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Abstract 

Mechanisms of interaction between flux tubes or ropes and the convection zone are examined 
insofar as they are relevant to the sunspot cycle. These include floating, transport, and the 
penetration of gas from outside the tubes. It is found that all previous studies contain one or more 
major errors of physics which render their conclusions invalid. The errors include invariably 
the assumption that Archimedes' principle is applicable to flux ropes, that gas entry can be 
disregarded, and usually that floating criteria depend solely or primarily on local phenomena. 
Some of the results presented here are explanations of (i) the transport of flux tubes by the slow 
observed poleward motions and the even slower systems which carry extensions of these tubes 
downwards to depths of ~ 150 Mm and then equatorwards; (ii) their magnetic field strengths 
( ~ 104 G at a depth 10 Mm to (6-12) x 104 G at ~ 150 Mm); and (iii) the amplitudes of the 
torsional oscillation. Taken in conjunction with Part I, where the mechanism of polar field 
reversal is described and the variation of the phase of the torsional oscillation explained, all major 
cycle observations are accounted for in what turns out to be a new type of dynamo mechanism. 

1. Introduction 

The following account deals with physical processes involved in interactions 
between magnetic flux tubes and their surroundings in the solar convection zone, 
such as are related to the sunspot cycle. A general mechanism for the cycle itself 
has been outlined in a companion paper (Giovanelli 1985; hereafter called Part I, see 
present issue p. 1045). Here we first study processes whereby flux tubes deep in the 
convection zone develop instabilities and become twisted together to form flux ropes. 
Conditions are then examined for the floating of sections of these to form sunspots. 
Mechanisms for the transport to polar regions by the observed weak polewards flow 
of 20 m s -1 of flux tubes are then discussed, together with their further transport 
deep into the convection zone in polar regions,and from there equator-wards. The 
processes controlling the field strengths in the flux tubes are also studied, and finally 
the interaction between the tubes and their surroundings which is responsible for the 
torsional oscillation. 

Some aspects of these problems have been discussed many times over the past 
quarter of a century. All accounts include at least one fundamental error of physics, 

* Part I, Aust. J. Phys., 1985, 38, 1045. 
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namely the use of Archimedes' principle to test for the ability of a flux tube to float. 
This principle is not applicable to flux tubes, for which the test of the change in 
potential energy must be made. The results are greatly different and, as a consequence, 
all previous work in this area become~ invalid. Again, most accounts consider only 
a portion of a tube, as if it could be isolated from the whole tube; Spruit's (1981) 
analyses are however outstanding exceptions. Inadequate attention has been paid to 
the fundamental role of convective motions in controlling the behaviour of individual 
flux tubes, and none at all to the effects of gas entry into the tubes, decisive for 
establishing the equilibrium field strengths. 

As in Part I, the present analysis is based largely on observation. Although 
discussed using only simplified models, the interactions yield results in quantitative 
agreement with surface observations, with all major observations of the sunspot and 
magnetic cycles receiving explanations here or in Part I. 

2. Physical Conditions in Flux Tubes and the Convection Zone 

For the convection zone we adopt Spruit's (1974) model, the depth of which is 
198·4 Mm, while the tabulated values are at equal pressure ratios. For convenience 
we refer to the levels 200, 155, 100, 62 and 10 Mm, which are all close to tabulated 
values; the calculations use Spruit's actual values. 

The magnetic flux and therefore B a2 is invariant along a tube of force, B being the 
longitudinal component of the field and a the tube radius. Whenever flux tubes are 
twisted only very gently so that the field lines make angles :S0·01 rad with the axis, 
the magnetic pressure is effectively B2/811" [Piddington (1976b) has pointed out that 
this is the sort of condition appropriate to subsurface flux tubes]. The requirement of 
pressure balance then leads to 

(1) 

where Pe is the external gas pressure and q the ratio of the internal gas pressure Pi 
to Pe. From the constancy of flux, we have 

(2) 

where the SUbscripts refer to different levels on the one occasion, or after any changes 
whatsoever regarding tube shape or mass redistribution within the tube. The ratio q 
is usually very close to unity; for example, at a depth 155 Mm, 1- q = 1· 5 X 10-7 

if B = 104 G, or 3·5xlO-5 if B = 1.5x105 G, more than straddling the range of 
B to be expected in our later discussion. At 10 Mm, we have 1- q :::: 6x 10-4 for 
B:::: 104 G. 

Can surface observations provide useful leads as to the values of q? The only 
observational determination of q for sunspot umbras and outside is that of Giovanelli 
(1982), with a value of 0·25 at a depth of about 610km below Tc = 1 in the 
photosphere. At this level, the pressure scale height H p is 360 km in the external 
medium. In the umbra where T is much lower, H p is closer to 115 km. We do 
not know how rapidly T increases downwards under the umbra. As typical umbral 
diameters usually exceed 5000 km, it is difficult to see how the characteristic depth to 
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which this ratio of scale heights of 3 . 1 applies could be as small as 1000 km. Yet in 
such a distance, the external pressure Pe increases by over seven times, whereas with 
a constant ratio of scale heights the pressure under the umbra would increase by over 
450 times. Clearly the temperature structure is highly localized, with q increasing 
rapidly to a value near unity. 

There is no observational value of q for the magnetic elements away from sunspots, 
though it must be much less than unity at some appropriate level in the cavity where 
the field is concentrated. We can only suppose that, in the isolated tubes which 
originate from the fragmentation of sunspots, q again increases rapidly with depth 
and approaches unity quite near the surface. 

In non-magnetic regions in the convection zone, the pressure and density P at 
height h above some reference level zo, where h = 0 and the pressure and density 
are Po and Po, are given by 

(3,4) 

Here H p is the density scale height, j is an alternative symbol for height above zo, 
while z and j are positive outwards. Where there is no confusion, we often drop the 
subscript from symbols relating to the external medium. 

The gas pressure in a magnetic tube is qp. Hydrostatic equilibrium requires that 

(5) 

where the subscript i refers to values within the tube. Although q is close to unity, 
it may vary with height depending on internal temperature. We now examine two 
special cases between which, as shown later, the real conditions usually lie. 

