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Abstract 

The sunspot number series R( t) from 1700 to date is found to be representable by R( t) = 
I Jf' {Re( E( t) exp[i {wo t + <1>( t) I]) + U( t) 1 I, where Wo is the angular frequency corresponding 
to a period of 22 years, E(t) is the instantaneous envelope amplitude, <I>(t) is the instantaneous 
phase of a complex time-varying analytic function, U(t) is an undulation of low amplitude and 
period about 30 (22-year) cycles and jy is a nonlinear operator whose main effect is to introduce a 
small amount of third harmonic (period about 7 years). The justification for the 22-year period is 
the known fact that the observable sunspot magnetic fields reverse polarity every 11 years or so at 
the time of sunspot minimum; the undulation has been demonstrated, and its period determined, 
in fossil records discovered by Williams; and the third harmonic is an expected consequence 
of minor nonlinearity in the dependence of the arbitrarily defined R( t) on the physical cause 
of sunspots. The algebraic representation is established by the Hilbert transform method of 
forming a complex analytic function as proposed by Gabor. The method reveals three obscuring 
features that may be alleviated as follows: use the alternating series R± (t) in which alternate 
II-year cycles take opposite signs, remove the third harmonic, and subtract the undulation. 
These justifiable steps remove artificial components, such as sum and difference frequencies, that 
are gratuitously and nonlinearly introduced by conventional Fourier analysis as applied to the 
rectified, or absolute, value of the 22-year oscillation. Then a complex envelope E( t) exp {i <1>( t)j 
can be discerned whose intrinsic behaviour can be studied to reveal statistics that bear on the 
physical origin of the solar cycle. The results favour a deep monochromatic oscillator whose 
influence is propagated to the observable surface via a time-varying medium. The r.m.s. value of 
the component of E(t) is 0·4 of the mean and the characteristic time is a century. Frequency 
analysis of the envelope does not support a 78-year period in the modulation noticed by Wolf. 
Both the statistical frequency distribution of the amplitude E( t) and its spectrum are subject 
to refinement by analysis of fossil solar records. The results do not favour the theory that the 
22-year period is set by the natural frequency of a resonator with characteristic damping subject 
to random turbulent excitation. Also disfavoured is the theory of energy release at intervals 
determined by a relaxation process. Correlation has been found between the phase departure 
~<I>(t) from linear and envelope amplitude and attributed to propagation of the magnetic .cycles 
through a time-varying, such as a convecting, medium. A correlation not depending on Hilbert 
transform analysis is predicted between the reciprocal cycle length and envelope amplitude and 
found to· exist. Variability of the sunspot cycle length can be viewed as a Doppler shift due to 
propagation in a time-varying medium and the Wolf modulation then represents the concomitant 
intensity change. Agreement has been found between E(t) and <I>'(t) but not explained. If the 
explanation is dispersion in the propagation of the assumed magnetic flux waves then there is a 
mode of oscillation. that has the characteristics required for the undulation U( t). Extra buoyancy 
possessed by the magnetic field of strong cycles accounts for the fast rise time of strong cycles. 

* Paper presented at the R. G. Giovanelli Commemorative Colloquium, Part II, Tucson, Arizona, 
17-18 January 1985. 
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Fig. 1. Sunspot number series from 1700. 
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The solar cycle has a period of about 22 years made up of two ll-year sunspot 
cycles whose properties have been summarized by Giovanelli (1984). Maxima of the 
sunspot cycle vary by a factor of more than four to one in sunspot number and the 
locus of maxima exhibits structure that has been commented on from the time of 
Wolf (1862). One conspicuous feature is the alternation seen from cycle 9 to cycle 17 
in Fig. 1. Another is the persistence of low maxima for three consecutive cycles (5 
to 7) and of high maxima at other times. This amplitude modulation, which I shall 
refer to as the Wolf modulation, has been described as exhibiting a period of about 
80 years. The reports of fossil solar cycles by Williams (1981, 1983) also bear on 
the modulation and, because the number of years of records greatly exceeds what is 
available from modern observations, the fossil data will be of great importance. 

The phase of the sunspot oscillator has been less discussed. An example is the 
paper by Dicke (1978) in which it is asked whether there is a chronometer deep in 
the Sun rather than a relaxation oscillator. 

