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The dielectric tensor of a weakly relativistic, magnetized plasma is derived for distributions 
separable in momentum and pitch angle by using an expansion in powers of the Larmor radius. 
The results are initially expressed in terms of an integral over the electron pitch angle distribution 
which is itself unrestricted apart from a single symmetry condition. These results include 
relativistic and finite Larmor radius effects contributed by harmonics s with - 2 .;;; s .;;; 2 for 
all propagation angles and thus provide a useful framework for both numerical and analytical 
investigation of electron cyclotron phenomena (propagation and absorption of waves, maser 
action, current drive etc.) in a wide variety of isotropic and anisotropic plasmas. Explicit results 
are presented for the dielectric properties of isotropic, loss cone, anti-loss cone and hollow beam 
distributions, and for wave propagation perpendicular to the magnetic field. In these cases the 
pitch angle integrals are performed in terms of functions related to the standard plasma dispersion 
function. 

1. Introduction 

The purpose of this paper is to derive an expression for the dielectric' tensor of 
a weakly relativistic (characteristic electron energies $,20 key), magnetized electron 
distribution separable in momentum and pitch angle. This work is intended to provide 
the basis for investigation of the propagation and absorption of waves in isotropic 
and anisotropic plasmas, especially when the frequency is near the electron cyclotron 
frequency {Je or its second harmonic and also when the Cerenkov and/or anomalous 
Doppler resonances are of importance. An important aim is to obtain expressions 
which, not only permit straightforward computation of wave properties in a wide 
class of distribution functions but, enable qualitative physical insight to be gained in 
important limiting cases without one resorting to involved numerical computations. 

Interest in electron cyclotron interactions arises from a number of sources. First, 
electron cyclotron maser emission from loss cone plasmas is believed to be the 
mechanism responsible for auroral kilometric and z-mode radiation and Jovian 
decametric emission (WU and Lee 1979; Melrose et al. 1982; Hewitt et al. 1982; 
Hewitt et al. 1983), and for a number of solar and stellar microwave emissions 
(Melrose and Dulk 1982; Dulk 1985). Furthermore, similar instabilities may exist 
in loss cone. plasmas in laboratory devices such as the endplugs of tandem mirrors 
and the hot electron rings of bumpy tori (Pritchett 1984). Second, electron cyclotron 
resonance heating of isotropic and anisotropic plasmas near the first and second 
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harmonics is relevant in the laboratory situations mentioned above and in tokamaks; 
both propagation and absorption of waves are of interest in these contexts (Bornatici et 

af. 1983). Third, the dielectric properties of hot, magnetized plasmas are of interest in 
connection with electron cyclotron current drive and with mode coupling (Bornatici 
et af. 1983). Fourth, the Cerenkov and anomalous Doppler resonances have been 
discussed in connection with amplification of auroral hiss (Melrose and White 1980) 
and scattering of runaway electrons in solar flares and the laboratory (Liu et af. 1977; 
Kuijpers et af. 1981; Gandy et af. 1985). 

In most analyses of electron cyclotron absorption the dispersion relation of the 
waves has been assumed to be given by cold plasma theory on the grounds that the 
plasma temperature is low or because the absorption is due to a small population of 
hot electrons in the presence of a dense, cold background plasma which determines the 
hermitian part of the dielectric tensor. Neither justification is valid in general-even 
in low temperature plasmas, intrinsically relativistic effects are important near the 
cyclotron frequency and its harmonics (Dnestrovskii et aZ. 1964; Shkarofsky 1966; 
Wu and Lee 1979); furthermore, in some laboratory and astrophysical situations few 
cold electrons are present and hot electrons determine both the hermitian and the 
antihermitian parts of the dielectric tensor (Tsai et af. 1981; Winglee 1983; Pritchett 
1984). 

A number of investigations of electron cyclotron absorption have been made which 
assume special forms of the (in general, anisotropic) distribution function and retain 
some finite Larmor radius (FLR) and relativistic effects on the dispersion. In addition 
to the restrictions implicit in a specific choice of distribution function, these treatments 
usually assume that contributions to the dielectric tensor from harmonics s .;;; 0 may 
be approximated by their cold plasma values, or that contributions to the hermitian 
part of the dielectric tensor from I s I ;;. 2 may be neglected entirely. The first of these 
assumptions implies that the Cerenkov (s = 0) and anomalous Doppler (s .;;; -1) 
resonances are not important and is in general justified only if the refractive index n of 
the waves is less than unity. The second assumption is equivalent to neglecting FLR 
effects except those contributed by s = 1. Such a neglect is shown to be unjustified 
in Section 3 where we demonstrate that lowest order FLR effects from I s I = 2 
(but not I s I > 2) can be comparable in magnitude with the zeroth order s = 0, ± 1 
contributions in weakly relativistic plasmas. Furthermore, near resonances in the 
dispersion relation (e.g. near the upper hybrid frequency), the wavevector is large and 
hence FLR effects are significant. 