Case 1. If the tube and its surroundings are at equal temperatures at every level, 
then we have 

(6) 

To some accuracy, TIp, is also the same inside and outside the tube, p, being the 
mean atomic weight, so that 

where M is the mass of unit atomic weight. Then q is independent of height. Further 
we have p = pkTlp,M, so that p/p = Pi/p, and 

Pi = qp. (7) 

Case 2. Piddington (1976b) has pointed out that only minor differences are 
required between T i and T e to ensure uniform B over a limited but possibly quite 
large range of heights. Such differences could be associated only with adiabatic 
changes in internal gas pressure. In Section 5 d, the thermal relaxation time is shown 
to be quite long, so that the adiabatic changes are quasi-stable. 
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For B uniform with height,Piddington gave the equivalent of 

1';/ Te = p/ Pe = I - B2 /817 P'e , 
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Fig. 1. Simplified flux tube projected onto a meridional plane, extending from a magnetic element 
in polar regions at J, down into the lower convection zone where it is carried equatorwards at K 
by the return flow. A perturbation projects upwards to form a loop. 

3. Forces on Flux Tubes 

Fig. I shows schematically a flux tube passing through the surface at two different 
latitudes and going deep into the convection zone (in practice, the deep tube spirals 
around the Sun). A section is perturbed upwards to form a loop. Here we consider 
the conditions under which the tube will float upwards. 

Any change in the geometry of the tube involves an· internal redistribution of 
pressure and mass. The floating is fairly rapid, during which any inward diffusion of 
plasma from outside can be safely disregarded, and thus the mass in the entire tube 
is conserved. 

The consequent redistribution· of pressure is not instantaneous, but adjustments 
occur at a rate approaching the speed of sound - 100 km s -1 throughout much of 
the convection zone. Delay times of the order of an hour or so may be involved. If 
the process is continuous, it is virtually as if the reaction were instantaneous, and this 
is what we assume here. 

There are also transients of various origins. To a large extent, oscillatory pressure 
fluctuations in the magnetic tube will give rise to waves propagating outwards into 
the non-magnetic exterior, thus damping out the oscillations in the tube. Further, 
when any portion of a flux tube rises or falls, the ambient pressure changes and the 
tube diameter increases or decreases. Accompanying this there is, for example, a 
mass decrease in a rising portion of a tube because the density decreases more rapidly 
than the pressure. In this case the gas expands downwards. Because the thermal 
relaxation time is quite long, the temperature regime thus established is effectively 
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static. Therefore, the only change in the mass distribution within the tube is due 
to the pressure redistribution. These changes are associated with changes in q and 
result in important changes in the potential energy PE. It is the change in PE which 
decides whether or not floating may occur. 

The simplest way to assess PE is to refer to a zero where no flux tube is present. 
If a tube of volume y is now introduced into the Sun at a given level, a volume of gas 
y(1- q) is effectively expelled from y into the surrounding medium, with PE being 
increased by py(l- q). This expression takes full account of all energy changes, 
including the effects of magnetic tension. Since PE depends on q explicitly, it is 
essential first to calculate changes in q as a function of changes in tube geometry 
before changes in PE can be calculated. As the behaviour depends on the temperature 
distribution within the flux tube, cases 1 and 2 are considered separately. 

There is also a force due to the resistance to motion through the surrounding gases. 
The standard experimental result for aerodynamic drag, Cp v2 aL, was introduced 
into astrophysics by Parker (1955). Here v is the component orgas motion normal to 
the fl~x tube axis and C ::::: 1. Parker (1979) has discussed the variation of C with v, 
although his analysis has application mainly to superficial layers. In a static medium, 
aerodynamic drag does not influence whether a flux tube rises or sinks, although it 
decides the rate at which this occurs. 

4. Floating of Flux Tubes: Case 1 where 11 = ~ 
(a) Stability of Unperturbed Circular Tube of Force and Location of Flux Tubes in the 
Deep Equatonoard Flow 

We consider first the stability of an unperturbed flux tube in the lower convection 
zone, and specifically whether it tends to float or sink. In general, such a tube is 
wound spirally around the Sun. As a model, we take a purely circular tube concentric 
with the Sun. If the tube rises uniformly, the radius of its axis R increases by !!..R, 
and the change in PE is 

(10) 

where the SUbscript zero refers to the initial value and the asterisk to the new value. 
To obtain q., it is necessary to use the principle of mass invariance described in 

Section 3. The procedure, which recurs usually with increasing complexity as other 
cases are considered, is given in Appendix 1, where by equation (A3) 

and where H p is the density scale height at R +!!.. R. 
In general !!..R/ R ~ 0·1, while Hp .( iR, so that dPE/dR is negative. In a static 

medium, the circular tube floats steadily upwards. The terminal velocity is found by 
equating the aerodynamic drag and -dPE/dR: 

= CPRHR V2ao[Po ~/[PRHR q.(1 +!!..R/ R)J]4 ~(1 +!!..R/ R) 

= l-b 1Ta5 ~(1-I1l)[ (1 +!!..R/ R)/ Hp -2/ RJ(1 +!!..R/ R)p R+tlR/PO (12) 
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from (11), 10 being the initial length of the tube axis. Thus we have 

1 

V = ~!a(l-flO)p, (13) 
where 1 

~2 = 1TPo (P R+!lRq.(1 +I:l.R/R»)2(1 +I:l.R/R _ ~). 
Cpo Po flO Hp R 

Effectively, we can write 
1 

~2 = 1T Po (P R+!lR(1 + I:l.R/ R»)2( 1 + I:l.R/ R _ ~), 
CPo Po Hp R 

as q./ flO is very close to unity. 

Table 1. Terminal velocities for the floating of a circular tube in a static region 

Magnetieflux is Be? = 1· S x 10 17 Mx 

Depth of 
~-~R (Mm) 

ISS 
100 

Values of vd (ems-I) for 
B = 106 G 105 G 3 x 104 G 

440 
490 

190 
220 

2·S2xl03 

3·43xl03 

The value of ~ varies only slowly with height, from 303/ ci cm s -I at 62 Mm to 
228/ ci cm s - I at 200 Mm, if we refer to a zero level at depth 155 Mm. Several 
values of v are given in Table 1 for flux fibres in which B a2 = 1·5 X 1017 Mx 
(1 Mx = 10-8 Wb). 

With C ;::: 1, the terminal velocities for flux fibres with B ~ 106 G span the 
convective velocity. It will be shown in Section 6d that the extreme range of B is less 
than 104-1. 5x 105 G, so that the terminal velocities are all appreciably smaller than 
V c. Thus, we might expect the motions of flux fibres to be dominated by convective 
motions. 

