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Abstract 
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Application of the finite element method to a variational principle of Chandrasekhar, although not 
suitable for computing stable g modes of non-radial oscillation of stars, is found to be satisfactory 
for unstable g modes as well as f and p modes. 

1. Introduction 

Much effort has been devoted to numerical computation of normal modes of 
non-radial adiabatic oscillations of stars, which are important in stellar stability 
theory (Cox 1980; Clement 1984). Andrew (1967) used a variational principle of 
Chandrasekhar (1964) for this computation and found that, when the continuous 
piecewise linear coordinate functions of the finite element method were used, the 
method was successful for the f and p modes but failed even to detect the g modes, 
yielding instead some completely spurious modes. However, the variational principle 
did yield g modes when certain polynomial coordinate functions were used. These 
polynomials span the same space as eigenfunctions of the homogeneous model and, 
except for models of unrealistically low central condensation, the eigenfunctions 
obtained for g modes were much less accurate than those obtained for f and p modes 
(Andrew 1968 and the references therein). 

Clement (1984) also noted that spurious modes may be obtained when nonanalytic 
coordinate functions are used (as in the finite element method) and Sobouti (1977) 
confirmed that results depend crucially on the choice of coordinate functions. The 
existing theory of variational methods still does not appear to cover this problem 
(Andrew 1984), but theoretical studies--1>fsome related problems (Andrew 1969, 1970, 
1971 a, 1971 b) suggest that computed g modes could be expected to be particularly 
sensitive to the choice of coordinate functions. 

Although solutions of this problem can be computed satisfactorily by shooting 
methods, there are several reasons why further study of Chandrasekhar's variational 
approach is of much more than theoretical interest. First, variational methods, which 
are considerably faster than shooting methods, are quite often used for problems of 
non-radial stellar oscillations and, provided suitable coordinate functions are used, 
have been entirely successful (Clement 1984). Second, the finite element method is one 
of the commonest methods used for numerical solution of other eigenvalue problems 
in physics, and full understanding of the partial failure of the finite element coordinate 
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functions for this problem may have application to other problems. In this connection 
it should be noted that an inappropriate choice of coordinate functions or elements 
in the finite element method has produced spurious modes in other problems in 
fluid mechanics (Walters 1983) and magnetohydrodynamics (Rappaz 1981). Finally, 
Sobouti's (1977) and Clement's (1984) search for coordinate functions suitable for 
computation of g modes has already highlighted important physical properties of 
these modes and additional study along these lines may well contribute further to 
physical understanding. 

The computations of Andrew (1967) used a single stellar model-one of a massive 
star with a convectively neutral core surrounded by a convectively stable envelope 
(Van der Borght 1964). A single finite element calculation was made by using a grid 
with 25 equal subintervals. In the present paper similar calculations are made with 
various grids and different stellar models-poly tropes with indices 1 and 3, and two 
composite models studied by Smeyers (1966) which have a homogeneous core and a 
polytropic envelope with index n = 3. 

2. The Variational Principle 

Following the method of Andrew (1967), we neglect the perturbation cp' of the 
gravitational potential, as has been done in several other studies, and we consider 
only the spherical harmonic I = 2. In his investigations with polynomial coordinate 
fUnctions, Andrew (1968) found that neglect of cp' did not qualitatively affect the 
performance of the variational method. Unless cp' is neglected, Chandrasekhar's 
variational principle involves a. repeated integral and the finite element matrices do 
not have the sparsity which is normally one of the main advantages of the finite 
element method over other variational methods. 

With the above approximation, Chandrasekhar's variational principle for a poly trope 
of index n may be written as 

1 Jo {Ji(x)e -2xh(xHd~/dx +x2.t3(x)(d~/dxi 

+.t3(x)'l12 +2h(x)~'l1-2x.t3(x)'l1d~/dx} dx 

1 

= A Jo.t4(XHe +'l12/1(l+1)} dx, (1) 

where 

Ji(x) = 9x2 Fl en+1(x) +6(n+ l)x3en(x) e'(x) 

+ n(n+ l)x4e'2(x) en-1(x), 

h(x) = -3x2 r 1 en+1(x) -(n+ l)x3en(x) e'(x) , 

Here e satisfies the dimensionless Emden equation 
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and the boundary conditions 