In this paper we evaluate the dielectric tensor for separable electron distributions, 
retaining FLR and relativistic effects for I s I ,,;; 2. The results, given in Section 2, are 
expressed in the form of an integral over the pitch angle distribution; the integrands 
are related to the standard plasma dispersion function (Fried and Conte 1961). In 
Section 3 and Appendix 2 we discuss the dielectric tensor for a number of specific cases 
of distribution function, propagation angle and frequency in which the pitch angle 
integral in Section 2 can be performed and in which the results simplify considerably. 
Near the first and second harmonics these specific results generalize those of Tsai et 

af. (1981) and Wong et af. (1982). 

2. Analysis 

In this section we evaluate the dielectric tensor of a weakly relativistic, magnetized, 
anisotropic plasma separable in momentum and pitch angle in terms of an integral 
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over its pitch angle distribution. Frequencies are measured in units of the cyclotron 
frequency fle = eB/m where B is the magnetic flux density. The waves are then 
described by their frequency eu and wavevector k (with k in units of e/ fle)' The 
plasma frequency eu p is given by eu~ = N m/ EO B2 where N is the number density 
of electrons. The electrons are described by their momentum p (in units of me) and 
distribution function F which is assumed to be separable in p and the pitch angle 
cosine J.L with 

F(p, J.L) = f(P) <P(J.L) , (1) 

1 f -I dJ.L <P(J.L) = 2, (2a, b) 

The dielectric tensor E is a function of the frequency eu and the refractive index 
vector n = k/ eu which has cartesian components 

n = (nl'O, nil) = (n sinO, 0, n cosO), (3) 

where the propagation angle 0 is the angle between nand B (B is assumed to be 
uniform and directed along the z axis). The subscripts II and 1 denote components 
parallel and perpendicular to B respectively. In terms of these variables E may be 
written (see e.g. Melrose 1980, p. 41; Bornatici et al. 1983) 

with 

L = - f dp J.Ly-If(p)[ d <P(J.L)/dJ.L J bb, 

b = B/IBI, y = (l+p2)4, 

s2J;/ kI 
As = isP1JsJ/k1 

sP11 J;/ kl 

pr(J ;)2 

-iPII PlJsJ; 

iP11 P1JsJ; , 

PTI J; 

(4) 

(5) 

(6a,b) 

(7) 

(8) 

(9a, b) 

Our main interest in the present work is to include those relativistic and FLR 
contributions to the dielectric tensor which remain important for weakly relativistic 
plasmas, rather than to account for small differences between y and unity. Thus 
we set y = 1 throughout equations (5) and (7) except in the resonant denominator 
yeu - S - kll PII in (7) where retention of y-l is of critical importance; there we 
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assume the plasma to be weakly relativistic and approximate 'Y by 1 + i p2. In this 
approximation L is then easily evaluated by using (2a, b) to give 

1 

Eij = aij -(W;/w2)( i{2- <P(I)- <P(-I)J bi bj +17 f -1 dJ-L Rij) (10) 

with 

R = -2iw f: dT f: dpf(P) exp{iwr(1 +ip2 -nil pJ-L)J 

co 

X ~ As exp(-isr)[-p<P(J-L){oInf(p)/opJ +(J-L-nIIP)<P'(J-L)]. (11) 
S=-oo 

To perform the integrals in (10) and (11) we make the small Larmor radius 
approximation (ki PI)2 -< 1. Provided ki is of order unity (or smaller) this 
approximation is sufficiently general to enable distributions with characteristic electron 
energies up to - 20 ke V to be treated (Tsai et al. 1981; Bornatici et al. 1983; Batchelor 
et al. 1984). This energy range includes a wide variety of plasmas of interest in 
astrophysics and the laboratory, as discussed in the Introduction and the references 
cited therein. Next the Bessel functions are expanded in powers of ki PI retaining 
contributions from I s I .:;;; 2. The tensor R may then be expressed in terms of the 
following functionals of f(p): 

