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Abstract 

We develop an alternative scheme of spontaneous chiral symmetry breaking which is characterized 
by four-quark condensates instead of (7jq),*O. In this scheme the Nambu-Goldstone bosons 
acquire a mass squared - m~uark' in comparison with mquark in the usual scheme. The quark mass 
ratios and the parameters of the scheme are determined by an application to the pseudoscalar 
nonet spectrum (including 'lT0_'Yj_'Yj' mixing). The decays Iji -+('lT0 , 'Yj, 'Yj}y and Iji' -+ 1ji('lT0 , 'Yj) are 
also considered. The results do not promote the alternative scheme. 

1. Introduction and Motivation 

Quantum chromodynamics (QCD) (Fritzsch et af. 1973; Marciano and Pagels 
1978)-the present day theory of the strong interactions-has a global flavour (colour 
independent) U(L)xU(L) chiral symmetry when L of the quark mass parameters in 
the Lagrangian density are set equal to zero. In reality the quark mass parameters 
do not vanish and these chiral symmetries are only approximate (see for instance the 
reviews by Pagels 1975 and Christos 1984a). 

Phenomenologically the two most interesting cases are L = 2 or 3, corresponding 
to small values of"'u (ml)' md ("'2) and ms ("'J) on the scale of the strong interactions 
(:::::: 1 GeV). Our considerations are based on chiral U(3)xU(3) symmetry, associated 
with the transformations (where q is both a flavour and colour 3-vector) 

q --+ exp(i a. A)q, q --+ exp(i a)q, 

q --+ exp(i,B. AY5)q, q --+exp(i,By 5) q , (1) 

where the A are the usual Gell-Mann SU(3) matrices satisfying (a, b = 1, ... , 8) 

[A 0, A b) = 2ifobcA c , tr(A °A b) = 28 ob . (2) 

Since the consequences of a manifest axial symmetry (i.e. approxirnately equal mass 
parity partners and near massless baryons) are not observed in Nature, the chiral 
U(3)xU(3) symmetry is believed to be spontaneously broken down to U(3) vector 
symmetry. The Nambu-Goldstone (NG) bosons associated with this spontaneous 
breaking are thought to be the lowest lying pseudoscalar nonet (11", K, 7], 7]'). 
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In the usual Oell-Mann et al. (1968) and Glashow and Weinberg (1968) scheme 
this spontaneous breaking is assumed to occur through the non-vanishing condensate 
(in the chirallimit) 

(qq>~ G{ J q> ~ 0(1). (3) 

In this scheme the NO bosons acquire a mass squared of O(mq) [see for instance 
equation (AI) in the Appendix, where many of the results of the usual scheme relevant 
for comparison in this paper are summarized]. 

A number of authors (Scadron and Jones 1974; Sazdjian and Stern 1975; Fuchs 
1980, 1981; Scadron 1981, 1983) have proposed an. alternative to this scheme of 
spontaneous chiral symmetry breaking (SCSB) where instead m~G = O(m~uark)' The 
idea stems from the observation that the equation (where Y:s is the axial-vector 
current 71'Y Il 'Ys iA aq) 

3 (A a) .. 
- <01 all Y;s(O)I'lTb(q» = <Oli.~ 71i(mi+ m)'Ys __ I) qjl'ITb(q» 

/,)=1 2 

m;'a F7r 6ab (4) 

can be satisfied with the pion decay constant F 7r = 0(1) (a necessary and seemingly 
sufficient condition for SCSB), if m~G = O(m~).and <0 I 71'Ys Aaql'IT b) = O(mq) [cf. 
the usual scheme where F7r = 0(1), m~G = O(mq) and <OI71'Ys Aaql'IT b) = 0(1)]. 
These schemes are usually characterized in the literature by the condensates 

(uu) = emu' (ad) = emd' (5S) = ems' (5) 

where e =0(1) is independent of the quark mass parameters to leading order. 
Since the condensates in (5) vanish in the chirallimit it is unclear whether there is 

any SCSB at all. These schemes are resurrected by the observation (Crewther 1979) 
that (i is not summed over) 

_0_< Op(O» = -i Jd4 X T< Op(O)71i qi(X»connected. 
ami 

(6) 

Equation (6) follows directly in the path integral representation with the explicit 
symmetry breaking interaction in the Lagrangian density 

!t"'=-71 Im1 

~ ~Iq (7) 

This leads to the notion that these alternative schemes may be more precisely 
formulated in terms of four-quark condensates which do not vanish in the chirallimit, 
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for example J T<qq(x). qq(O» = 0(1). 
x . 

Besides the alternative scheme mentioned above there are other possibilities 
corresponding to other values of p ;;;. 1 with 

F7r = 0(1), m~G = O(mp, <Olqys Aa ql7T b) = O(m~-l), 

J ... J«qq)P) = 0(1), <qq) = O(m~-l). (8) 

Our considerations here are limited to the simplest such alternative, corresponding to 
p = 2. 

The motivation to consider such alternative schemes is twofold. Firstly, and most 
importantly, the usual scheme seems to have some difficulty in properly accounting 
for deviations from certain chiral limit theorems. The principal concern is with 
the Goldberger-Treiman relation (Pagels and Zepeda 1972; Pagels 1975; J. Stern 
1982, unpublished), the 7TN O'-term, and 7T-7T scattering (Gasser and Leutwyler 
1984). The 7T0-1T± mass difference is also poorly understood in the usual scheme; 
corrections due to 7TO-T/ mixing (Gross et al. 1979) and Li-Pagels logarithms (Li and 
Pagels 1971a, 1971b, 1972; Langacker and Pagels 1973a, 1973b; Pagels 1975) are 
of the same sign as the already large electromagnetic splitting calculated by Das et 
al. (1967) of (m7r± - m7r0)em ;::::; 5·3 MeV. There is also a discrepancy between the 
strange to non-strange quark mass ratio as obtained from the meson and baryon 
sectors. The crucial question is whether the alternative scheme can better account 
for the experimental data. The present paper however is mainly concerned with a 
consistent formulation of the simplest alternative scheme (AS) of SCSB. Some of the 
above questions (e.g. 7T-7T scattering) have recently been addressed by J. Stern (1982, 
unpublished) and Crewther (1984). 