Study of the envelope of sunspot maxima is hindered by the fact that maxima are 
accessible only at II-year intervals. Phase is determinate only at turning points; what 
happens in between times to the envelope and to phase is not clear. Of course the 
samples that become available every 11 years or so are clearly affected by noise, partly 
observational and partly solar; it would be desirable to incorporate all the observed 
sunspot numbers into a determination of amplitude and phase so that random noise 
could be reduced by averaging. 

This paper presents a method of analysis of annual time series containing solar 
cycles. It is applicable both to sunspot number counts and to varve thickness 
measurements. 

2. Envelope and Phase 

There is a well-known mathematical technique for the extraction of instantaneous 
envelope amplitude and instantaneous phase from an oscillating quantity (Bracewell 
1978) by use of the Hilbert transform, and apart from applications in electrical 
communications and information theory (Gabor 1946) the method is familiar in optics 
(Born and Wolf 1959). The idea is to represent a real oscillating quantity by a 
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complex one whose real part varies with time as given. A special case is the use 
of a complex phasor to represent alternating current. Let R(t) = <R>+ Rflue(t) be 
the sunspot number, taken as a real function of continuous time. Then we associate 
with the fluctuating part Rflue(t) of R(t) an imaginary time function I(t) which is 
the Hilbert transform of R flue ( t): 

I(t) = flue t t ;:1 foo_ 00 R (') d ' 
t'- t 

Since the Hilbert transforms of R( t) and R flue ( t) are the same the subscript may be 
dropped. From the Hilbert transform we generate the complex function 

R(t) -iI(t). 

Then the instantaneous envelope amplitude E( t) is given by 

and the instantaneous phase is given by 

tan </> = - I( t)/ R( t). 

The original real waveform is expressible in terms of the complex representation 
E( t) exp fi </>( t») as 

where w 11 is a reference frequency that would be chosen as the angular frequency 
corresponding to the period of 11 years. The Hilbert transform formalism has become 
familiar in optics as an effective way of handling quasi-monochromatic waveforms. 
Envelope and phase statistics, coherence functions and other topics may be handled 
in this way. Although it is a far cry from the terahertz frequencies of optics to 
the nanohertz range of the sunspot oscillation, there is no apparent reason why 
the sunspot cycle should not be subjected to Hilbert transformation to establish the 
associated imaginary quadrature function I(t). 

3. Hilbert Transform of Sunspot Series 

The standard sunspot series R( t) of Fig. 1 was subjected to numerical Hilbert 
transformation and it was immediately found that the result does not lead to a 
satisfactory interpretation in terms of an envelope. One reason is that there is both an 
upper and a lower envelope to an oscillation and the sunspot series has the peculiar 
feature that the lower envelope is more or less flat, not partaking of the modulation 
of the upper envelope. In addition, the maxima and minima are not equally rounded. 
These two sorts of asymmetry do not arise in fields where envelope statistics have 
been successfully studied by the use of the Hilbert transform and may perhaps block 
any attempt at envelope analysis by means of the complex representation, even though 
the complex function is readily determined. 
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Fig. 2. Sunspot series presented as a 22-year oscillation R± (t) with symmetry about the mean. 

4. Alternating Representation 

There is however an alternative way of thinking about the sunspot series in which 
alternating signs are given to successive II-year cycles (Bracewell 1953), as shown 
in Fig. 2. The reasoning behind this modification is absolutely fundamental; as 
discovered by Hale in 1913 (Giovanelli 1984) the magnetic period is 22 years. Of 
course, the sunspot number rarely drops to zero at sunspot minimum whereas the 
alternating cycle always passes through zero. However, if spots in the next cycle are 
to be given the opposite sign then there is a sense in which the sunspot number does 
pass through zero at the moment when spots of the old cycle sink through the level 
of equality with the oppositely signed spots of the new cycle that is rising. In Fig. 
2 the minima were replaced by zero for this reason. Various authors have found the 
alternating cycle convenient (Hartmann 1971; Sonett 1984), but the idea has not been 
widely adopted. 

In the present application, however, the centre-zero symmetrical oscillation is a 
most helpful adaptation to the method of envelope analysis now proposed. The 
notation R± (t) is used to distinguish the alternating series from the standard series 
R(t). 