Gs(r) = -iw f: dr f: dp exp{ir(w -s -wnll pJ-L +iwp2)Jprf(p) 

x[ - p<P(J-L){ oln f(p)/opJ +(J-L - nil p)<P'(J-L)] , (12a) 

G~(r) = i{G.(r)± G_.(r)J, (12b) 

to give 

Rll = (1-J-L2)[Gi(2)-/{ Gi(4)- Gi(4)J)' (13a) 

R12 = -i(I-J-L2)[G1(2)-/{2G1(4)- Gi (4) J] , (13b) 

R13 = klJ-L(1-J-L2)[Gl(3)-i/{2Gl(5)-Gi(5)J)' (13c) 

R22 = (1-J-L2)[ Gi(2)+ 1{2 Go(4)-3 Gi(4)+ Gi(4)J)' (13d) 

R23 = ikl J-L(1_J-L2)[ - Go(3) + Gi(3)+ i/{ 3Go(5)-4Gi(5)+ Gi(5)J)' (Be) 

R33 = 2J-L2[ Go(2)-2/{ Go(4)- Gi(4) J + i z2 (3 Go(6)-4Gi(6)+ Gi(6)}). (131) 

with I = i kI(1- J-L2). 

Specific Distribution Functions 

Equation (10) [with equations (13)] is valid for arbitrary weakly relativistic plasmas 
satisfying (1) provided I kI PI I -< 1 wherever f(P) is non-negligible. We now consider 
a specific class of distribution functions f(p) in order to evaluate the functionals 
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G.(r). The generic distribution function we employ is of the form 

where , = mc2/ kB T is the (dimensionless) inverse temperature and b is a non­
negative integer. With appropriate choice of angular distribution function this 
class includes the usual isotropic thermal distribution (b = 0) and the commonly 
encountered DGH distribution (Dory et al. 1965) as special cases. If we assume that 
the angular distribution function <P(IJ-) satisfies <P(IJ-) = <P( -:-IJ-), then the parity of 
the IJ- integrals involving G.(r) which appear in (10) [with equations (13)] enables us 
to replace exp( - iWT nil PIJ-) there by 

~(exp(-iwTnll PIJ-) +(-lr exp(iwTnll PIJ-)J 

and to restrict the range· of IJ- to positive values without affecting the resulting 
, expression for Eij. For the distribution (14) we may then replace Gs(r) in (12a) by 

the following symmetrized form: 

with 

Gs(r) = ,<P(IJ-)Is(r+2b+2) - nil <P'(IJ-)I.(r+2b+ 1) 

+ (IJ- <P'(IJ-)- 2b <P(IJ-) J I.(r+ 2b), 

Iir) = -~i'C2b f: dt exp(izs t) f: dp pr exp(-Hp2) 

x (exp( -iqp) +( -lr exp(iqp) J , 

and hence (Gradshteyn and Ryzhik 1980; p. 496, equations 3.952.9, 10) 

I I I 1 fOC> I I Is(r) = -i,C2b 7T'(2,)-,r-, exp(-2i7Tr) 0 dt (l-it)-,r-, 

x exp(izs t - ~ q2 /~) Hr{ q/(2~)! J , 

(15) 

(16) 

(17a-d) 

(18) 

where H r is the rth Hermite polynomial (Abramowitz and Stegun 1970; p. 775, 
equation 22.3). We thus find 

with 
[! r] = ! r 

2 2' 
r even, 

(19) 

(20a, b) 

(20c) 
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_ and where the generalized Shkarofsky functions Yq,r are defined as 

.Yq,r(z, a) = -i f: dt (itY(1-it)-q explizt -at2/(I-it)J. (21) 

Krivenski and Orefice (1983) have shown that Yq,r(z, a) can be re-expressed in terms 
of the standard -plasma dispersion function (Fried and Conte 1961). This expression 
and other important properties of the functions Yq,r are summarized in Appendix 1. 

The results of this section enable the dielectric tensor of the distribution (14) to be 
written in the form 

1 

Eij = B ij-(C1l~/C1l2)( 11- cP(1) J bi bj +217 fo d/-t Rij ) (22) 

with cf>(/-t) = cP( -/-t) and where Rij is given by (13) and the functionals G sand 
I s by (15), (18) and (19). Since the evaluation of the Shkarofsky functions in (19) 
is reasonably straightforward, equation (22) is well suited to numerical calculations 
involving arbitrary cP(/-t) satisfying cP(/-t) = cP( -/-t). 