The alternative schemes are also important from a theoretical point of view. No 
matter how unlikely, * it remains a logical possibility that <qq) ;::::; O. A small value 
of <qq) could be protected if the vacuum had some discrete symmetry (e.g. Z2 axial 
symmetry). We should also note that recent arguments (see for instance Veneziano 
1980) supporting the hypothesis of SCSB in QCD do not specifically imply the usual 
scheme (see Section 5.4 of Christos 1984a). In addition, calculations in lattice gauge 
theories which seem to imply that <qq) = 0(1) (see for instance Barbour et al. 1984; 
Schierholz 1985) are not particularly convincing since they entail a manifest violation 
of chiral symmetry and involve numerous uncontrolled approximations (e.g. fermion 
loop expansion and quenching). 

2. Four-quark Condensates 

There are four 4-quark condensates which spontaneously break the axial U(3) 
symmetry but leave the vacuum invariant under U(3) vector symmetry. They are 
[where A ° == V j diag(l, 1, 1) and where the superscript c denotes the connected 

* A parameter is unlikely to be small if there is no symmetry to constrain it from acquiring a 
'large' value in higher orders. 

-'-~~-~~.~~ ...• ' .. ----.--
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amplitude] I d4 x T(7j)...°q(x).7j)...°q(O»C = cr, 

I d4 x T(7j)...a q(X).7j)...b q(O»C = ~Oab' 

I d4 x T<7jys)...O q(x). 7jys)...O q(O»C = cr', 

I d4 x T<7jys)...a q(X)·7jys)...b q(O»C = fOab' 

or in terms of the u, d and s quark fields 

Ix T(uu(x).uu(O»C = Ix T(dd(x).dd(O»C 

= I x T(ss(x). 1'S(O»C = p = i(cr+2~), 

Ix T<uu(x).dd(O»C = Ix T<uu(x).1'S(O»" 

= Ix T<dd(x).1's(O»C = y = i(cr-~), 

Ix T<ud(x).du(O»C = Ix T<us(x).1'U(O»C 

= I x T<ds(x). 1'd(O»C = p-y = H, 

I x T<uys u(x). uys u(O»C = f x T<dys d(x). dys d(O»C 

= f x T<1'ys s(x). 1'ys s(O»C = p' = i(cr' +20, 

f x T<uys u(x). dys d(O»C = f x T<uys u(x). 1'ys s(O»C 

= f x T<dys d(x). 1'ys s(O»C = y' = i(cr' -0, 

f x T<uys d(x). dys u(O»C = f x T<uys s(x). 1'ys u(O»C 

(9) 

= f x T<dys s(x). 1'ys d(O»C = p' -y' = H'· (10) 
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If the vacuum was U(3) x U(3) invariant, all of the condensates (9) would be equal (up 
to a sign); for example, if Q~ 10) = 0, where Q~ is the U(l) axial charge generator, 

then I I 
x T(qA ° q(x). qA ° q(O»C = - x T<qAO q(x)[ Q~, qys 11.° q(O)])C 

I T<[Q~,qAOq(x)]qYsAOq(O»C = - I T<qYsAOq(x)·qYsAOq(O»C. 
x x 

Consequently, there are only three relevant symmetry breaking parameters. One 
combination of the condensates, namely 

Ix T<tr(~tf(x) .. k1t(O»))C = 9(p-p')-6(y-y,), (11) 

where 1 ij = q/1-Ys)qi' is the vacuum expectation value ofa chiral singlet operator. 
It also proves convenient to use Stern's (dimensionless) variables defined by 

2i , ') A = -(p+p -Y-Y , p2 
rr 

2i 
Zs = p2 y, 

rr 

2i , 
Z =--y 

p P; (12) 

Note that Zs(Y) and Zp(Y') entail violations of Zweig's rule in the 0+ and 0-
channels respectively. Consequently one expects Zs to be smaller than A, although 
Z p may be somewhat larger because of the U(1) axial anomaly. 

From equations (10) and (6) it follows that 

(uu) = -im1 p -i~ Y -im3 y +O(m~), 

< d d) = - i m1 Y - i ~ P - i m3 Y + O( m~) , 

(5S) = -im1 y -i~y -im3P +O(m~). (13) 

These relations reduce to (5) only if y = O. This would be the case in the large N C 

(number of colours) limit ('t Hooft 1974; Witten 1980). 