The convective velocity drops rapidly to 41 cm s -I near the base of the convective 
region. Here the convective motions are too weak to prevent floating. As a 
consequence, flux fibres concentric with the Sun are never carried down to such 
depths. If, as is commonly believed, the scale height of a convective cell is of the 
order of the pressure scale height, it has a typical vertical scale of - 80 Mm; the 
top lies around a depth of 100 Mm. Flux fibres forming the real spiral-shaped tubes 
are carried around by convective motions in the central part of the lower convection 
zone, where the gas is drifting slowly towards the equator. 

When ropes form from the coalescence of up to 103 or even 104 fibres, as argued 
by Piddington (1975, 1976a), the terminal velocity for floating increases by a factor 
of up to ~ 10, and usually exceeds V c. In this case we might expect the motions 
of the ropes to be more-or-Iess independent of convective motions. These are rather 
premature expectations. It is necessary first to study the influence of perturbations, 
the simplest of which is in a horizontal plane. 

(b) Horizontal Deformations and the Formation of Flux Ropes 

Piddington (1975, 1976a) has stressed the significance of gently twisted flux ropes 
for explaining surface phenomena, without giving details as to how such ropes could 
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be formed. If a flux tube is deformed horizontally by convective motions of velocity v 
normal to its axis and on a scale L, the tube is distorted as in Fig. 2. A simple model 
is to replace the curve by an isosceles triangle of base 2L and height 2y. The initial 
radius, length and volume ao, 10 (=21T R) and 'Yo become a., I. and 'Y. respectively 
after distortion, where 

(14) 