8(0) = 1, 8'(0) = 8(1) = 0; 

a = [(n+ 1)p(0)/{ 417' Gp2(0) }]!, R is the radius of the star, p(O) and p(O) are 
the central values of density and pressure and G is the gravitational constant. In 
(1) the components ~ and TJ of the eigenfunction (which correspond to radial and 
transverse components of the displacement) are as defined by Andrew (1967), and 
A = (j'2 R2p(0)/ p(O), where perturbations are proportional to exp(i (j't) and t is time. 
Table 1 gives the usual dimensionless eigenvalues 

()J2 = (j'2R3/GM = -A/(n+l)8'(l) 

which are ~ of the value in Robe's (1968) units. As is usual in work with poly tropes, 
. s 

we took Fl = 3' 

Table 1. Comparis~m of eigenvalues w1 

Mode Poly trope n = 1 Poly trope n = 3 
Finite element method Shooting Finite element method 
N= 25 N= 35 methodA N= 25 N= 35 

f 2·536 2·577 2·683 9·548 9·510 
Pl 10·62 10·90 11·73 17·57 17·49 
P2 23·99 24·31 26·41 30·28 29·86 
P3 43·51 43·12 46·04 47·50 46·27 
P4 70·05 68·09 70·45 69·77 67·00 
Ps 104·1 99·75 99·60 97·58 92·48 
P6 146·3 138·5 133·4 130·9 123·1 
P7 197·3 184·6 172·0 168·0 159·0 
Ps 258·4 238·6 215·2 208·5 199·5 
gl -0·291 -0·290 -0·289 
g2 -0·126 -0·130 -0·135 
g3 -0·049 -0·057 -0·079 

A Values obtained by Robe (1968). 

3. Results and Discussion 

Shooting 
methodA 

9·480 
17·37 
29·36 
44·71 
63·28 
83·47 

109·9 
138·0 
168·7 

5·326 
2·938 
1·864 

For the stable poly trope (n = 3), our results are very similar to those of Andrew 
(1967). With N equal subintervals, the finite element method (again with continuous 
piecewise linear coordinate functions) gave estimates of the f mode and the first N 
p modes but the remaining modes were spurious. Accuracy of both eigenvalues and 
eigenfunctions for p modes increased as N increased. 

With the unstable poly trope (n = 1), estimates of the f mode and the first N p 
modes were again obtained, but this time good results were also obtained for g modes. 
However, for each N, only about half as many g modes were obtained as p modes, 
the remaining modes being spurious. 

Table 1 compares some of the eigenvalues we obtained for the two poly tropes with 
more accurate values obtained by Robe (1968) by means of a shooting method. With 
a few minor exceptions, all modes classified as genuine had the same number of zeros 
in both ~ and TJ as found by Robe. For more details of our results and further 
discussion see Fiedler and Andrew (1985). 
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For the composite models, which have both g+ (stable) and g- (unstable) modes, 
the finite element method yielded g- , f and p modes as well as spurious modes but no 
g+ modes. Relatively few g- modes were obtained, especially for the model with a 
smaller (unstable) core. This is probably because the zeros of g- modes are all in the 
unstable part of the star and the uniform grid used here is not suitable for locating 
close zeros. 

Since the divergence of the displacement is known to be O(rl-I) as r --* 0, 
the eigenfunctions satisfy 1j(0) = 3~(0) (Andrew 1967). This requirement was not 
imposed in our calculations, but nearly all computed modes satisfied it approximately, 
and 1j(0)/~(0) did not vary systematically between genuine and spurious modes. This 
suggests that difficulties with the finite element method may be more fundamental for 
this problem than for some problems in acoustic and electromagnetic wave theory, 
where a penalty technique by Winkler and Davies (1984) has achieved some success 
in eliminating spurious modes often obtained in finite element calculations. 

All our results are consistent with the tentative explanations of Andrew (1969, 
1970). The classical theory of variational methods for eigenvalue problems involves 
minimax principles. Only the unstable g- modes, and no stable modes, can be 
characterized this way. We believe this may be why the method succeeded for the 
g- modes but not for the g+ modes. 
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