3. Pseudoscalar Masses 

We consider the two-point function 

I d4 xeiq' X T<cf>rr(x)cf>rr(0», 

where cf>rr is some operator which can create (and annihilate) a NG pseudoscalar 
meson (denoted generically by '17') with a non-vanishing amplitude in the chirallimit. 
[For the present purposes the form of cf>rr does not need to be known, but it is 
worth mentioning at this stage that the usual two-quark interpolating field - qy 5 A q 
does not satisfy this condition in the AS of SCSB (see equation 8). In this case 
cf>rr will need to be some four-quark pseudo scalar operator.] In the limit q - 0 the 
dominant contribution to the two-point function comes from the 'pion' (NG) pole, 
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since m;' ~ 0 as mq ~ O. Therefore, we get 

f 4 . 2 i 
d xe1q.x T<<P7T(x)<P7T(0»::::: I<OI<P7TI'IT)1 2 2 (1+0(mq)}. (14) 

q -m7T 

An alternative expression for the two-point function can be obtained by performing 
a chiral expansion about the U(3)xU(3) limit and saturating the resulting Green's 
functions with massless 'pion' poles: 

f d4 x eiq.x T<<P7T(X) <P7T(0».Y' = f d4 x eiq.x T<<P7T(X) <P7T(0».i'" 0 

+ f d4 xeiq.x f d4Yl T<<P7T(x)<P7T(O)i2"(Yl»Yo 

+ ~ f d4 x eiq.x f d4Yl f d4J2 T<<P7T(x)<P7T(O)i2"(Yl)i2"(J2»Yo 

+ ... , (15) 

where 2' = 2'0+2",2'0 is U(3)xU(3) invariant and 2" is the explicit symmetry 
breaking quark mass term (7). The subscripts 2' and 2'0 specify whether the 
amplitudes are to be calculated in the full non-chiral theory or the exact symmetry limit 
respectively. [Equation (15) can easily be derived in the path integral representation 
by expanding the exponential exp{i f d4y2"(y)} into a power series in 2".] 

In the usual scheme the dominant contribution (as q ~ 0) to the terms on the 
right-hand side of (15) come from the diagrams in which the operators are connected 
by massless 'pions' (see Fig. 1). Although each term is progressively more infrared 
singular, the sum is infrared finite. Formally summing this series of diagrams gives 

f d4 xeiq.x T<<P7T(x)<P7T(0».Y' = I<OI<P7TI'IT).Y'l Q2 + ('IT I 2"I'IT) . 0 

x{1+0(mq)}. (16) 

Equating this with (14) gives an expression for the masses of the NG bosons 
(a, b = 1, ... ,8,9):* 

m~b = _<'ITa I 2' 'l'lTb).Y'o +O(m!). (17) 

On using soft 'pion' theorems this reduces to the usual formulae for theNG boson 
masses (see equation AI). 

In the AS of SCSB, the term <'IT I q q I 'IT ) .Y' 0 vanishes. [This can best be seen 
through the Feynman-Hellmann theorem (Pauli 1933; Hellmann 1937; Feynman 
1939) which relates <'lTalqql'IT b) to (a/amq)(m;'a)8 ab = O(mq).] Consequently, only 
the first diagram in Fig. 1 makes a contribution. There is however another set of 
infrared singular diagrams which now make a leading contribution; these are given 

• In deriving (17) we have ignored possible gluonic contributions to the flavour singlet pseudoscalar 
through the U(I) axial anomaly. Electromagnetic interactions also make a separate contribution. 



Spontaneous Chiral Symmetry Breaking 353 

~····!!······x + ~······~·····-®······l!·····X + ~·····!!····-®····!!····-®······!!····X + 
CPn CPn CPn i1.' CPn CPn iL' i.e CPn 

Fig.1. Leading order 'pion' pole contributions to the right-hand side of equation (15) in the 
usual scheme of SCSB. 

~···~····x + )(·····l!····@····~····X + )( ..... ~··@·····'!···@·····~·····X + 
CPn CPn CPn -~ HL' L') CPn CPn -HT(L' 1.') -~NLI J:!) CPn 

Fig. 2. Leading order 'pion' pole contributions to the right-hand side of equation (15) in the 
alternative scheme of SCSB. 

in Fig. 2. Formally summing this series gives 

I d4 xeiq.x T<cp".(x) Cp".(O)2' =·1<0Icp".I7T)2'o I2 

x {i/(q2+ii<7T1 Ix T[2''(X)2''(O)ll7T)Yo)} 

x {1 +O(mq) 1 . (18) 

Equating this with (14), we can derive an expression for the masses of the NG bosons 
(minus anomaly and electromagnetic effects): 

m~b = -ii<7Ta l Ix T[2"(x)2"(O)ll7T b)yo +O(m~). (19) 

On using the soft 'pion' theorems* and evaluating the commutators one finds that 

m~b ;:::;; ~ I <[Fg, [Fr, T[ 2"(x) 2"(O)lll)y 
2F". x 0 

~ ;Jx T(q[ ~", [~bT' "' no III q(x) {" 1nz I qeD) 
m3 

+<1'[~"T' "' no II q(x) <1, [ ~b, [m, "' no II q(O»", 0 
(20) 

* The validity and range of applicability of soft 'pion' theorems in the AS of SCSB will be 
considered in Section 4. 
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Evaluating the anticommutators and using (10) and (12) leads to the formulae 

m;± -(m;±)em = i(mj + ~)2 A+ i(mj + ~)(mj + ~ + m3)Zs' 

m~± -(m~±)em = i(mj + m3)2 A+ i(mj + m3)(mj + ~ + ~)Zs' 

m~O,KO = i(~ + m3)2 A+ i(~ + m3)(mj + ~ + m3)Zs' 

m~3 = i(mi+m~)A+i(mj+~)(mj+~+m3)ZS 

- i(mj- ~)2 Zp' 

m~8 = iv ~ (mj - ~)[ (mj + ~)A+(mj + ~ + m3)Zs 

(21a) 

(21b) 

(21c) 

(21d) 

-(mj + ~-2m3)Zp], (21e) 

m~9 = vi a(mj - ~)[ (mj + ~)A+(mj + ~ + m3)(Zs - Zp)] , (21t) 

m~8 = i(mi + m~ +4m~)A+ i(mj + ~ + m3)(mj + ~ + 4m3)Zs 

- i(mj + ~ -2m3)2 Zp' (21g) 