J 
~~~,~-~--------------------T 

" I , I 
-...: 2y 

I 

Fig. 2. Horizontal deformation of an otherwise circular flux tube concentric with the Sun. The 
solid curve represents the actual flux rope, the triangle UK an approximation used in model 
calcula tions. 

The conservation of mass during the short time interval involved implies that 

from equation (2). Thus we get 

1- q. = A2 q;, 
where 

(15) 

From equation (10) the increase in PE due to the deformation is 

Since q./ fJo is very close to unity, it follows from (14) that 

dPE/dy = Po 'Yo(1- fJo) 16(Z.!kl)Y/ kl Ll1 + (2y/ L)2j4 . (16) 

The equilibrium distortion is found by equating the aerodynamic drag and dPE/dy: 

CPo V2ao L = dPE/dy, 

or 
(17) 

For large perturbations, (17) is not quite correct, since v should be the component 
of the drag velocity perpendicular to the axis of the deformed tube; it is however 
adequate for present purposes. A further approximation is now made· by equating 
the drag velocity v to the convective velocity. Values of the deformation y when 
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an elementary fibre, taken to have B a6 = 1·5 X 1017 Mm, is at a depth 155 Mm, 
with v the convective velocity 2· 52x 103 cm S-1 and C = 1, are given in Table 2 
for disturbances on the two scales L = O.OL~ and 0.IR8 . For weaker fields than 
those tabulated, the deformation exceeds the range of validity of (17). 

Table 2. Horizontal deformation y produced in a 
flux fibre by a drag velocity equal to the convective 

velocity 

B(G) 

106 

1·5xl05 

105 

5x 104 

3x 104 

2xlO4 

Depth is 155 Mm and C = I 

Values of y (cm) for 
L = 0.01R8 L = 0.JR8 

4.8x 105 

8 ·2x 106 

1·5x107 

4.3x107 

9·5xl07 

1.9x 108 

4.8xl07 

8 ·4x 106 

I. 7x 109 

We can now proceed to the mechanism of formation of flux ropes. If all flux fibres 
are identical and v is uniform everywhere, parallel fibres suffer uniform deformations 
and never meet. But with even minor variations in flux from fibre to fibre, the weaker 
tubes are deformed further. Slight up or down motions in the convection system can 
drag two fibres into contact. In most cases the deformations are likely to be on a 
large scale, especially with weaker rather than stronger fields as Table 2 indicates. 

When tubes of force are dragged across one another at an appreciable angle, 
reconnection can occur by a process analogous to Petschek's (1964), as described in 
Part I. As long as the drag continues to pull the tubes into contact while reconnect ion 
proceeds, the speed of reconnect ion should be closely equal to that in Petschek's 
mechanism, about 0·01 VA to 0·1 VA where V A is the Alfven velocity. This type of 
interaction does not lead to rope formation, but if the angle between fibres is very 
small (e.g. ~0.01 rad) reconnection is very slow, as Piddington (1976b) had pointed 
out. The component of magnetic tension available for withdrawing flux tubes from 
the reconnection zone then becomes very small. Thus, flux fibres which are twisted 
around one another at very small angles, in either sense of rotation, will reconnect 
only very gradually and partially, bonding the fibres where they are pulled together 
in a way quite probably resembling spot welding. 

As the diameter of a rope increases, its ability to withstand deformation increases. 
Even so, there is the possibility of two ropes or incipient ropes winding around 
one another. Their individual fibres remain separate as in ropes made of hemp or 
wire, providing a substructure which may well be the basis for subsequent sunspot 
fragmentation associated with the development of light bridges. 

The partial reconnection of gently twisted fibres in deep ropes inhibits the 
propagation of twists upwards along vertically deformed tubes such as Parker (1976) 
has claimed would destroy Piddington's twisted ropes. 

(c) Vertical Deformations: Initiation of Floating of Flux Ropes 

A model of the flux tube similar to that in Fig. 2 may be used to describe its 
deformation in a vertical plane, with two differences. The height of the isosceles 
triangle is now written as 2x; and the initial length of flux tube 10 is left unspecified 
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except that it be an arc of a circle concentric with the Sun. In the early stages of 
winding 10 can be very long, but after the eruption of loops to form sunspots, it may 
be more appropriate to choose a much smaller value, for example ~ ::::: Rc::J. 

The PE of the system is discussed in Appendix 2, where (see equation A5) 

(18) 

Now consider a perturbation of given height and arbitrary scale. It is readily shown 
that 

(a/ax)(l/sin 0) = - cos2 0/x sin 0, 
so that 

- = -.- 2 exp(-2xY)- --{1- exp(-2xY)} , a G1 2 ( cos2 0 ) 
ax IsmO Yx 

- = -.- exp(-x/H)- - cos O{1-exp(-x/H)} , a1'1 4 ( Hp 2 ) 
ax Ism 0 p x p 

where sin 0 = 2x/(L2 +4x2)L Two special cases are of interest: 
(a) When x is small we have 

G1 - +1'1 - = - --- - Y+termsm x , a1'1 aGl 2L( 1 . ) 
ax ax ~ 2Hp 

and thus aPE/ax is negative for all scales of L. 

(19) 

(20) 

(21) 

(b) When the deep rope lies at a depth 155 Mm and 2x = 55 Mm, calculation 
shows that aPE/ax is positive for L < 7·9x109 em and negative for larger scales. 
For the latter, the perturbation continues to grow. 

It can be shown that the development of a perturbation does not have a large effect 
on the deep tube as a whole. The results of Section 4a can be applied without further 
consideration. 

Fig. 3. Top-hat model used for studying the floating of flux loops in 
the upper half of the convection zone. 

(d) Floating of Flux Tubes through Upper Convection Zone 

At some stage the triangular model of the perturbation becomes inadequate. It is 
then better to use a top-hat model, in which an upper horizontal subtube of length 
L is connected to the deep tube by two vertical subtubes Q (see Fig. 3). As the 
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loop rises, gas spills into the subtubes Q which are extended in the process. If L 
is long enough, the gas spilled may exceed that required to fill the extensions, the 
surplus falling mainly into the deep tube DT. If L is too short, gas must be supplied, 
mainly from the deep tube. All traces of these physical phenomena are lost rapidly 
on calculating the changes in PE; but they are the essential aspects which decide 
whether or not floating will occur. 

The potential energy is discussed in Appendix 3, where it is found from equation 
(AlO) that the upward force on Lis 

As G2 ;::: 1 and Fi ;::: ~, equation (22) is roughly 

This is very different from the incorrect result obtained from the application of 
Archimedes' principle, namely PL 'Y L(l- q)/ Hp. 

The relation (23) shows that L usually experiences an upthrust when L is long, 
but a downward force when L is short. The transition occurs in the approximate 
range 4Hp ~ L ~ 2/ Y. As examples, equation (22) shows that if the deep tube is at 
~ = 155 Mm, the transitions when L is at depth z are: 

Depth of L 

z = lOMm 
100Mm 

Transition length 

L = 37Mm 
250Mm 

The disagreement between the two models at depth 100 Mm is not too surprising, 
for this is where each might perform worst. Overall, we can see the general pattern 
in which very tiny perturbations occur on all scales, though only the larger can 
survive up to a depth of 100 Mm. At shallower depths the perturbations develop 
