantity of flux involved in the 
cancellation. 

The half-rate of magnetic flux loss per cancelling feature is of the order of }OI8 

Mx hr- I . This amount of flux loss is easily seen and measured for small knots 
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having a total flux less than 1019 Mx. This amount of flux loss is sufficiently small 
that it is difficult to detect at the boundaries of larger concentrations of flux under 
circumstances where there are no apparent resolved fragments of flux. Two factors 
inhibit our detection of flux loss under these circumstances: (1) variations in image 
quality make it difficult to detect small percentage changes in large features with 
high concentrations of flux, and (2) adjacent flux moves towards the cancellation sites 
thereby obscuring the local loss of flux. However, in many circumstances, we were 
still able to deduce that cancellation was taking place because of several observational 
factors: (1) after a critical magnetic field gradient was reached at a given polarity 
inversion zone, there was no further build-up of flux near the polarity inversion line 
or zone; (2) after a sufficient length of time, such as by the next observing day, and 
assuming that several successive cancellations of knots of magnetic flux took place, 
the percentage change in the large concentrations became high enough to easily detect 
the loss of flux; and (3) cancellation was the only type of major flux disappearance 
seen during the decay of the region-isolated features of single polarity remained 
relatively constant in flux magnitude in contrast to the flux at junctures of opposite 
polarity fields which showed substantial net loss of magnetic flux over intervals of a 
few hours to a day. 

Cancellation often takes place simultaneously at several sites. It occurs sporadically 
on approximately the same time scales as the preceding fragmentation. The measured 
rate of disappearance can vary substantially depending on the quantity of flux in a 
fragment and the number of fragments that are cancelling at any given time. The rates 
of disappearance can also vary, possibly as a function of the nature of the source fields 
and their rate of motion or rate growth prior to cancellation. The largest measured 
rate of cancellation in the decaying region was 5 x 1018 Mx hr- 1 for the positive half 
of a relatively large fragment that could have been composed of several knots of 
magnetic flux. The cancellation ended in 3-4 hr upon the complete disappearance 
of the positive field. Assuming that an equal amount of flux of both polarities 
disappeared, this cancellation alone was losing flux at a rate of 1019 Mx hr- 1, twice 
the average hourly rate measured from the Kitt Peak daily magneto grams and found 
to be 5x1018 Mxhr-l. At a more typical rate of cancellation of 2x1018 Mxhr- 1, 

the steady loss of flux at a continuous average of 2·5 sites would account for the 
total flux loss during the main phase of decay of the region. Thus, the phenomenon 
of cancellation alone is estimated to be of the correct order of magnitude to account 
for all of the flux that disappeared during the decay of this active region. A detailed 
accounting of all of the measurable loss of flux in the many fragments within this 
active region is planned for a subsequent paper. 

Cancellation can be interpreted as the removal of magnetic flux from the photosphere 
in several ways. Zwaan (1978) mentioned two possibilities. Both involve reconnection 
to create loops that would either be pulled out of the photosphere or below the 
photosphere depending on the height at which reconnection occurs. In Zwaan (1984), 
the case of simple submergence without reconnection was also outlined. Parker (1984) 
mentioned the possibility that magnetic fields can 'cancel' as a third means of removal 
of magnetic flux from the photosphere, in addition to submergence and. outward 
expulsion. Parker's use of the term cancel was not explained; he argued only for the 
case of simple submergence. 

In our view, there are at least two additional alternative interpretations of 
cancellation: (1) collapse of the magnetic fields due to local annihilation of the electric 
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currents that are the source of the magnetic fields and (2) apparent loss of magnetic 
flux due to changes in the topology of the magnetic field, such that the observed 
line-of-sight component becomes a transverse component of the magnetic field. 

The correct interpretation of cancellation is not yet known. The question at least 
partially hinges on knowing whether the components of cancelling fields are: (1) parts 
of the same magnetic field, i.e. parts of a true magnetic bipole; (2) parts of separate 
magnetic fields that collide without reconnection; or (3) parts of separate magnetic 
features that collide and undergo magnetic reconnection. 