3. Special Cases 

In this section we consider a number of special cases of the results in Section 2 in 
which the form of the dielectric tensor simplifies significantly. We shall assume that 
the momentum distribution is of the form (14), that the angular distribution satisfies 
cP(/-t) = cP( -/-t), and hence that the dielectric tensor is of the form (22). We note 
that considerable additional simplifications to the form of E occur in some regimes of 
frequency and propagation angle where the functions Yq,r assume one oftheir several 
limiting forms. These limiting forms have been extensively discussed by Shkarofsky 
(1966), Airoldi and Orefice (1982) and Krivenski and Orefice (1983) and are given in 
Appendix 1. 

(aJ Generalized DGH Distribution 

An important distribution for which the threefold /-t, p and t integral in (22) can 
be evaluated in closed form is that given by (14) and (23) with band j integers-a 
'generalized' DGH distribution 

2F(b+!) 1- 2 . 2b-2j 
cP(/-t) = F(b- j+!) FU+ 1) ( /-t)'/-t . (23) 

If b = j = 0 this distribution reproduces an isotropic Maxwellian distribution, 
whereas it reproduces the widely used, loss cone-like DGH distribution (Dory et al. 
1965) if b = j =F O. [A DGH distribution was used by Tsai et al. (1981) whose analysis 
considered the lowest order (in A) contribution to E for each harmonic.] Furthermore, 
it can be used to represent a pair of counterstreaming beams U = 0, b > 0) or 
counterstreaming 'hollow beams' (b > j > 0), each similar to the hollow distribution 
considered by Freund et al. (1983). Fig. 1 illustrates these four types of distribution. 
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1·0.--------------, 1·0""""=-------....._------, 

(b) 

.., 
Ii; 0 1·0 
~--< 1·0.--------------, 

o 
1.0 1 ---:::::=:::::-----, 

(c) 

o 1·0 0 1·0 

~(mc 

Fig. 1. Contours of generalized DGH distribution [equations (14) and (23)] 
in PII-Pl space for ~ = 20 and (0) an isotropic Maxwellian distribution with 
b = j = 0; (b) a DGH distribution with b = j = 2; (c) counterstreaming beams 
with b = 2, j = 0; (cl) hollow beams with b = 4, j = 2. Each distribution has 
reflection symmetry across the Pl axis. Contours are spaced apart by a factor of 
10 with the peak of each distribution normalized to unity. 

63 

Inspection of the integrals involved in evaluating (22) for the generalized DOH 
distribution shows that each involves a sum of terms of the form 

1 

Q = 27T fo dlL ILr-29(1-1L2)9Gs(r) , (24) 

with 9 an integer and 

r-2g = 0, i,j =1= 3, 

= 1, i = 3 or j = 3, i =1= j , 

=2, i=j=3. 

These integrals can be expressed in terms of 
1 

fo dlL 1L28-1(1_1L2t-1 exp(-l/lIL2)H28+2/3_1(tjllL) 

= F({3) 22/3-1( -It exp( _tjl2) H28 - 1 (tjI), 

(25a) 

(25b) 

(25c) 

(26) 

where {3 and 28 are positive integers and tjI = nil 't/(2~)! is independent of IL. The 
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remaining t integrals can then be performed, leading to an expression for E in terms 
of generalized Shkarofsky functions Yq,r' The results of the above steps are given in 
Section 3 b for b = j = 0 and the IL integral (24) is performed in Appendix 2 for 
arbitrary positive integers band j. 

(b) Maxwellian Distribution 

The most important special case of the generalized DGH distribution is the isotropic 
Maxwellian distribution (b = j = 0) which serves to illustrate a number of features 
of the more general result. The dielectric tensor for this distribution is 

with 

X 1 { =-- 1 "(2 =-- =-2-)] 13 = n nl W Y 7/2,1-"21\. Y 9/2,I-Y 9/2,1 , 

X33 = Y 5/2 + nTI ~Y7/2,2 -A{ (Y7/2 -Y-ii2) + nTI ~(Y 912,2 -Y~2,2)] 

+ iA2 nTI ~(3Y11I2,2 - 4Yii/2,2 +Yi02,2)' 

To simplify our notation we have written 

yS± = ys± Y = y O+ y± = y l ± . 
q q,O' q,r q,r' q,r . q,r 

(27) 

(28c) 

(28d) 

(28e) 

(28f) 

(29a, b) 

(29c-e) 

Equations (27) and (28) reproduce the corresponding results of Shkarofsky (1966) for 
I s I ..;; 2 apart from his omission of some terms proportional to A and A 2 which are 
included here. 