into well-defined loops, tapering in as they approach the surface. By a depth of 
10 Mm they will continue to float upwards provided that L> 37 Mm. This size is a 
minimum, at which there is a neutral equilibrium, and L will exceed it in all cases 
where the loop floats. 

The velocity of floating is found by equating the aerodynamic drag on a rope of 
N fibres and radius aN: 

With L = 50 Mm at a depth 10 Mm, then l/J = - O· 84 AJ a~o(1- ~), where a NO is 
the rope diameter at level zoo It is convenient to convert a NO to aN using equation 
(2), whence 

O· 84p1Ta~(1- q) 
I 

p(p/AJ)'iLGt 
or 
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With 1- q = B2 /87T P and aN = 3·81 X 1010 B-~ for a rope of 104 fibres each having 
B a2 = 1·5 X 1017 Mx, then v = 7· 1 X 102 B~ C - ~ or 7· 1 X 105 cm s - 1, if B = 104 G 
and C = 1. For this value of B, the rope diameter is 7·75 Mm, or about ~ of the 
depth of the rope. Thus, the time for the rope to float through the surface is not very 
different from 2aN/v, 

t = 1· 1 X 108 C / B~ = 1· 1 X 103 s if again C = 1. 

There are observations of the time required for this process, which produces arch 
filament systems whose typical development requires a day or so, longer than our 
approximate calculation by a factor of - 100. For the time scales to agree B would 
need to be - 300 G, which is quite incompatible with the observed sunspot fields of 
- 3000-4000 G. It is difficult to explain such a large difference unless the condition 
Ii = Te is inapplicable, so let us then examine case 2. 

5. Floating of Flux Tubes: Case 2 with B Uniform with Height and Pi = Pe 

(aJ Introduction 

In case 2, B is uniform with height, although this can be so only over a limited 
though possibly large range of height. Both Piddington (1976b) and Spruit and 
Ballegooijen (1982) have asserted that the equality of internal and external densities 
ensures neutral equilibrium, but this is not so. As in case 1, it is necessary to examine 
the changes in PE involved. 

Because the mass of gas in the tube is fixed, any change in tube configuration 
causes a change in tube volume and in the uniform (but not invariable) field strength. 
The volume change is accompanied by a change in PE, assessed by 

aPE = J pdy. (24) 

The integral is to be taken over the whole tube. As before, it is necessary to calculate 
the tube radius a from the equation of mass invariance. 

The two cases discussed in Sections 4a and 4b lead, with even less approximation 
than in case 1, to the same results as case 1; we do not need to give the analysis here. 

(bJ Vertical Deformation of a Flux Tube 

Consider a flux tube or rope whose axis of length 10 is concentric with the Sun. 
We suppose that it is perturbed upwards through a height 2x, as in Section 4c. 
Appendix 4 discusses for the lower convection zone the potential energy derived from 
the triangular approximation and its variation with x (see equation A 13). A little 
reduction yields 

aG2/ax = 4(sin 8)/ ~, 

aF;/ax = (2/ ~ sin 8)[2 exp( -2x/ Hp) 

-(Hp cos2 8/xH 1- exp( -2x/ Hp) J]. 
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(a) When x is small, we have 

G aF2 aG2 2L . 
2 - + F2 - = - -- + terms III x, 

ax ax 10 Hp 

and thus aPE/ax is negative for all scales of L. 

(b) When the deep rope lies at a depth 155 Mm and 2x = 55 Mm, calculation 
shows that aPE/ax is negative for L ~ 1·4x 1010 cm. Perturbations of scale larger 
than this will still float when they rise to a depth 100 Mm. Smaller scales cannot 
reach this level in the triangular model. 

(c) Floating of Flux Tubes through Upper Convection Zone 

A top-hat model is more appropriate in the upper convection zone, and the analysis 
is fairly simple. The mass in the deep tube is 1Ta2(1o- L)po. In L the mass is 
1T a2 Lp v and in the two tubes Q it is 21T"a2 f ~L P j dj. Then the equation of mass 
invariance is 

(25) 

where 

and thus 
a2 = a6 ~PO/G2· 

In the deep tube, the contribution to ~PE is Po 1T a2 ( 10 - L). In L it is PL 1T a2 L, and 
in the two tubes Q it is 21Ta2 f~L Pj dj. Thus, the total is 

where 

~PE = 1Ta2 ( Po(lo- L) + PL L+2 f: Pj dj ) -const. 

= 1Ta2 E -const., 

From this we get 

Now we have 

where again H p is the density scale height at the level of tube L, so that 

that is, 

(26) 
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We let the deep tube lie at a depth 155 Mm and put ~ = Rev, a value which can 
be regarded as allowing for the more-or-Iess vertical portions of the tube at either 
end. In the top-hat model, the scales on which floating occurs are: 

Depth of L 

100, 62, 24 Mm 
15 
10 

Scales which float 

All 
L < 15·6 Mm 
L < 9·6Mm 

As in case 1 there are differences from the triangular perturbation model when the 
perturbation has risen to a depth of 100 Mm. The latter was found able to float only 
on scales> 140 Mm. This level is the one where the two models are at the limit of 
their applicability, and the differences should not be regarded as serious. 

It is interesting that in case 2 the top-hat model predicts floating on all scales as 
the perturbation rises to a depth of 24 Mm, but above this only the smaller scales 
may float. 

Case 2 is much more artificial than case 1 since it requires a very specific temperature 
difference below the external temperature, which varies as a function of height. Even 
so, a general pattern of floating can be described. Very small perturbations can 
develop on all scales, and certainly the larger of these, perhaps all, can grow up 
to depths of - 100 Mm. Above this they continue to grow on all scales until they 
reach depths of 24 Mm. Above this, the scales on which floating can occur become 
smaller, until by a depth of 10 Mm only scales of ~ 9·6 Mm survive. Thus in case 
2 the perturbation tapers in towards the surface; the tube or rope would cut the 
surface with both sides lying within the diameter of a single sunspot. Clearly there 
are anomalies with case 2. 

(d) Physical Principles in Establishing Temperature Gradient: Resolution of Arch 
Filament Lifetime 

We consider the consequences of a top-hat tube of force floating upwards through 
the convection zone. For simplicity, we let Ii = Te at every level initially. If now the 
tube L rises, it expands because of the reduced external pressure, causing an overall 
increase in tube volume and adiabatic cooling. But there is in addition a pressure 
readjustment throughout the tube which involves an adiabatic temperature variation 
with height, similar to that in the external medium. The two effects are additive and 
the net result is a temperature in the flux tube everywhere lower than in its immediate 
surroundings. 

The temperature commences to relax because of the inflow of radiation. The 
relaxation time may be assessed by making use of the results (and notation) given 
by Carslaw and Jaeger (1959) for the time variation of average temperature v inside 
an infinite cylinder of radius I whose surface is maintained at temperature V. Their 
Fig. 12, curve III, gives vi V in terms of the thermal diffusivity 

K = KlpC, (27) 

where K is the thermal conductivity and C the specific heat. The plotted curve 
applies specifically for a cylinder at zero initial temperature, but it is equally valid 
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for an initial uniform nonzero internal temperature. The time for the initial average 