We have examined many Ha images corresponding to our videomagnetograms in 
seeking the correct interpretation of cancellation. Unfortunately, in existing sets of 
data, we have only partial evidence of which fragments are magnetically connected 
to other fragments. Sometimes flare loops reveal the magnetic connections, although 
these may be temporary.· Ha fibrils also sometimes give us clues. We have found 
an apparent lack of fibrils connecting fragments of magnetic field that are cancelling. 
However, this does not constitute proof of the absence of direct magnetic connection, 
because of a possible local increases in temperature which would prohibit the existence 
of cool fibril structures at the cancellation sites. The possibility of slow reconnection 
further complicates the picture, because we cannot know even for ephemeral regions 
whether their poles remain magnetically connected parts of a bipole, or whether soon 
after birth each pole reconnects to other flux in its vicinity. Transverse magnetic 
field measures in the photosphere and chromosphere, as well as direct observations 
of coronal fields or structures, are needed to determine how the magnetic field is 
configured at any given point in time. Knowledge of the three-dimensional structuring 
of the field as a function of time is necessary to observationally verify exactly how the 
flux disappears. Simultaneous velocity and magnetic field observations should also be 
helpful in learning the correct interpretation of cancellation. 

(c) Spatial and Temporal Association of Solar Flares and Disappearing Magnetic Flux 

All of the 22 flares observed during the decay phase of this active region were 
initiated around the sites where photospheric magnetic fields were cancelling or 
inferred to be cancelling. All of the flares were small, classed as subflares or 
microflares, except one flare of importance 1 which spread throughout the entire 
active region. There were also many other brightenings around the cancellation sites 
not sufficiently large or well defined in time to identify as specific events. Distinct 
flares were observed at most, but not all, of the sites of cancelling fields. Notably, 
during the late phase of decay, all of the cancellation sites were associated with one to 
three flares each (see Table 1 in Section 3). Additionally, when flares were observed, 
the brightest part of the flares were always close to the sites of cancelling fields. 
However, several flares extended to areas where no cancellation was taking place. 

The time scales of cancellation and flares are notably different. Small-scale 
cancellation takes place over periods of several hours, whereas flares occur impulsively 
in periods of a few minutes. The time occurrence of flares relative to the cancellation 
is not obvious in viewing the time-lapse film of magnetograms, because there were no 
impulsive or short-lived changes in the magnetic field at the times of the flares. 

Further study is required on the details of the spatial and temporal associations 
of flares and disappearing magnetic flux. From our knowledge of these associations 
to date, we hypothesize that cancellation was a necessary condition, but not the only 
necessary condition for flares to occur in this active region. 
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5. Conclusions 

At least three processes were found to be significant contributors to the decay of 
the specific active region studied. The first observed process was fragmentation of 
concentrations of flux by the breaking away of very small knots at the periphery of the 
concentrations. Second was a preferential migration of opposite polarity fragments 
towards each other, although fragment!ltion was found to occur in all directions 
around the periphery of the primary concentrations of positive and negative magnetic 
flux. The third and most significant process was the observed disappearance of 
magnetic flux at or within a few arcsec of the interface between opposite polarity 
fragments of flux. This type of disappearance of magnetic flux, called cancellation, 
was the only kind of major and real loss of flux observed in the active region. 

Cancellation most typically involves small knots of flux; the few large knots that 
cancel probably are clusters of small unresolved knots. The cancellation observed 
in this active region occurred in the same way as the cancellation of magnetic flux 
fragments on the quiet Sun (Livi et al. 1985). However, the rate of cancellation is 
sometimes greater than on the quiet Sun. The rate of flux loss at a single site can be as 
much as 1019 Mxhr- I and possibly greater. The frequency and rate of cancellation 
was estimated to be sufficient to account for all of the magnetic flux lost during the 
decay of the active region. 

The consequence of cancellation for the active region illustrated in this paper was 
the effective removal of the equivalent of its entire flux from the photosphere. Thus, 
this active region made no net contribution to the long-lived network fields of the 
quiet Sun. However, it should have resulted in the redistribution and replacement of 
the pre-existing long-lived network. 