Important Features of the Dielectric Tensor. We note the following important 
features of equations (27) and (28) which are shared with the corresponding results 
for the generalized DGH distribution (see also Airoldi and Orefice 1982): 

(i) The largest terms omitted in a given dielectric tensor element consist of terms 
arising from small differences between 'Y and unity (other than in the resonance 
condition) and terms involving higher powers of A than those retained. If we neglect 
the former class of terms and recall the relations ~ :> 1 and A = k!l~, it is seen that 
the largest FLR terms omitted in a given element are negligible compared with the 
smallest retained, provided kI < ~. In particular, the contribution of higher harmonic 
(I s I ;;;. 3) FLR terms to the hermitian part of the dielectric tensor may be neglected 
because these terms are of at least one higher order in A than those retained. If 
required to treat absorption at higher harmonics, these terms may be included in the 
antihermitian part via the usual formalism for weakly damped waves. 
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(ii) When the inequality 

I, 1 nil ~I .( IZsl = I~ -~s/wl (30) 

is satisfied we may replace Yizs, a) by its asymptotic form Yq(zs' a) ;:::: z-; 1 (equation 
A 12). Hence if 1 nil 1 .( 1 and A .( 1 equations (27) and (28) reproduce the cold 
plasma dielectric tensor except near the cyclotron resonances at 1 s 1 .;;; 2. If, however, 
1 nil 1 ~ 1 the inequality in (30) is violated and the longitudinal Doppler effect 
significantly modifies the dielectric tensor for frequencies between, but well removed 
from, the cyclotron resonances at 1 s 1 .;;; 2. 

(iii) If Iw-sl ~ ~-1 the function Y~± is of order unity, whereas Y~'± is of 
order ~-1 in the same frequency range if s' =1= s. This implies, for example, that 
FLR terms from the s = 2 resonance can be comparable in magnitude with the 
lowest order dielectric tensor elements in a narrow range of frequency near w = 2, 
regardless of the temperature. For example, in Ell we have AY~i2 - Yti2 _ ~-1 
near w = 2 if kI - 1. 

(iv) The coefficient nil ~ of some terms is a large quantity except if 1 nil 1 ~ ~-L 
Hence these terms can easily dominate other terms of the same order in A at most 
propagation angles for frequencies satisfying w ;:::: 0, 1,2. This observation justifies 
retention of terms proportional to A2 in 10 33 , 

(c) Quasi-perpendicular Propagation 

If 1 nil ~/-L21 .( 1 then the Shkarofsky functions Yq(zs, i nil ~/-L2) in (19) may be 
replaced by the simpler Dnestrovskii functions Fizs) in (AlO). Under these conditions 
the dispersion of the waves is well approximated by that at nil = 0 and the functionals 
G,(r) and Is(r) become 

G,(r) = ~ (j)(/-L) 1,( r+ 2b+ 2) + ! /-L (j)' (/-L)- 2b(j)(/-L») 1,( r+ 2b), (31a) 

. 1 l Lj (2j)! 
Is(2J) = C 2b(Z7T)2 ~2 2i j! 1'J+ t (zs) , (31b) 

I,(2j+l) =0, (31c) 

where j is an integer and the momentum distribution (14) has been assumed. 
The regime in which 1 nil ~/-L21 .( 1 is satisfied wherever (j)(/-L) is non-negligible is 

termed that of quasi-perpendicular propagation; it prevails at propagation angles e 
with cos2e .( I, and in regions near to cutoffs (I n2 1 .( 1). In the quasi-perpendicular 
regime the dielectric tensor elements with indices 13, 23, 31 and 32 may be neglected 
and the evaluation of the dielectric tensor then involves only calculation of the 
following six integrals: 

1 f 0 d/-L /-L2j ! (j)(/-L), /-L (j)' (/-L») , j = 0, 1,2. (32) 

In the case j = 0 these integrals are [from (2a) and (j)(/-L) = (j)( - /-L)] 

(33a, b) 
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(d) Loss Cone and Anti-loss Cone Distributions 