temperature difference to relax by a factor of e- 1 is given by Kt/[2 = 0·035, or 
t = 0·035/2/K. 

The ordinary thermal conductivity can be neglected by comparison with the 
radiative conductivity, for which Spruit (1977, p. 41) gave the expression 

(28) 

where (J" is the Stefan-Boltzmann constant and KR the Rosseland mean opacity per 
unit mass. For a fibril at depth 10 Mm and B as large as 105 G, then I = a = 

1.225x106 cm, while with Spruit's (1974) values we have K = 1·04x105 (in c.g.s. 
units). Hence we get t = 5· Ox 106 S ;:::: 60 days. For the average temperature to 
relax by 0·8 of the initial temperature difference requires 3· Ox 107 s, or about a year. 
For a rope of N fibres these times are increased by the factor N. Further, they are 
greater if B < 105 G or if the tube is deeper in the atmosphere. Therefore, we can 
disregard temperature changes due to the influx of radiation. 

Surface observations can now tell us the domain in which the tube temperature lies. 
Floating cannot occur on the scale of arch filament systems if the temperature is as 
far below external as in the case 2, while the tube floats much too quickly if effectively 
at the external temperature. Clearly, the tube temperature is intermediate between 
cases 1 and 2. In this way the rate of floating is reduced and the observed lifetimes of 
arch filament systems can be satisfied readily. Theory is not yet developed sufficiently 
for the problem to be inverted, giving more exactly the temperature distribution from 
surface observations. Nevertheless, this emerges in Section 6. 

6. Transport of Flux across the Sun's Surface 

(aJ Dispersal of Flux from Sunspots 

Piddington (1975, 1976a, 1976b) has described how flux fibres unpeal from the 
ropes which form sunspots, and has produced diagrams showing the corresponding 
subsurface structures of ropes and fibres during and after sunspot decay. These 
concepts have strong observational backing. 

It is well known that the surface magnetic elements reside mainly near the 
boundaries of supergranules, although they are also transported poleward over a time 
of 6-12 months during which most of the surface flux disappears. We now consider 
some of the problems of the interaction of the flux fibres with their surroundings. 

A flux fibre which passes through the surface experiences a horizontal aerodynamic 
drag of order C p v2 a Hp on that part of the fibre which projects upwards. Here p and 
H p are the density and scale height at the level where the fibre is being drawn out, 
and v is the velocity of drag. If the rate at which the tube is being extended is ev' 

then 0 < v < ev• During extension, gas must be supplied to fill the new volume. This 
can come either from deep within the convection zone, requiring the performance 
of work by the drag, or from the entry of gas into the tube, locally or from above 
during the long time available. Some of the processes involved have been studied by 
Giovanelli (1977). There are others, but all are insignificant by comparison with the 
rate of entry of gas by ohmic diffusion, which alone is of importance for the theory 
of the cycle. If the local supply is sufficient to fill the extending tube, the rate of 
extension is maximized, the only force to be overcome by the drag being the magnetic 
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tension i B2 a2. In this case we have 

Cp2aHp::::: iB2a2 , (29) 

or 

for a flux fibre in which B a2 = 1·5 X 1017 Mx and for conditions appropriate to a 
depth of 10 Mm. 

Observation indicates a typical time of 6 hours for the redistribution of the magnetic 
elements close to the boundaries of the new supergranules after the breakdown of the 
old. With typical distances of 7·5 Mm over which the elements must be transported, 

. their velocities are - 3·5 X 104 em s -I. The typical supergranule velocities are 
_4x104 ems-I. Thus the magnitude of v is :s,104 ems-I, and from equation (29), 
B :s, 104 G if C = 1. 

There would no possibility of the slow poleward motions transporting the magnetic 
elements but for the existence of the supergranule motions. It is still uncertain from 
observation whether the supergranules themselves drift slowly polewards, or whether 
there is rather, on average, a slight polewards redistribution of the elements after the 
breakdown of supergranules. The difference is immaterial for the present purposes. 
Both result on average in the polewards drift of the elements. 

--- -Photosphere 

Fig. 4. Flux tube being drawn out from a sunspot. 

The early stages of dispersal of flux tubes from sunspots involve a slightly different 
process. Here the flux tube is not dragged out horizontally, but is more as shown in 
Fig. 4. In this case the tube extension is quite small within say the first supergranule 
from the sunspot. Therefore the velocity of transport should be somewhat greater than 
normal in this region, but perhaps not sufficiently large to account for the observed 
enhancement across the moat. Another reason has been suggested by Piddington 
(1975, 1976a). 

(b) Rate of Entry of Gas into Flux Tubes: Field Strength in Subsurface Fibrils during 
Poleward Transport 

The volume of gas diffusing by ohmic dissipation into a unit length of a circular 
flux tube per second is given by d(7Ta2)/dt ::::: 1/0-, where 0- is now the electrical 
conductivity (in emu). Under usual conditions this would result in the continuous 
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diffusion of flux into the surroundings. In the present case, a quite different situation 
occurs. The magnetic tube is being extended continuously, and gas flows along the 
tube to occupy the extensions. Instead of a continuous expansion of the tube, an 
equilibrium size is established whose properties we shall now explore. 

If a tube of length I is being extended at velocity e v by drag, a gas of volume 
Id tl u enters in a time d t. During this time the tube extends to I + ev d t and the 
cross section changes to 7T a2 + d( 7T a2). Then, we get 

or 
(30) 

a relation that supposes zero gas is required from below. 
A type of steady state is achieved when d(7Ta2)/dt = 0; then 

(31) 

With B a2 = 1·5 X 1017 Mx in a typical flux fibre, the field strength is 

(32) 

The length of fibre is increased by contortions as in supergranules, so that I = a 10 , 

where 10 is the length in the absence of contortions. Then we get evil = 1//0 , Since 
I 0 ~ ~, then B ~ 1· Ox 104 G when we use Spruit's value of u = 7·6 x 10-7 emu 
for a depth 10 Mm. This is in close agreement with the value Piddington (1975) 
inferred from observation, and implies that the extension of the flux tube involves 
little supply of gas from deeper regions. It is interesting that the rate of extension of 
the tube has dropped out of the expression for the field strength. 

(c) Downward Transport of Flux Fibres in Polar Regions 

When magnetic elements are carried to polar regions, the subsurface tubes joining 
them back to the ropes surviving from the dispersed sunspots remain subject to 
dragging around by convective motions or eddies. However, the small drift velocity 
superimposed on the larger convective motions is now downwards, and this is the 
overall direction in which the subsurface tubes are dragged. Their radii are far too 