When the Hilbert transform was again computed, this time for R± (t), two further 
features assumed significance. The first of these is the alternation previously referred 
to in cycles 9 to 17, where successive maxima alternate between high and low. The 
distinctive epithet 'zig-zag' was used by Williams (1981) to describe this alternation. 
The second feature is dealt with in Section 6. 

5. Zig-Zag Effect 

The zig-zag effect, if it could be removed, would facilitate envelope analysis; if 
left in, the effect requires the envelope to act with extra agility that puts a strain on 
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the computation and impedes averaging. In the description below the zig-zag effect 
may be put back in, but by addition rather than as a feature of the envelope. 

A clue to how to remove the zig-zag effect is provided by Fig. 3. The fine bands 
are annual deposits on a periglacial lake bed (Williams 1981) which vary in thickness 
in cycles of 9 to 14 years. Where the bands are thin there is a conspicuous dark zone 
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due to the close packing. This piece of rock was in my possession for some time on 
loan from Giovanelli, with whom I discussed the question whether the dark zones 
should be associated with sunspot maximum or minimum. Assuming one accepts 
the solar connection, there is still a question whether the annual layer thickness is 
correlated with or anticorrelated with sunspot number. This question is resolved by 
Fig. 4 in which an artificially varved pattern is generated from a solar cycle on the 
basis that the deposited layers are simply proportional in thickness to the sunspot 
number for the year. The resulting pattern acceptably mimics the real rock in a way 
that is tolerant to changes in cycle length or strength. An inverse dependence of layer 
thickness on sunspot number cannot be found that will explain the rock appearance; 
the reason is the phenomenon referred to in Section 3, namely that the upper envelope 
is variable while the lower envelope is practically flat. Using the dark zones as cycle 
separators, we can number the cycles sequentially as in Fig. 3. Cycles 2, 4, 6 and 8 
are distinctly narrower than the intermediate cycles. This corresponds to a sunspot 
zig-zag where the even-numbered cycles are weaker than the odd-numbered ones. In 
a strong sunspot cycle the 11 or so layers deposited would be thicker and so the width 
between dark zones would be greater, as is seen with cycles 1, 3, 5 and 7. Now, when 
we look further up in the rock layers the inequality dies out; for example, cycles 12, 
13 and 14 are of almost equal thickness, but higher still the effect returns, being most 
marked near cycle 21. 

When the alternation returns it does so in antiphase. Whereas even cycles were 
thin near cycle 6 it is the odd ones that are thin near cycle 21. The interpretation 
of this in terms of the alternating cycle representation of Fig. 2 is that an additive 
undulation is present of half period about 15 cycles and amplitude (expressed in the 
sunspot number scale) of about 10. A physical interpretation of the zig-zag effect 
has been offered by Sonett (1984) in terms of a relict magnetic field; the relict would 
have to be alternating to be compatible with Fig. 3. The period T u is not connected 
with any other known solar phenomenon. 

Understanding that an undulation is present, as clearly revealed in the Elatina 
formation (Fig. 3), and stipulating that the sunspot cycle is behaving in the same way 
now as in the remote past, one can modify Fig. 2 by subtracting a term 

U(t) = -lOcos[27T(t-191O)/Tul, 

where Tu, the period of the undulation, is about 30 (11-year) cycles. The effect is to 
neutralize the zig-zag effect where it is pronounced. Some effect is also introduced 
near the beginning of the series, where other variations in the envelope are also 
present, and the impact is less obvious. 

6. Third Harmonic 

Fourier analysis of the standard sunspot number series R( t) reveals numerous 
harmonics of the II-year fundamental and many other non-negligible coefficients. The 
spectrum is not easy to interpret, partly because the series is not very long, contains 
a substantial random component, and is subject to uncertainty in the earlier years. 
In addition, there is much spectral complication due to the 'full-wave rectification' 
that distinguishes the standard series R( t) from the alternating representation. This 
rectification introduces sharpish corners at the minima that require higher harmonics, 
and the forcing of the lower extrema onto a flattened line introduces other spectral 
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detail. When the alternating cycle R±(t) is Fourier analysed the results are much 
simpler. The II-year cycle practically disappears in favour of the 22-year fundamental 
and all the detail associated with rectification drops out. What remains is intrinsic 
to the solar cycle (and its noise) and free from artefacts associated with the mode of 
presentation. The most conspicuous spectral item apart from the fundamental is the 
peak at the third harmonic. 