A specific distribution function widely considered in the theory of electron cyclotron 
phenomena is the sharp-edged, two-sided loss cone distribution represented by 

1fJ-1 < fJ-c' 

= 0, fJ-c < 1fJ-1 < 1, (34a) 

with f(p) given by (14a) with b = O. A closely related angular distribution is the 
two-sided anti-loss cone, represented by 

<P(fJ-) = 0, 1fJ-1 < fJ-c 

= (1-fJ-c)-I, fJ-c < 1fJ-1 < 1, (34b) 

which approximates a pair of counterstreaming beams, each of which fills a cone in 
momentum space. It is possible to evaluate the dielectric tensor explicitly for the 
distribution (34a) (and hence for 34b). Here we shall restrict our attention to the 
cases of quasi-perpendicular propagation in which the effect of the loss cone on the 
dielectric properties of the plasma is most readily apparent. 

Quasi-perpendicular Propagation. For the distribution (34a) the condition defining 
the quasi-perpendicular regime is 

which, if satisfied, implies that to is given by (27) with 

y± = H(3-p)F~2-(I-p)F372 

- iAI C(Fih - F~72)-3(1-p)2(F~2 - F~72) J], 

2 
P = fJ-c' C = 15-lOp+3p2. 

(35) 

(36a, b) 

(37a) 

(37b, c) 

The other Xi} are zero and the functions F q,r are defined by (29) with nil = O. 
Equations (36) reproduce (28) in the limit fJ-c = 1 apart from the term ~ -I - F312 
which, however, is non-resonant and of order ~-2 .( 1. 

Quasi-two-dimensional Distribution. Trubnikov and Yakubov (1963) discussed 
the dielectric tensor of a strictly two-dimensional Maxwellian distribution in a 
perpendicularly oriented magnetic field. Such a distribution may be approximated 
by the present distribution if fJ-c - 0 (resulting in a singular angular distribution 
function perpendicular to B). In this case it is found that equations (35) and (36) 
apply at all propagation angles and reproduce the corresponding results of Trubnikov 
and Yakubov (1963) except that the intrinsically three-dimensional nature of the 
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present momentum space leads to the appearance of the indices q = 3/2, 5/2, ... on 
the functions F q in place of the values q = 1,2, ... which result if Shkarofsky's (1966) 
approach is applied to a strictly two-dimensional Maxwellian distribution. 

4. Summary 

We have derived the dielectric tensor of a weakly relativistic, anisotropic, magnetized 
plasma whose distribution function can be separated into the product of a momentum 
distribution f(p) and an angular distribution CP(J-L); the result is expressed in terms 
of an integral over CP(J-L). In addition we have considered a number of special cases 
of distribution function, frequency and propagation angle where simpler versions of 
our results apply. A summary of these results is as follows: 

(i) Equations (10), (12) and (13) present the dielectric tensor of a weakly relativistic, 
magnetized plasma in the most general form considered in this paper-in terms of the 
functionals Gir)- while f(p) and CP(J-L) are otherwise unrestricted. The FLR and 
relativistic effects are retained throughout for harmonics I s I ..;; 2, thereby avoiding a 
number of restrictive assumptions made in existing treatments . 

. (ii) Equations (15), (18) and (19) for the functionals G s and Is are valid for the 
broad class of f(p) represented by equation (14). These results enable the dielectric 
tensor to be written in the form (22) which is suitable for numerical calculations 
involving arbitrary pitch angle distributions satisfying CP(J-L) = CP( - J-L). 

(iii) The dielectric tensor is discussed explicitly in Section 3 in the following special 
cases of distribution function and/or wavevector: 

(a) isotropic Maxwellian distribution, 

(b) quasi-perpendicular propagation, 

(c) sharp-edged loss cone distribution for quasi-perpendicular propagation. 

The integrals required to evaluate the dielectric tensor of a generalized DOH 
distribution are performed in Appendix 2. 

(iv) Appendix 1 summarizes the properties of the functions Yq in terms of which 
the dielectric tensor is expressed, including the relationship of these functions to the 
usual plasma dispersion function. 

The results obtained in this paper may be used in the investigation of a variety 
of electron cyclotron phenomena (e.g. propagation and absorption of waves, maser 
action, current drive etc.) in isotropic and anisotropic plasmas in both laboratory and 
astrophysical contexts. In forthcoming papers we shall use these results to discuss 
relativistic effects on accessibility conditions for cyclotron waves in hot, anisotropic 
plasmas and to investigate modifications to cold plasma modes due to thermal effects 
and anisotropy. 
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Appendix 1. Special Functions 

We list a number of the most important properties of the special functions used in 
this paper. 