small to allow floating to the surface in the presence of the strong convective motions. 

How deep do they go? Close to the base of the convection. zone the convective 
velocity becomes smaller than the velocity of floating (see Sections 4a and 5 a), so that 
flux tubes can never reach such levels. On average they are carried around convective 
cells or eddies at a depth of ~ 155 Mm, about the centre level of the equator-ward 
flow. 

The mass of gas diffusing into the tube per second is f(Plu)/3D dz, where /3 D 

is a factor allowing for contortions in the tube. When the tube extends down to a 
depth of 155 Mm, the integral has the value 6·Sx1013 /3 D gs-I. It is interesting to 
compare this with the mass in the tube in cases 1 and 2. In case 1, a field 104 G 
at a depth 10 Mm implies 6· 3 x 105 G at 150 Mm; the total mass turns out to be 
9·7 X 1020 /3 D g. The characteristic time for filling the tube is 9 x 106 s, about 100 
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days. This is considerably shorter than the time required to carry the tube down. 
Suppose, for example, that the downflow occurs over a latitude belt of width ~ Rev, 
then the transport time is ~ 108 s or ~ 3 yr. In case 2, where the tube cross section 
is uniform, a field 104 G at a depth 10 Mm implies that 7Ta2 = 4· 7x 1013 cm2 with 
a mass 4·7 X 1013 f3 D f p dz = 3· Ox 1022 f3 D g down to 150 Mm. The characteristic 
time for filling the tube is 4·4x 108 s, or 14 yr. 

We saw earlier that the actual temperature distribution is intermediate between 
these two cases when a loop floats upwards. It is probably so in the polar downflow. 
The time to fill the tube is almost certainly intermediate between the above two 
extremes. The actual field strength follows from the next subsection. 

(d) Field Strength in the Deep Tube 

The bulk of the gas in a flux tube resides in the deep tube in the equatorward 
flow. Dragged out by differential rotation, the tube is spiral shaped. Ultimately it is 
wrapped around the Sun at a typical depth of 155 Mm. The ohmic diffusion of gas 
into this tube introduces several new problems. 

As before, the equilibrium tube radius given by (31) is a2 = l/7TO"ev' a relation 
which is deceptively simple. Flux ropes are being built up during winding, and at 
anyone time N fibres will have been twisted together, initially rather loosely but 
later more tightly. At first sight, equation (31) suggests that the equilibrium diameter 
of a flux rope is independent of the number of its fibres, i.e. that the field strength 
increases greatly as the ropes grow. 

It is by no means obvious that this will be so. For example, it is not clear that 
the equilibrium condition d(7Ta2)/dt = 0 is reached in the case of thick ropes; (31) 
is then unlikely to be applicable. 

There is also uncertainty as to the structure of the subsurface rope after several 
years of winding. It seems most likely that, at higher latitudes, winding of individual 
fibres is rather loose. At lower latitudes, the fibres become more tightly wound. On 
this basis, we can suppose that, down to about t/J z 45°, the field strength is about 
the same as that of individual fibres. At lower latitudes, to about 30°, tubes of force 
receive gas which has entered the loosely wound fibres above t/J z 45°, while relatively 
little gas diffuses directly into the much thicker rope at lower latitudes. 

Within the range t/J ~ 45°, (31) gives a2 = l/7TO"ev where I = 3 ·16x 107 nev ' 

n being the number of years since polar latitudes were left, ev is the mean rate of 
extension of I in cm s - 1 and ev the instantaneous rate of extension. Simple calculation 
shows that by t/J = 45° (n = 4), we have ev = 0·73 ev' where 

a2 = 2·31xl07 n/7TO" , 

and where, for a depth 155 Mm, Spruit's conductivity is 0" = 1·165x 10- 5 emu. 
Then, we get 

For a single fibre, with B a2 = 1·5 X 1017 Mx, we have 

B = 6·0x104 G. 

By continuity, this is also the field strength at the base of the downflow. 
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The field at latitudes down to the sunspot zone (30°) is found by noting that the 
total cross section, where 1> < 45°, is 7Tai while, where 1> ~ 45°, it is N7Ta~. The two 
cross sections are effectively equal. If 11 and 12 are respectively the lengths of deep 
tubes from polar latitudes to 1> < 45° and to 1> :::: 45°, the ratio of the corresponding 
volumes is simply 11/0., with a value of about 2 by 30°. Thus, B roughly doubles to 
1·2x 105 G by 1> :::: 30°. 

At lower latitudes, sections of flux rope are cut off increasingly as sunspot 
development proceeds. To estimate the field strength in these sections, we make 
the simple assumption that, on average, B is unchanged initially after the section is 
cut off. The length of tube available for gas entry is then reduced greatly, and as 
a consequence the field may not change much subsequently. Any significant inflow 
reduces B. Thus we have B ~ 1·2x 105 G. 

7. Review and Discussion 

In Part I and here we have considered the extent to which the main observed 
features of the sunspot and magnetic cycles can be explained in terms of surface 
and subsurface phenomena. A single coherent self-consistent scheme has emerged 
involving a new type of dynamo theory and covering: 

(i) the mechanism of reversal of the polar magnetic field; 

(ii) the method of transport of magnetic flux in the convection zone, including 
transport in regions of very slow drift velocities; 

(iii) the strength of fields in flux tubes throughout the convection zone; 

(iv) the mechanism whereby flux ropes are built up in the deeper convection zone, 
and the typical depth at which this takes place; and 

(v) conditions under which flux ropes will float to the surface to form sunspots. 

The analysis has brought to light several physical phenomena which have been 
overlooked or handled incorrectly in previous studies, and render all previous analyses 
invalid. These include: 

(i) overemphasis on local properties of flux tubes rather than treating tubes as a 
whole; 

(ii) the failure of Archimedes' principle to describe the floating of flux tubes; 

(iii) the omission of the inflow of gas to flux tubes by ohmic dissipation as a crucial 
feature controlling their field strengths; and 

(iv) neglect of the dominant role of gas motions in transporting flux tubes when 
their velocities of floating are small compared with convective velocities. 

Taken as a whole, these factors have been responsible for the very major differences 
between the results found here and those of earlier and contemporary workers in 
dynamo theory. 

The main additional results are that: 

(i) the building of flux ropes occurs at depths of typically 150 Mm, field strengths 
being _104 to 1· 2x 105 G; 

(ii) perturbations which will float to the surface can develop only when hundreds 
or thousands of flux fibres have been twisted to one another at angles of order 
0·01 rad or less to form flux ropes; 
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(iii) the field drops off with height in a flux tube, but not as rapidly as when 
internal and external temperatures are identical at all levels; 

(iv) just as differential rotation distorts flux tubes into a spiral shape, so these flux 
tubes react to reduce differential rotation. A good representation is found for 
the phase pattern in the torsional oscillation and its relation to the sunspot 