When the Hilbert transform of a waveform containing the third harmonic is taken, 
the resulting quadrature function is not suitable for forming a complex function from 
which an envelope can be extracted that satisfies intuitive expectations. The envelope 
generated is certainly tangential to both the data curve and the transform, but it 
also contains regular oscillations that have nothing to do with the slower changes 
in amplitude that we wish to bring out, and it would be better if such oscillations 
were suppressed. The envelope oscillations can be smoothed out ad hoc, but a more 
fundamental approach is to consider what causes the third harmonic. Sunspot number 
R( t) is defined as k(lOg+ f), where g is the number of sunspot groups on the visible 
hemisphere, / is the number of spots, and k is a personal factor characterizing the 
observer (around 0·6 in recent times). Both g and / have subjective components 
that depend on seeing conditions but, averaged over time, sunspot number correlates 
well with total sunspot area for the hemisphere and has generally been accepted as 
a convenient substitute for more fundamental physical measures such as total area. 
Nevertheless, long-lived mature sunspot groups that contribute about 8+ 1 to the 
sunspot number differ in their contribution to physical area by more than an order of 
magnitude, for example from 10-5 to 3x 10-4 of the hemisphere. Consequently, there 
is no reason to think that sunspot number as defined should depend linearly on any 
causal physical variable. Departure from linearity will, when the cause of the sunspots 
is a sinusoidally varying physical quantity, result in the sunspot number exhibiting an 
in-phase third harmonic. The logical approach is to recognize the likely origin and 
remove the third harmonic at the start. This harmonic is not strong, and is not an 
important constituent of the envelope modulation, although its relative strength may 
be found to be connected with the modulation envelope when this envelope has been 
determined. 

To remove the third harmonic it would suffice to shift the alternating series R±(t) 
one-sixth of a 22-year cycle and add it to itself. This would cancel the harmonic and 
introduce a little smoothing. The method actually used was to combine twice R±(t) 
with the sum of the values occurring 3 and 4 years later by the expression 

The transfer function T(f) for this operation is i! 2+ exp(i 2773/)+ exp(i 2774/) J. At 
the third harmonic, we have / = 3/22 cycles per year and I T(3/22)/ T(O) I = O· 136, 
so the third harmonic is attenuated by a factor O· 136. At the fundamental, where 
/ = 1/22, there is also some attenuation, by a factor of I T(1/22)/ T(O) I = O· 873. 
While this procedure is not perfect, it reduces the third harmonic to a level that makes 
the Hilbert transform analysis acceptable. The finite-sum formula for attenuating the 
third harmonic introduces a time delay of 1· 75 yr, which may be corrected by linear 
interpolation. The corrected coefficients are calculated by the convolution 

i(20011j *!~ iJ = ft!620341J. 
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Fig. 5. Modified sunspot series Rfund(t), its Hilbert transform (in quadrature, lagging) and the 
corresponding top and bottom envelopes (heavy curves). 

Weare led to a modification of the alternating cycle that could be described as the 
undulation-free, harmonic-depleted fundamental Rfund(t), given by 

The divisor 0·873 is included to make Rfund(t) comparable with R±(t). A graph 
of Rfund(t) is shown in Fig. 5 together with its Hilbert transform Ifund(t) and the 
corresponding envelope E( t) = (R~und + I~und)L The resulting envelope is relatively 
free from artificial 11- or 22-year hum and is sufficiently noise-free to be interpretable 
without further smoothing. 

7. Instantaneous Phase 

From the Hilbert transform one also obtains the instantaneous phase <1>( t) by 
forming the complex analytic representation 

Then we get 

<1>( t) = arctan! - Ifund ( t)/ Rfund(t) l . 