Definitions, Notation 

The generalized Shkarofsky functions appropriate to the present analysis are defined 
thus if Im(z- a) > 0 (Krivenski and Orefice 1983): 

Yq,r(z, a) = -i f: dt (itY{l-it)-q exp!izt - at2 /(l-it)J . (AI) 

Analytic continuation is used to extend this definition to Im(z- a) <: O. The 
corresponding Dnestrovskii functions (Dnestrovskii et al. 1964) are defined by 

We make the following identifications for notational convenience: 

(A3) 
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Interrelations 

Equation (AI) immediately implies that the generalized Shkarofsky functions :/q,r 

may be re-expressed in terms of the usual Shkarofsky functions (r = 0), with 

= r (-lYr! = 
Y q r(z, a) = l:. ..Y q-iZ, a). 

, j=O J! (r- J)! 
(A4) 

Krivenski and Orefice (1983) derived the following recursion relation for the 
functions :/q: 

(A5) 

If a = 0, (A5) contains the better known recursion relation for the Dnestrovskii 
functions as a special case, namely 

(A6) 

Connection with the Plasma Dispersion Function 

The well-known plasma dispersion function Z(u) (Fried and Conte 1961) may be 
defined for arbitrary complex u by 

Z(u) = i7T~exp(-u2)p+erf(iu)J. (A7) 

Krivenski and Orefice (1983) derived the following expressions for :/1/2 and Y 312 

in terms of Z: 

:/1I2(Z, a) = -iZ+ /(z- a)~ , 
I 

Y3/2(z, a) = - Z-/ a2 (A8a, b) 

with 
(A9) 

In practice only one root a~ is relevant in (A8) and (A9) since the other root leads to 
identical expressions for Y l12 (z, a) and Y 3/2(z, a). In general, however, both roots 
(z- a)~ must be considered, implying that Yiz, a) is double-valued with a branch 
point at z = a [or, equivalently, that Yiz, a) is defined on the same two-sheeted 

Riemann surface as (z- a)~]. Equations (A5), (A8) and (A9) together enable the 
functions Yq of half-odd-integer index to be re-expressed in terms of the plasma 
dispersion function. 

Limiting Forms 

Equations (A5), (A 7) and (A8) imply the following limiting forms for the functions 
:/q (Krivenski and Orefice 1983): 

Yq(z, a) = Fiz) , 

1 _lZ(l _l) = -'ia 2 'i za 2 , 

-1 = Z , 

lal < 1, 

1, Izl<lal, -i7T<arg(a~)<-l-7T, 

1, lal < Izl, larg(z)I < ~7T. 

(A 10) 

(All) 

(AI2) 
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Appendix 2. Evaluation of Integrals 

Here we evaluate the integrals required to obtain the dielectric tensor of the 
generalized DGH distribution given by (14) and (23). These integrals are of the form 
(24) (with 25). By using equations (15) and (18) for the functionals Gs and Is and 
the recursion relation for the Hermite polynomials 

(A 13) 

the integral Q in (24) may be expressed in terms of a linear combination of integrals 
of the form (26). Straightforward manipulation then yields the result 

Q I' ly2- 1r( ')L 2ir-Lr(g+j) food exp(izs t-a2) 
= - -17P", 2 -I t -"::""":'--";---"':"" 

2 F(b-j+!)FU+l) 0 (l_it)i(r+3)+b 

xU g+ijt(l- nTI) 1 HL(a)-(inll /D(2~)i(2gb- jr)HL_ 1 (a)] (AI4) 

with 
1 1 1 

L = r-g+2(b-j), a = nil 'i"t/2i"(I-it)'. (AI5a, b) 

Equation (21) may then be used to obtain an explicit expression for E ij for the 
generalized DGH distribution. 

Important special cases in which (AI4) simplifies significantly include 

(i) DGH distribution: b = j, L = r-2g = 0,1,2. 

(ii) Maxwellian distribution: b = j = 0, L = r-2g = 0,1,2. 

(iii) Quasi-perpendicular propagation: nil ;:::: 0, a ;:::: 0. In this case the only values 
of i and j of interest are those for which r-2g is even; this implies that 
HL_1(a) ;:::: HL_1(0) = 0. 
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