The in situ disappearance of flux of one polarity in magnetograms of -lower 
sensitivity than shown here can be due to two phenomena. First, it can be due to 
the lack of detection of the many small knots of flux that cancel with larger, more 
easily detected concentrations of flux. Secondly, it can be due to small knots of flux 
breaking away from larger knots. If a magnetograph does not detect these small 
fragments due to inadequate spatial resolution and magnetic sensitivity, one could 
conclude that the disappearance of flux is inexplicable. 

The mechanism of the observed cancellation of flux needs to be ascertained through 
additional observational and theoretical investigations. Observationally, an important 
question is whether the cancelling flux can be a consequence of the line-of-sight 
component of the magnetic field temporarily changing into the transverse component. 

The formation of several short-lived filaments was observed upon the cessation of 
cancellation at some sites. All of the flares observed during the decay of the active 
region were initiated at the sites of cancelling fields. However, the time scale of 
flares differs radically from that of cancellation. Cancellation is a slow and long 
enduring change, in contrast to the impulsiveness of flares. This spatial and temporal 
association may be significant to the interpretation of cancellation and to flare theory. 

Acknowledgments 

We express our appreciation to the observing staff at the Big Bear Observatory 
during the summer of 1984 for their spirit of cooperation in obtaining the long 
sequences of data described in this paper. We also thank A. Patterson for writing the 



Cancellation of Magnetic Flux. II 959 

essential programs for the image processor at Big Bear which was used in reregistering 
the time-lapse films presented at the Colloquium. We are especially grateful to H. Zirin 
whose tireless efforts, in promoting improvements in the videomagnetograph over the 
last several years, made possible the acquisition of the magnetograms. Support of 
the Observatory staff came from NSF grant ATM-82 11002 and NASA grant NGL 
05-002-034. The contribution of S. F. Martin was supported by a grant from the Air 
Force Office of Scientific Research, AFOSR-82-0018. 

References 

Gold, T., and Hoyle, F. (1960). Mon. Not. R. Astron. Soc. 120,7. 
Harvey, K. L., and Harvey, J. W. (1973). Sol. Phys. 28, 61. 
Harvey, K. L., Livingston, W. D., Harvey, J. W., and Slaughter, C. D. (1971). In 'Solar Magnetic 

Fields', IAU Symp. No. 43 (Ed. R. Howard), p. 422 (Reidel: Dordrecht). 
Livi, S. H. B., Wang, J., and Martin, S. F. (1985). Aust. J. Phys. 38, 855. 
Marsh, K. A. (1978). Sol. Phys. 59, 105. 
Martin, S. F. (1984). Proc. Symp. on Small-scale Dynamical Processes in Quiet Stellar 

Atmospheres (Ed. S. L. Keil), p. 30 (National Solar Observatory: Sacramento Peak, NM). 
Parker, E. N. (1984). Astrophys. J. 280, 423. 
Tang, F. (1985). Sol. Phys. (in press). 
Topka, K. P., and Tarbell, T. (1984). Proc. Symp. on Small-scale Dynamical Processes in Quiet 

Stellar Atmospheres (Ed. S. L. Keil), p. 278 (National Solar Observatory: Sacramento Peak, 
NM). 

Wallenhorst, S. G., and Howard, R. F. (1982). Sol. Phys. 76, 203. 
Wallenhorst, S. G., and Topka, K. P. (1982). Sol. Phys. 81, 33. 
Wang, J., Shi, Z., Livi, S. H. B., and Martin, S. F. (1985). Sol. Phys. (in press). 
Wilson, P. R., and Simon, G. (1983). Astrophys. J. 273, 805. 
Zirin, H. (1984). Astrophys. J. 291, 858. 
Zirin, H. (1985). Aust. J. Phys. 38, 961. 
Zwaan, C. (1978). Sol. Phys. 60, 213. 
Zwaan, C. (1984). Proc. Meeting on High Spatial Resolution in Solar Physics, September 1984, 

Toulouse (Ed. R. Muller), p. 263 (Springer: Berlin). 

Manuscript received 12 June, accepted 22 October 1985 