A graph of <1>( t) is shown in Fig. 6. It is 'clean' enough to interpret without further 
treatment and may be compared with the straight line representing a linear phase 
advance of exactly thirteen 22-year cycles over the period 1700 to 1988. To facilitate 
study of the phase variations we also show, on an expanded scale, the departure a<1>( t) 
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Fig. 6. Instantaneous phase 4>( t) and, on an expanded scale, the departure t.4>( t) from the 
straight line. 

from the arbitrary reference straight line representing a phase advance beginning at 
zero in 1700 and progressing regularly through 13 turns by 1988. Thus we have 

where 

8. Complex Representation 

ilcJ>(t) = cJ>( t) - cJ> ref(t) , 

t-1700 
cJ>ref(t) = 267T 1988 _ 1700 

In Fig. 7 the complex sunspot series, after removal of the undulation producing 
the zig-zag and the third harmonic, is shown on the complex plane with time as a 
parameter. As may be seen, the locus has a more or less circular form that expands 
and contracts regularly and is pricked out at a rather regular angular rate. There are 
just over twelve turns. 

If the Elatina undulation were included, the whole pattern would drift slowly left 
and "right by a small amount through about one oscillation during the whole time 
period. Clearly the composite description has simplified the study of the total locus. If 
the third harmonic were included, the circular shapes would become slightly elliptical 
with inclined axes. The radius vector would then oscillate between minor and major 
values with an ll-year period, a phenomenon not reflecting the slower size changes 
associated with amplitude modulation but connected rather with the waveshape of 
the II-year cycle. 

In the foregoing discussion the sunspot number series has been broken down into 
constituent parts. The operation needed to reconstitute R±(t) from its parts is 

R± (t) = JY { Re( E(t) exp[i[ Wo t + cJ>( t) J]) + U(t) J ' 
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where Wo is the angular frequency corresponding to the 22-year period, E( t) and <p( t) 
are the instantaneous envelope amplitude and phase, U(t) is the Elatina undulation, 
and5f is the nonlinear operator that puts in the third harmonic. To a good 
approximation, except in the neighbourhood of R( t) = 0, we have 

9. Discussion 

R(t) = I R±(t) I . 

150 Ifund(t) 

Fig. 7. Complex locus whose projection on the real axis is the 
series Rfund(t). The time marks are at yearly intervals. 

Envelope analysis. From the envelope analysis described above one can comment 
on physical questions such as the following: is the 22-year oscillation of the nature 
of quasi-monochromatic emission, as in an optical ~pectral line, or is it like a 
monochromatic oscillator whose signal arrives via a time-varying medium, as with 
ionospheric radio propagation links? The first case may be represented by a resonator 
tuned to a 22-year period and excited by random noise (cf. Yule 1926). The torsional 
oscillator invoked by Babcock (1961) [as distinct from the torsional motions observed 
by Howard and LaBonte (1980)] could be interpreted in these terms by supposing that 
the torsional vibration has a natural period of 22 years and characteristic damping and 
is excited by random mechanical motion or turbulence into a statistically steady state. 
An instance of the second case would be a submerged oscillator, or energy source, 
with much narrower line width than the natural bandwidth of the resonator, whose 
influence reaches the surface by multipath propagation through a turbulent medium. 
A third possibility would be a source that releases energy impulsively at intervals 
determined by a relaxation process, a mechanism that has been used in clocks, and 
that is currently entertained as Waldmeier's eruption hypothesis (Kiepenheuer 1953). 
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Fig. 9. Amplitudes of the coefficients of the Fourier series for the 
available envelope segment from 1706 to 1977. 
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Fig. 8 shows the frequency distribution p(E) of envelope amplitude E defined 
so that p(E)dE is the frequency with which E is found between E-~dE and 
E + ~dE. Superimposed are respectively the best-fit normal distribution and Rayleigh 
distribution: 

and 
2E 2 2 

<E2> exp(- E I<E >j. 

The comparison numerically favours the normal distribution over the Rayleigh 
distribution, as tested by the parameters of ratio of standard deviation to mean, 
skewness, and asymptotic fall-off, and thus weighs against the quasi-monochromatic 
behaviour which is known to exhibit a Rayleigh distribution of instantaneous amplitude. 
Confirmation of this result will be possible by appropriate analysis of the fossil record. 
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Fig. 9 shows the amplitudes of the Fourier series coefficients for the segment of 
envelope in Fig. 5. It has not been possible to perform this analysis before, in the 
absence. of a method of extracting the envelope. Hartmann (1971) worked out upper 
and lower envelopes which were different from each other, but did not subject them 
to Fourier analysis, and concluded by averaging intervals between peaks, that 'one 
cycle lasts 73 years'. Now, one sees from the spectrum that the envelope variation 
is spread over several harmonics, with comparable but weak amplitudes. Only a 
trace of support for an 80-year cycle can be seen; it does not appear that the widely 
mentioned 80-year cycle is of any particular significance. 