2 j 2 [( 2 2 2)A m99 = '3 a mj + m2 + m3 

+(mj + ~ + ~)2(Zs - Zp)] +X2/ Nc ' (21h) 

m~9 = ~via[(mi+m~-2m~)A 

+(ml + ~-2m3)(ml + ~+ m3)(Zs-Zp)] , (21i) 

where in equations (21a) and (21b) we have allowed for an electromagnetic (em) 
contribution to m;± and m~±, while in equations (21t), (21h) and (2li) we have 
allowed for the fact that the singlet decay constant Fs = F7T9 need not be equal to F 7T 

in the leading order of chiral symmetry breaking (Christos 1984b). We have defined 
a = F7T/ Fs' In other words, U(3) vector symmetry does not imply that a = 1. In 
addition, we have allowed for a possible 'anomaly' contribution to the singlet-singlet 
matrix element (for more details see Section 6). The 7TO, TJ and TJ' are obtained on 
diagonalizing the 7T 3_7T 8_7T 9 mixing matrix, which is also considered in Section 6. 

4. Soft 'Pion' Theorems, 'Pion' Pole Dominance and Chirai Ward Identities 

We consider the Ward identity (in the chirallimit) 

I d4xa~T<Y;5(x)P(0» = <[F~, P(O)]), (22) 

where '/;5 is the axial-vector current tjy J.l Y 5 i A a q, F~ is the corresponding charge 
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generator f d3 xY~s(x), and P(O) is some operator such that the vacuum expectation 
value of the commutator on the right-hand side does not vanish. [In the simplest AS 
P(O) will have to consist of at least four quark fields.] Saturating the left-hand side 
of (22) with a 'pion' pole, we derive the soft 'pion' theorem 

lim <01 P(O) 1 7T a(q) = - ~<[Fg, P(O)]). 
q~O ~ 

(23) 

Goldstone's theorem (i.e. the existence of a massless pseudoscalar meson for every 
spontaneously broken axial generator) and the fact that F7r = 0(1) ~ 0 also follow 
in the course of deriving (23). 

The extension of (23) to the non-chiral limit (i.e. nonzero quark masses) is 
straightforward so long as the vacuum expectation value of the commutator does not 
vanish as mq ---+ O. When this is not the case, 'pion' pole dominance does not hold 
and there is no soft 'pion' theorem. To illustrate this consider the Ward identity 

f d' x T('",Y-~;(x) J Y-~;(O» ~ i(q [m, m, 01 q), (24) 

The one-particle intermediate state insertion contribution to the left-hand side of (24) 
is given by 

1<01 ali Y~sl7To)12 (-2 + ~ 1<01 ali Y~sl n)1 2 (-2 
m7r n=F7r° mn 

-im; F; -i ~ m;, F;" (25) 
n=l=7TO 

where we have defined <01 ali Y~sl n) = m;, Fn' In the usual scheme of SCSB, the 
first term in (25) is O(mq), while the second is O(m~) [recall that m;" = O(mq), 
F7r = 0(1), m;, = 0(1) and Fn = O(mq)]. Consequently, pion pole dominance 
holds in the usual scheme. In the AS, however, both terms are O(m~) [recall that 
m;" = O(m~), F7r = 0(1), m;, = 0(1) and Fn = O(mq)] and pion pole dominance 
does not hold. The absence of 'pion' pole dominance seems to be a general feature 
of the alternative schemes of SCSB for amplitudes that vanish in the chirallimit. 

We consider now the Ward identity 

f d4 x T<aliy~s(x).ul's u(O) = iml f d4 x T<ul's u(x).ul's u(O) 

-imz f d4 x T(iiys d(x). ul's u(O) = <uu). (26) 

Since this equation relates the pseudoscalar-pseudoscalar amplitudes 
f T<ul's u. ul's u) and f T<dl's d. ul's u) to <uu), which in turn is related 
to (see equations 13) f T(uu. uu) and f T({j d. uu), one hopes to be able to use 
it to express p' and 1" in terms of p and 1'. 
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If we set (these equations will have to be re-examined below) 

f T(u'Ys u. u'Ys u) = p' +O(mq) ' 

f T<u'Ys u. "(iys d) = "I' +O(mq) 

in (26) we obtain 

i mi p' - i ~ "I' + O( m!) = <u u) . 

It follows from this equation that 

p = f T<uu.uu) = i_a_<uu) = -p'+O(mq)' 
amI 

G. A. Christos 

(27) 

(28) 

"I = f T<uu.dd) = i_a_<uu) = 'Y'+O(mq)' (29) 
a~ 

In addition, the Ward identity 

f d4 x T<a ll Y~s(x). s'Yss(O» = imi f d4 x T<u'Ys u(x). s'Ys s(O» 

-i~ f d4 x T<d'Ys d(x). s'Ys s(O» = 0 (30) 

seems to imply that (since it must be true for all values of m i and m2) 

"I' = o. (31) 

If equations (29) and (31) were true the Stern condensate parameters (12) would 
vanish, 