cycle. The amplitude is complicated but satisfying agreement with observation 
emerges from the discussion for latitudes above the sunspot zone. At lower 
latitudes the phenomenon becomes more complicated and is not treated here; 

(v) the Hale and Sporer laws follow readily. 

The whole analysis has been made on the basis of perturbations having the form 
of simple models. There remains the need to undertake more exact analyses so as to 
provide greater insight into these various phenomena. 
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Appendix 1. Mass Invariance and Potential Energy Changes in a Circular Tube of 
Force always Concentric with the Sun 

Let a toroidal tube of force of circular cross section, with radius aD, lie at distance R 
from the Sun's centre. Suppose now it rises by II R, with the original volume, pressure 
rlltio, external density and tube . radius changing from Yo, qo, Po, aD to Y., q., p., a •. 
Then the conservation of mass during the short interval involved implies 

that is, 

Thus, we get 

from equation (2), so that 
(AI) 
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where 
Al = (l-qo)(1 +l:!.RIR)2(PR+6.RIPo)2(PoIPR+/:"R)/q6 

= (l-qo)(1 +l:!.RIR)2exp(-2Y l:!.R)/q6, 

and where Y = 11 Hp - 1I2Hp. 
The increase in potential energy PE may now be written as 

= Po 'Yo(l- qo)[(l + l:!.RI R)3! (1- qo)/(l- q.) )4(p R+/:"RIPo)2(Pol PR+/:"R)4 

x(q.lqO)2 -I] 

from equation (2), which reduces to 

from (AI). Then we get 

since q.1 qo is effectively unity. Note again that H p is the density scale height at 
R+l:!.R. 

Appendix 2. Mass Invariance and Potential Energy Changes in a Vertical Triangular 
Deformation: Case 1 with T j = Te 

Consider a deformation similar to that shown in Fig. 2, except that the isosceles 
triangle now lies in a vertical plane and its height is 2x. The initial length of 
arc 10 is now arbitrary, and the base length of the deformation is 2L. After the 
perturbation develops, the unperturbed part has a mass 7Ta;(1o-2L)po q., where a. 
is the tube radius at zero height and q. the pressure ratio. In an element of length 
ds = dzl sin e, where e is the base angle of the triangle, the mass in the perturbation 
is 7Ta~(dz/sin e)pz q •. Integrated over both sides of the perturbation, its mass is 
27Ta; Po q.! 1- exp( -2x Y) J! Y sin e. Thus, the mass invariance equation becomes 

7T a6 10 Po qo = 7T a;(l- 2L)po q. + 27T a; Po q. P - exp( - 2x Y)) I Y sin e 

= 7Ta6 Po q.! (1- qo)/(l- q.) )4[/0-2L +2! 1- exp( -2x Y) J! Y sin e) 

from equation (2). Then we have 

where 
A3 = [1 -2Lllo +2! 1- exp( -2x Y))I 10 Y sin e]2(q.1 qo)2(1- qo). 

Again we replace (q.1 qO)2 by unity, obtaining 

(A4) 
where 

GI = 1 -2Lllo +2! 1- exp( -2x Y))I 10 Y sin e. 
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After development of the perturbation, the PE consists of two parts. The part due 
to the residue of the circular arc is Po 1Ta:(lo-2L)(1- q.). To derive the contribution 
due to the perturbation, we note that the mass dM.(I- q.) is effectively expelled 
from ds = dzl sin 6, where 

dM. = 1Ta;pz dzl sin 6 = 1Ta: exp( - z Y) dzl sin 6. 

Then the PE of the perturbation alone is 

2x 2x 

21T Jo pz a;(1-q.)dz/sin 6 = 21TAla:(1-q.) Jo exp(-zI2Hp)dz/sin 6 

= 21TPO a:(1- q.){ 1- exp( -xl Hp)J 2Hp/sin 6. 

The total increase in PE can be expressed as 

aPE = Po 1Ta5{ (1- qo)l(1- q.) J i 10(1- q.) 

x [1 -2Ll1o +4Hp{l- exp( - xl Hp) JI 10 sin 6] - Po a~ 10(1- qo) 

(A5) 

from (A4), where 

1'J. = 1 - 2LI 10 + 4 Hp {l- exp( - xl Hp) J 110 sin 6 . 

Appendix 3. Mass Invariance and Potential Energy Changes in a Top-hat Model 
Perturbation: Case 1 with 11 = 7;,. 

A large perturbation may be studied using a top-hat model with an upper horizontal 
subtube of length L connected to the deep tube DT by two vertical subtubes Q (see 
Fig. 3). For simplicity, DT is taken to be straight rather than curved. 

The mass in the initial deep tube was 1Ta~ 10 qoPo. After loop formation, the mass 
becomes 1Tain(/o-L)qpo, where aDT is its new radius and q the new value of p;lPe. 
The .mass of L is 1T ai Lqp L where P L is the external density at the level of tube L. 
The mass of the two tubes Q is 21T f ~L a] qp j dj. Then, we get 

1Ta~ 10 qoPo = 1Tain(/o-L)qpo +1Tai LqPL +21T J:L 
a; qPj dj 

= 1Ta~ q{(I-qo)l(I-q)J4((/0-L)po+(polh)iLPL +2 J:L 
piPolp)i dj ) 

from equation (2). Thus, we find 

(A6) 

where ~ = {(/0-L)+LtL+2tQ J/lo, and where 

fL = fz(z= zL)' fz = (pzIPo)(Polpz)i = exp( - J: lj dj ), JZL 

tQ = 0 fz dz. 
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The factor qo/ q in (A6) is very close to unity and may be omitted safely, so that 

(A7) 

The variation of q during floating is thus 

dq/dz = -(1-qo)2~d~/dz 

= -(1-qo)2G2 fL(2-LY)/lo· (A8) 

The three terms within the braces in G2 give respectively the relative masses in the 
deep tube, the horizontal subtube L, and the two vertical tubes Q. In general the 
major part lies in DT, with the least in L, while ~ z 1. 

Before loop development, the PE of the system is 

After loop development, equations (2) and (A6) convert the PE of DT to 

The PE of tube L is 

while that of the tubes Q is 

Thus, we have 
(A9) 

where 

Fi = 10 - L + L(PL/ Po)t + 2 f:L 
(Pz/ Po)! dz. 

Then, the upward force on L is 

ljJ = -dPE/dz = -Po 7Ta6(1- qo)[FifL(2- LYz )/10 
L 

1 

+ G2 ! -(L/2Hp) exp( -zL/2Hp) +2(PL/Al)' J]. (A 10) 

Appendix 4. Mass Invariance and Potential Energy Changes in a Vertical Triangular 
Deformation: Case 2 with Pi = Pe 

With the same geometry as in Section 4c, the mass in the initial tube of length 
10 with tube radius aois 7Ta610 qoPo = yqoPo. Here the ratio qo is used on the 
assumption that the tube is initially isothermal with its surroundings. 

After perturbation, case 2 requires the tube radius to be uniform everywhere. 
The mass in the unperturbed portion of the tube is 7Ta2(l0-2L)po. In the model 
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perturbation, the mass in an element of length ds = dz/sin 0 is 7Ta2pz dz/sin 0, 
where 0 is the base angle of the triangle. Thus, the mass in the two inclined sides is 

2x 

(27T a2/ sin 0) f 0 Po exp( - z/ Hp) dz or 27T a2 Po Hp! 1- exp( -- 2x/ Hp) J / sin 0, 

if the scale height is taken as uniform over the height of the perturbation. Then, the 
mass equation becomes 

7Ta6/0 qoPo = 7Ta2(l0-2L)po + 27Ta2po Hp! 1- exp(-2x/ Hp)J/sin 0 

= 7Ta6! (1- qo)l(1- q)J~[l0-2L+2HpP - exp( -2x/ Hp)J/sin OJ, 

where q is the ratio of internal and external pressures at the level of the deep tube. 
Thus, we have 

l- qo( 2L 2Hp )2 
l-q = -2- 1- -. + . p-exp(-2x/Hp)J 

qo 10 10 SIll 0 
(All) 

The PE of the unperturbed section of the tube is LlPEw = Po 7T a2(1- 2L)(I- q). 
In the perturbation, dz contributes an amount dPEp = 2pz 7T a2(dz/ sin 0)(1- qz). 

Integrated over the perturbation, the PE contribution is (27Ta2 ) J~x p/l- qz)dz. 
However, we have 

2 2 2(I- q P)~ a=a=a ---
z 1- qz pz ' 

so that p/l- qz) = p(l- q) = Po(1- qo), and thus the contribution is 

f2X 

LlPEp = (27Ta6Po/sinO) 0 (l-q)dz = 27Ta6Po(1-fJo)W-q)/(I-fJo)J42x/sinO 

= 27Ta6 Po(1- fJo) 1 - - + . p p - exp( -2x/ Hp) J 2x/ fJo sin O. ( 2L 2H ) 
~ ~ SIll 0 . 

Then we get 

where 

and thus 

F2 = 1-2L/lo +2HpP- exp(-2x/Hp)J/lo sin 0, 

G2 = 1 -2L/lo +4x/lo sin 0, 

(AI2) 

(AI3) 
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