An interpretation of the amplitude modulation may be based on the model of a 
submerged monochromatic oscillator whose influence is transmitted to the observable 
solar surface through a time-varying medium. In this model, variations in both length 
and strength of the II-year cycle would be attributable to a mechanism such that a 
r.m.s. envelope variation at the surface of about 0·4 of the mean is introduced by 
the inconstant medium. If the 'influence' is pictured in the concrete form of a rising 
wave of buoyant magnetic flux then phase advances and delays of the order of a year, 
and occasionally more [see the graph of acp(t) in Fig. 6], would have to be explained 
for the fluctuating component. Muitipath propagation or indirect scatter are not 
indicated by the envelope statistics as a cause of amplitude variation; on the contrary, 
a mechanism for time-variable modulation of a single ray is suggested. Turbulence 
or other mechanical motion could vary the coupling between the oscillator and its 
propagation medium or attenuate or scatter the rising flux waves; a different specific 
mechanism is considered below. A time scale for change of the order of a century 
is indicated by the autocovariance function of the envelope. The location of the 
proposed monochromatic oscillator and the time-varying propagation medium may 
be rather deep because the length and strength of the northern and southern cycles do 
not disagree much by comparison with the variation from cycle to cycle. However, on 
the occasion of the large phase excursion of 1788, the two hemispheres may not have 
fully shared the perturbation. In that case the years of maximum sunspot number 
need not have been the same for both and the northern and southern minima may 
have been staggered, which would tend to raise the minimum count; there is an 
indication of this in the sunspot record, jUdging by the minima. 

Phase analysis. We turn now to the analysis of phase. Dicke (1978) studied the 
solar cycle phase as specified by the occurrence of sunspot maxima and noticed that 
'starting with the sunspot maxima of 1761· 5 there occurred a remarkable series of 
three very short half-cycle periods, with an average. length of 8·9 yr, after which 
sunspot maximum occurred - 5 . 6 yr too early.' He then noted: 'But this was 
followed by a 17· 1 yr half-cycle that completely corrected the phase error. It is as 
though the Sun !remembered' the correct phase for 27 yr and then suddenly reset the 
sunspot cycle.' As one possible explanation, Dicke proposed that a strong cycle might 
transport its magnetic field to the surface sooner because of the greater buoyancy of 
the strong magnetic flux. 

The phase anomaly referred to by Dicke is clearly visible on the graph of CP( t). 
It is the biggest variation of its kind in the record but other positive anomalies are 
noticeable (centred on 1846 and 1965), and negative anomalies (1827 and 1911). Also 
there are other strong cycles that can be tested for accompanying phase variations 
of the kind he proposed; to do this, refer to the phase departure acp with respect to 
the straight line in Fig. 6. In Fig. 10 aCP( t) is plotted against the envelope amplitude 
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E( t) for the years of maximum sunspot number. The correlation coefficient between 
~</>-<~</» and E -<E) IsO· 59 and thus tends to confirm the association of phase 
advance with strong cycles. The event culminating in 1787 stands out in the first 
quadrant. There were other large excursions of amplitude less obviously correlated 
with phase; but even if the 1787 event is deleted the correlation remains. The 
regression line shown has a slope 0·00 18, corresponding to ~ t = 0.02! E(t) - 72 J ' 
where ~ t is the relative time advance in years. 

Instantaneous envelope E( t) 
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Fig. 10. Departure of instantaneous phase from the linear 
variation 261T{t-1700)/(1988 -1700) against the envelope 
amplitude. 