A = Zs = Zp = 0, (32) 

and there would be no SCSB. This dilemma is resolved by notIcmg that the 
pseudoscalar-pseudoscalar amplitudes receive an additional contribution not included 
in (27) which is 0(1). For simplicity we illustrate what is happening by considering 
chiral U(2)xU(2) symmetry. [The chiral U(2)xU(2) theory is formulated as in 
Sections 2 and 3 except that all of the condensates in (10) which involve the strange 
quark (e.g. f T<uu. ss» now vanish. As a consequence of this one also finds slight 
changes to the formulae for m;'± -(m;'±)em and m;'o (;::::; m~3) given by (21). In this 
case, we get 

m;'± -(m;'±)em ;::::; i(mi + ~i(A+ Zs)' 

m;'o;::::; i(mI+ m~)A+i(ml + ~i Zs 

-i(ml-~iZp 

(33a) 

= (i/ F;')( (mI + m~)(p+p')+2ml ~('Y-'Y'») . (33b) 

Equations (26)-(29) are unchanged.] Chiral U(3)xU(3) will be reconsidered later. 
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02 =-q 
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[2'0 is U(2) x U(2) invariant and 

f T(u,,/su.u,,/su).!t' = f T<u,,/su.u,,/su).!t'o+ ff T<u"/su.u"/su.i2"')~o 
+ ~ f f f T<u,,/s u. u"/s u. i2".i2")Yo +.... (34) 

The third term on the right-hand side receives a singular contribution from the diagram 
(see Fig. 3) in which a (massless) pion connects two u,,/ s u. i2" operators (note that 
there is no such contribution to the second term because <01 u,,/ s U 11T) .!t' 0 = 0): 

~ Iff T<u,,/s u. U"/s u.i2".i2'').!t' = lim I<Olu,,/s u.i2"I1T).!t' 12 ~2 
2! 0 q-+ 0 0 q 

+ regular terms. (35) 

n 
XX··································································~x 

I T(O'Ys u. i £1 IT(o'Ysu. i.£.1 

Fig. 3. Infrared singular contribution in equation (35). 

XX .......... XX + X)( ........ ~· .. · ...... ·XX + X~ ........ ·~ ........ ·~ .. · ...... ·-XX + .... n n~n n~n~n 

!Tlii'Ysu.tL') HU'Ysu.d .. 1 -'!T L L') 

Fig. 4. Summation of the infrared singular set of diagrams contributing to the right-hand side 
of equation (34). 

The singularity in (35) is removed by summing the set of diagrams (see Fig. 4) through 
which the pion becomes massive (cf. with Fig. 2). This gives 

f T<u,,/s u.u,,/s u).!t' = f T<u,,/s u.u"/s u).!t'o 

1 < 1- . U?' I) 12 ( - i) + ° u"/s U .102 1T.!t'0 m2 +O(mq). 
".0 

(36) 

Reducing the matrix element on the right-hand side of this equation by a soft pion 
theorem gives 

f T<u,,/s u. u"/s u).!t' = p'-
i I I 2 

2 F2(mlP+~"/+mlP -~"/) +O(mq). 
m".o ". 

(37) 

'_.,--____ ~~c._~~,~_-~_"_~_"_~~"~_, __ ~~~ __ ~,~_ _._.~ ______ ~~_~~~~~, __ ,,~~~._~ __ • __________ _ 
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Similarly. one can show that 

f T(uys u. clys d)!f = "I' - 2 iF2 (mlP + ~ "I + m1 P' - ~y') 
m7To 7T 

x (- ml "I - ~P + ml "I' - ~p')+O(mq)' (38) 

Since m; = O(m~), the pion pole contributions are seen to be 0(1). Inserting (37) 
and (38) into (26) and using (33) gives (in place of 28) 

<uu) = -iml P -i~ "I +O(m!). 

This is nothing else but the U(2)xU(2) version (i.e. with no m3 term) of (l3). Asa 
result the chiral Ward identities do not relate the condensates P, "I, p' and "I'. 

X~·········~··········~X + ·X>E··········~········· ·········~·········~X + ... n'~ n'lI11!II111nI. ~. n'AI11II11IIL 
IT(Op,.;I') Ho.,.;.!') -l T 1.'1..') 

~ n·lI11!II111nI.~n'~ ~~ X~X+X~'WlllJlII'~·········~··········~X + .. 

n'.~ X)(·········· ··········~X+···· 

~n'~ X~·········~·········~X+···· 

....... ~~ ............... = ..... !!.: .... + ..... !!~ .. @ .... ~.' ..... + ...... !!~ .. @ ... !!~ ... @ ... ~.~ .... , + ... . 

~ n8 ~_n8~ 
~=--+~+~+ .... 

Fig. 5. Set of diagrams which give rise to the 0(1) 'corrections' to f T< OPl . OPl> in the 
U(3)xU(3) case. 

The interesting feature of equations (37) and (38) is that they satisfy 

(. .. ) !f I mq __ 0 +- (. .. ) !f ° ' (39) 

i.e., the result of calculating an amplitude in the non-chiral limit and then taking 
mq _ 0 is not necessarily equivalent to what one would calculate in the exact chiral 
limit. 
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In hindsight this result is quite obvious. The pion pole can make a contribution 
to f T(TrY5 u. UY5 u)!!" which 

( -i) 
~ <01UY5 UI7T)-2 <7TluY5 ulO) 

m'lr 

= O(mq)O(1!m~)O(mq) = 0(1), 

but this is absent in the corresponding :7 0 term because <0 I uY 5 u 17T) Y = 0. These 
o 

additional 0(1) 'corrections' must be included whenever one uses the chiral Ward 
identities in the non-chiral limit. 