Effect of buoyancy. The three short cycles followed by a long one, or 'the 
remarkably large fluctuation in the intervals between sunspot maxima', cannot, 
however, be directly explained by the notion that transit time from interior to surface 
might be less in accordance as the amount of magnetic flux rising is greater. Such an 
acceleration would alter the waveform but would leave the cycle length unchanged. 
An analogous phenomenon is seen with water waves, where the velocity depends on 
depth and the higher wavecrests experience reduced transit times; the same is true of 
loud sound. In consequence the wavefront steepens. Rather than a shortened sunspot 
cycle length one would expect a faster rise from minimum to maximum to result from 
extra buoyancy in strong cycles. Indeed, in each of the three short cycles we find 
a rise time of only three years. It may be concluded that the transport interval as 
influenced by buoyancy could be the explanation of the solar cycle asymmetry. Then 
the correlation confirmed in Fig. 10 requires its own separate explanation. 

Moving medium. To explain why the strong cycles are associated with a positive 
phase anomaly lasting for thirty years or so, we note that not only were there 
several short cycles but that the whole group of cycles arrived early. If the oscillator 
is monochromatic then upward convection of the propagation medium or some 
equivalent transit-time or path reduction mechanism would offer an explanation. 
Steady upward convection of the medium would not in itself shorten the cycle length 
seen at the surface; the magnetic field cycles would need to be compressed as they rose. 
It follows that the short cycles could have been brief because they were convected up 
in an era when they were being compressed in their direction of propagation. 
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Cycle asymmetry. The magnetic field being strengthened by compression, the 
extra buoyancy of the crests produced the steep fronts evidenced as short rise times, 
as noted above. The inverse consequence would be that in an era of path lengthening, 
the surface cycle length would be lengthened, cycles would be rarefied and weakened, 
and the waveform would be more symmetrical. These extremities of asymmetry and 
symmetry were in fact established by Waldmeier in connection with the eruption 
hypothesis; now they are explicable as consequences of propagation through a moving 
medium. 

"""' 
0·50 o 

I 
.... 
b o 

..t:i 
bo 0·10 
0: 
~ 

o o~ 
o o~ _0 0 

___ 00 '00 0 
o 0 -0 co 0 

" U 
____ - 0 

o 
» 
0 o 

'" 
0·05 

0 
0 .... 
. & 
0 

'" ~ 
0 SO 100 150 

Instantaneous envelope E( t) 

Fig. 11. Correlation between the reciprocal of cycle length and 
envelope amplitude showing that in times when the envelope 
£( t) was large the cycle length was short, and vice versa, as 
predicted for propagation in a moving medium. 

Correlation of cycle length with envelope. A further feature, not hitherto 
ascertainable because of the unavailability of a good envelope, but predictable on the 
basis of a moving medium, would be a correlation between the envelope amplitude 
and the reciprocal cycle length. Fig. 11, which shows the reciprocal cycle length 
between maxima against envelope amplitude, crisply confirms, with a correlation 
coefficient of 0·54, that this correlation exists. The change Ll t in cycle length is given 
by Llt = -O.043! E(t)-72J. 

Doppler-shift interpretation. It is unnecessary to suppose that compression of 
successive half cycles of magnetic flux implies compression of the plasma. In order 
to account for the expansion and contraction of pathlength, which is all the present 
conception requires, the ray path need only be subject to time-varying refraction. 
If the path upward were not always vertical, but susceptible to sinuous deviations 
on a time scale of a century, then the variation of the pathlength would produce 
the effects seen. Under this interpretation the variability of the sunspot cycle length 
is describable as a Doppler shift associated with variation of the phase pathlength 
between oscillator and surface. The Wolf modulation of envelope amplitude is an 
associated consequence; an analogous phenomenon exists in fixed point to fixed point 
transmission of sound waves through the atmosphere in the presence of moving 
temperature gradients. 