In the chiral U(3)xU(3) situation the pseudoscalar-pseudoscalar amplitudes also 
receive a contribution from the 'YJ meson, plus possible 7TO-'YJ mixing contributions. The 
complete set of (singular) diagrams which contribute to say f x T<OPl(X), 0Pl(O), 
where OPJ and 0Pl are some two-quark pseudoscalar operators (e.g. uY5 u) are given 
in Fig. 5. One finds that (m;'3 = m~3 and m;'s = m~8) 

Ix T<OPl(X)' °Pl(O)y = Ix T<OPl(X), °Pl(O)Yo 

+(I T<OPl·i:7'17T3)yo I T<OPl.i:7'17T8)yo) 

(-i) (-i)<7T31_l I T(:7':7,)17T8)(-i) 
m2 m2 2 m2 

~3 w3 ~8 
X I 

(-i) <7T8 r- l I T(:7' :7')17T3) ( -i) (-i) 
m2 2 m2 m2 

n8 n 3 n 8 

I T < 7T31 ° Pl . i:7 ') Yo 

I T < 7T81 ° Pl . i:7 ') Y 0 

( 1) x +~m) 
l-I<7T31-i f T(:7':7,)17T8)1 2/m;'3 m;'s q 

(40) 

= I T<OPI' OPl)Yo+(I T<OPl.i:7'I7TO)Y'oI T<OPJ.i:7'I'YJ)Y'o) 

( -i) 

° I T < 7TO I ° Pl . i:7 ') Y 0 

(41) 
m 2 

I +O(mq). 
'lr0 

X I 
(-i) 

I T<'YJI 0Pl· i:7')yo ° m2 
l) 

Using equation (40) it is straightforward (although tedious) to calculate the 0(1) 
'corrections' to the pseudoscalar-pseudoscalar amplitUdes. Since these results are not 
particularly enlightening we do not include them here. We leave it as an exercise to 
the interested reader to check that, with the 0(1) 'corrections', equation (26) reduces 
to (13) and the left-hand side of equation (30) vanishes. 
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5. Quark Mass Ratios 

Dashen's (1969) electromagnetic theorem and the result of Das et al. (1967) are 
unaffected by the change in the scheme of SCSB. As a result we take 

( 2 ) 2 6e2 2 
m7T± em ;:::;; (mK±)em ;:::;; (47T)2 mp In 2 ;:::;; 0·00143 GeV2 . (42) 

In the usual scheme of SCSB the quark mass ratios can be determined from equations 
(Ala), (Alb), (Alc) and (42) (see equations A2a and A2b). In the AS, however, the 
masses m;±, mi± and miOKO involve two symmetry breaking parameters (A and Zs) 
and this is no longer possible. Instead, what can be done is to determine the quark 
mass ratios for specific values of g s = Z'; A. 

Table 1. Values of r, R, ",2 A, mI' m2' A and Zs for specific values of ~s 

~s = ~ 2m3 m2- m) m2A Taking m3 ::::: 150 MeV 
r= ~ R = 

(MeV2) m) (MeV) m2 (MeV) A m) + m2 m) + m2 

0 6·368 0·04059 1·805xl04 22·6 24·5 32·5 
1/ 12 8·209 0·05502 9.752xl03 17·3 19·3 29·2 
1/6 9·896 0·06927 6.051 x 103 14 -1 16·2 25·0 
1/3 12·64 0·09496 3.069x103 10·7 13·0 21· 8 
1/2 14·67 0·1163 1.933x103 9·04 11·4 18·5 

1 18·31 0·1609 8 .472x 103 6·88 9·52 12·6 
2 21·37 0·2066 3. 780x 102 5·57 8·47 7·67 
5 23·96 0·2528 1.380x102 4·68 7·84 3·52 
00 26·15 0·2991 OA 4·02 7·45 0 

A With m2 Zs ::::: 6·413xl02 . 

From equations (21a), (21b) and (21c) it follows that 

mio+(mi+ -em)-(m;+ -em) 

m;+-em 

(r2+2r-1 + R 2)+2r(2+ r)gs 
2+2(2+ r)gs 

;:::;; 26 -146 (exp) , 

Zs 

0 
2·43 
4·17 
7·27 
9·25 

12·6 
15·3 
17·6 
19·5 

(43) 

where we have defined r = 2m3/(m) + 11'lz) and R = (11'lz - m))/(m) + 11'lz). The 
numerical value in (43) is obtained on inserting the experimental values of mio, mi+ 
and m;+ and the estimate (42). If we neglect the R2 term in (43) we can use it to 
solve for r in terms of gs. The values of r for some specific values of gs are given in 
Table 1. 

Similarly, using the relation 

mio-(mi+ -em) _ R!i+ r+(2+ r)gsl ;:::;; 0.29909 (exp) , (44) 
m2 -em - 1 +(2+ r)gs 7T+ 

and the values of r calculated above we can also determine R as a function of gs (see 
Table 1). 
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The values of R calculated in this way can then be used to check the consistency 
of the initial approximation of neglecting the R2 term in (43). Since 

R2/? ~ 10-4 , (45) 

the results of Table 1 remain practically unchanged. 
The cases ~s = 0 (i.e. Zs == 0) and ~s = 00 (i.e. A = 0) can be solved analytically, 

with 

r= 
2m3 

m1 +"'2 

R = "'2- m l 

ml +"'2 

1 2 1 ~o+(mi+ -em)2 -(m1/"+ -em)2 
1 

(m;'+ -em)2 

mio+(mi+ -em)-(m;'+ -em) 

m2 -em 1/"+ 

2 )1 ~O-(mK+ -em 2 
1 

(m;'+ -em)2 

mio-(mi+ -em) 

m2 -em 1/"+ 

(~s = 0) (46a) 

(~s = (0), (46b) 

(~s = 0) (47a) 

(~s = (0). (47b) 

It is interesting to note that the expressions for ~s = 00 coincide with those obtained 
in the usual scheme of SCSB (see equations A2a and A2b). 

An estimate of the condensate parameters can be obtained from equation (21a): 

2 
_,,2 m1/"+ -em 
m-A =. , 

1+(2+ r)~s 
(48) 

where m = ~(ml +"'2) (see Table 1). 
As mentioned earlier Zs =1= 0 entails a violation of Zweig's rule in the 0+ channel, 

and therefore, Zs is expected to be quite small. Consequently (see Table 1) the values 
of r and R are smaller than the values in the usual scheme. It is interesting to note 
that the likely value of r calculated from the pseudoscalar sector in the AS (r ~ 10) 
is in fairly good agreement with the value one obtains from a consideration of baryon 
masses (1. Stem 1982, unpublished). 

6. 'lT0-"l-"l' Mixing and the Decays l/J---+'lT0')', 'rJ,)" 'rJ',), and l/J' ---+l/J'lT0, l/J'rJ 

The 7TO-TJ-TJ' mixing matrix elements (21d)-(2li) can be expressed in terms of 
r = fnJ/fh, R = ("'2 - ml)/(m1 + "'2), ~s = Zs/ A, ~p = .~/ A and,rt A: 

m~3 = (,rtA){1+R2+(2+r)~s-2R2~pJ, 

m~8 = -2vj(,rtA)R{1+(1+~r)~s-(1-r)~pJ, 

m~9 = -2v1a(,rtA)R{1+(1+~r)(~s-~p)J, 

m~8 = j(,rtA){I+R2+2r2+(2+r)(1+2r)~s-2(I-r)2~pJ, 

m~9 = 1a2(,rtA){1+R2+~r2+2(1+~ri(~s-~p)J +X2/Nc' 

m~9 = jV2a(,rtA){1+R2-r2+(I-r)(2+r)(~s-~p)J· (49) 

____ ~..,...",.,r'7 .... '-,.....-"'_.",-.--."..,.m"..,.-r="".~. ~.~7,~O"""T"""""""---""-;'=-,-"-_~~""""=~"""""'''''''''''n'''_~'"'''''''''''-' ,,'~'.'~=>-'''<T'~'''-''''-'''=-'-'--''''~',""'''=''-~-'''.-~'''''''''''''="' 
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Recall that a = F7J F. is the ratio of the pion to the singlet decay constant. Although 
a = 1 in the combined SU(3) and large N c limits (Witten 1979; Di Yecchia et al. 
1981; Christos 1984b), it turns out that large Nc corrections must be quite large. 
Consequently, for a much better fit it proves more appropriate to simply allow a 
to differ from one. The X21 N c term in (49) arises in the same way as in the usual 
scheme of SCSB. One assumes that the 'topological susceptibility' 

«v2» = -i f d4 x a~ l T<KJ-l(x) ~(O) (50) 

is nonzero and positive (Witten 1979; Veneziano 1979) in pure Yang-Mills theory 
(no quarks). The requirement that «V2»QCD should vanish (Crewther 1979) leads 
to the result that the flavour singlet pseudoscalar acquires a contribution to its mass 
squared, which does not vanish in the chirallimit, given by the Witten formula 

m~9 ;::::: 6«V2»YMI F;' = X21 Nc (mq -* 0). (51) 

For a thorough explanation of this mechanism and the underlying assumptions see 
Christos (1984a). 

Instead of dealing with the 7TO-TJ-TJ' system as a whole, it proves convenient 
to consider initially TJ-TJ' mixing alone, in isolation of the 7TO, i.e. in the limit 
ml = ~ = m: R = O. This is reasonable because isospin breaking is so much 
smaller than SU(3) breaking (see equation 45). 

In this case (with the inclusion of a =1= 1 corrections) the AS description of TJ-TJ' 
mixing can be fitted by the three parameters (for each value of ~s) X21 N c' a and 
~p. (This should be compared with the usual scheme where there are only two 
parameters, X21 N c and a.) Consequently there are no predictions for TJ-TJ' mixing 
in the AS of SCSB. The analysis is however not without interest because it gives an 
estimate of important quantities like the topological susceptibility, the ratio of singlet 
to pion decay constants and the magnitude of Zweig violation in the 0- channel. 

The relevant equations are 

m~g + m~9 = m; + m~, ;::::: 1·2182 Gey2 (exp) , (52a) 

2 2 (2 )2 2 2 6 G 2 ( ) mgg m99 - mg9 = mT] mT]' ;::::: 0·27 2 eY exp, (52b) 

tan 0 = (m~g - m;)I( - m~9) , (52c) 

where the mixing angle 0 is defined by 

ITJ) = cosOI8)+sin8Is), ITJ) = - sin(18)+ cosOls). (53) 

Inserting (52a) a~d (52c) into (52b) to eliminate m~9 and m~9 respectively gives 

2 2 2 (2 2 2) (2 2)21 8 mT] mT]' = mgg mT]+mT],-mgg - mgg-mT] tan. (54) 

Since m~g is a (linear) function of ~p only, equation (54) is . quadratic in ~p. The 
interesting solution is the smaller of the two; the other gives a = O. The value 
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of a can then be determined from equation (52c), followed by the value of X2/ N c 

from (49). In performing these calculations we have used a (conservative) value of 
() ;::::: lOo±4°. The results are given in Table 2. These should be compared with the 
values obtained in the usual scheme of SCSB given by equations (A5). 