The correlation of cycle length with envelope presented in Fig. 11 is predicted by the 
Doppler-shift interpretation since, in the presence of flux conservation, compression 
of the cycle length will strengthen the magnetic field. 
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Interconnection of phase derivative with amplitude. If a ray path from source to 
observable surface were in slow motion, the phase advance a<l>( t) would normally 
be negative because the average ray would be longer than the shortest possible ray. 
On an occasion when the ray length passed through a minimum not much different 
from the shortest possible, there would be a rising and falling phase anomaly, played 
out on a short time scale. On the rising slope of the anomaly (diminishing ray 
pathlength) there would be positive Doppler shift (shortening of the cycle length) and 
the opposite on the falling slope. An amplitude increase associated with compression 
of the cycles would tend to peak at times of maximum Doppler shift which are the 
same as times of maximum rate of change a <I> , (t). Therefore, it is of interest to look 
into the possibility that the derivative of the instantaneous phase is connected with the 
instantaneous amplitude of the envelope. This is done in Fig. 12, where the envelope 
E( t) is the solid curve, and the dashed curve is the derivative, represented by the 
first difference of a <1>( t) over an interval of 10 yr plotted at 5-year intervals. There is 
indeed an interdependence between the two curves but the agreement would be much 
better if the derivative were delayed 10 yr. This discrepancy might be connected with 
ray convergence as a factor contributing to amplitude increase, with properties of the 
unknown dispersion relation for internally propagated magnetic flux waves, or with 
boundary conditions at the surface, none of which was invoked in the reasoning that 
led to the carrying out of the comparison. Meanwhile the present work establishes 
that the Wolf modulation is not independent of the variation in cycle length; but let 
us suppose that dispersion is responsible for the desynchronization. 

150 

" 100 

I e 
50 « 

0 
1700 

Year 

Fig. 12. Instantaneous envelope E(t) (solid curve) compared with the derivative 
of the instantaneous phase (dashed curve). 

Dispersive magnetic flux wave. Let Rfund(S, t) be a field variable, at ray coordinate 
s, which at the surface is equal to the variable Rfund(t) introduced in Section 6. 
A simple nonlinear, dispersive differential equation that produces the wavefront 
steepening and dispersion is 

2 a R fund 

as2 

where c is the velocity of propagation of magnetic flux waves of infinitesimal amplitude, 
E is a measure of dispersion, and k is the compliance per unit length of the propagation 
medium in units appropriate to the conversion ratio between wave disturbance and 
R fund ' From the properties of such an equation it may be deduced that (vph - vgr)l c, 
the fractional excess of phase over group velocity, is E c2 / w2 . If this excess velocity 
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is to produce a lO-year lead then some connections follow between transit time, ray 
path length and dispersion. This type of differential equation implies a cutoff frequency 
we such that w~ = w2( vph - vgr)! c. 

Explanation of Elatina undulation. The form of an oscillation at the frequency 
We has the character of a magnetic flux wave of infinite wavelength; the magnetic field 
would be parallel to the field of the 22-year flux wave, enhancing and counteracting 
it in alternate II-year cycles, in exactly the way needed to produce the zig-zag effect. 
A requisite topological feature of whatever causes the Elatina undulation is that at a 
time when the cycle is enhanced in one hemisphere it must also be enhanced in the 
other hemisphere which, because of the opposition of sunspot group polarities, means 
that the cause, if additive, must reverse in sign between hemispheres. This is not 
an easy topology to account for but would be an attribute of the infinite-wavelength 
mode which, because of the boundary condition in the equatorial plane, would need 
to have an antinode there. Assuming that the Elatina undulation is indeed due to 
oscillation in the infinite-wavelength mode, one finds that 

where the factor 30 is T u111. It follows that there are 450 waves in transit in the 
dispersive pipeline to account for a lO-year separation. Also the dispersion constant 
E is constrained by E c2 I w2 = 1/302 • 

10. Conclusions 

The concept of a deep monochromatic oscillator launching 22-year magnetic flux 
waves through a time-varying propagation medium to influence the observable surface 
has been generous in supplying ideas for explaining several features of the sunspot 
number series. To go further will mean identifying the wave mode that is compatible 
with the parameters T u, E, c and the fluctuation level of one-seventh. Support for this 
investigation can be expected from statistical observations of surface magnetic fields 
and motions and from a knowledge of interior conditions revealed by helioseismology. 

There is an extensive literature on the analysis of sunspot number series but the 
investigations have not hitherto led to results bearing on the physics of the solar 
cycle. Likewise, the part of solar physics concerned with the solar cycle has been 
largely observational and descriptive and, as regards theory, conjectural. Conclusions 
relating to the physical nature of the source of the oscillations have been practically 
nonexistent. Consequently, it is encouraging to see that the sunspot number series 
can contribute to the fundamental physical question. The rich fossil record unearthed 
by Williams (1981, 1983) will provide indispensable data for future progress on the 
physics of the solar cycle. 
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