Table 2. Values of ~p, FsIF., and x.21Nc for specific values of ~s as 
determined from fitting the '1/-'1/' spectrum, with 8 = lOo±4° 

~s = ZsIA ~p = Zp/A a-I = Fsi F", X2 I Nc (GeV2) 

0 0.5025 -0·0504 1.37-0 . 24 0.8748 -0·0450 
+0·0342 +0·68 +0·0283 

1112 0.5026 -0·0535 1.55 -0· 30 0.8637-0.0474 
+0·0350 +0·82 +0·0337 

116 0.5027 -0·0547 1.66-0 . 33 0.8601-0.0482 
+0·0371 +0·90 +0·0356 

113 0.5031-0.0630 1.78- 0 . 37 0.8581-0.0490 
+0·0427 +0·99 +0·0366 

112 0.5036 -0·0725 1.85- 0 .40 0.8575 -0·0491 
+0·0492 + 1·03 +0·0369 

0.5051-0.1035 1.92- 0 .42 0.8572- 0 .0492 
+0·0700 +1.\0 +0·0371 

2 0.5083-0.1670 1.97- 0 .43 0.8572 -0·0492 
+0·1132 + 1·13 +0·0371 

5 0.5179 -0·3603 2.00- 0 .44 0.8572 -0·0492 
+0·2442 + 1·15 +0·0371 

It is interesting to briefly consider the hypothetical case where () ;::::: 0 and ask: 
when does the Gell-Mann-Okubo (GMO) mass formula hold? It is easy to see from 
equations (21) or (49) (here m; = m~8) that (for m1 ;::::: "'-2 ;::::: m) the quadratic 
GMO formula m; = 1 mi - j m; holds if ~p = !, while the linear GMO formula 
11'l.ry = 1 mK - j m7T holds if ~p = j and ~s = 0 (J. Stern 1982, unpublished). In the 
AS there is no natural explanation of the quadratic GMO formula, which works quite 
well. 

Having determined these parameters we can now return to the 7To-TJ-r( analysis 
and predict the values of m~o and the other two mixing angles for each value of ~s. 
The value of m~o is determined by the secular equation 

2 2 m 33 - m 7To m~8 m~9 

det I 2 2 m 88 - m",o m~9 = O. (55) 

symm. 2 2 m 99 - m",o 

Assuming that 
2 2 2 

m",o < m88' m99' (56) 

it follows that 2 2 2 (m2 )2 m~8 -(m~8i m~9 (57) 
2 m38 m39 m89 39 , 

2 2 ~ 2 2 (2 )2 !l. m2 ° = m",o - m33 ~ m88 m99 m89 7T 

from which one can determine a value of m~3 - m~o and m~o. An improvement to 
this value can be obtained by resubstituting the last value of m~o into the parts of (55) 
where (56) was assumed. The result converges to five significant figures after only 
three iterations. It is then a simple matter to determine the corresponding eigenvector 

I7TO> = a7T0317T3>+a7T0817T8>+a7TOsls). (58) 

The results are given in Table 3. 
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Table 3. Values of 4"';'0 = "';'0 - m~3' m;o. 1- a1T03' a1T08 and a1ToS for specific values 
of gs 

gs flm2 m2 1- a7T03 a1T08 a7ToS 1TO 7TO 

(MeV 2) (MeV2) (x10- 5) e = 6· e = 10· e = 14· 

0 _32.4+ 5.9 18016+ 9 5.4- 1.1 1 04- 0. 11 8.35x10- 7 1.54x10-4 4.65xlO- 4 
-4·8 -7 +1·0 · +0·09 

1/12 _32.7+ 5.8 18016+ 9 5 6- 1.1 1 06- 0. 11 2.70x10- 7 5.31x10- 4 8.76x10- 4 
-4·6 -7 . +0·9 · +0·08 

1/6 _33.0+ 5.7 18016+ 9 5 7- 1.0 1.07-0.10 4.55xlO- 4 8.07x10- 4 1.21xlO- 3 
-4·5 -7 . +0·9 +0·08 

1/3 _33.7+ 5.3 18015+ 9 5.9-0.9 1 08- 0.10 7.20xlO- 4 1.22x 10- 3 1·73x10- 3 
-4·2 -6 +0·8 · +0·07 

1/2 _34.4+ 4.9 18014+ 9 6.1-0.9 1 09- 0.09 9.12x10- 4 1.52xlO- 3 2.13x10- 3 
-4·0 -6 +0·7 · +0·07 

_36.3+ 4.0 18012+ 9 6.4-0.7 1 11 -0·09 1.28xlO- 3 2-12x10- 3 2.93x10- 3 
-3·2 -6 +0·6 · +0·06 

2 . _38.7+ 2.6 18010+ 8 6.8-0.6 1 13- 0.08 1.64x10- 3 2.71x10- 3 3.73xlO- 3 
-2·1 -6 +0·4 · +0·06 

5 _41.7+ 0.8 18007 + 7 7.2 - 0·3 1.15- 0.07 2.00x10- 3 3.29x10- 3 4.52x10- 3 
-0·7 -5 +0·2 +0·05 

'Y 

if, ~ ~ E c:!\::;;~. if;' ~ «" i % if; 

11. 

Fig. 6. Gluon annihilation diagrams by which the decays Iji ~ 1TOy. 7JY. 7J'y and Iji' ~ lji1To. 1ji7J 
can proceed. Here 7J5 = 1T9 is the flavour singlet pseudoscalar meson. 

Assuming that the decays l/J ~ 7T0'Y, TJ'Y. TJ''Y and l/J' ~ l/J7TO, l/JTJ proceed 
predominantly through the gluon annihilation diagrams of Fig. 6, we find that 

T(l/J~7T0'Y): r(l/J~TJ'Y): T(l/J~TJ''Y) 

( 2 )2( 2 2)3' 2 O( 2 2)3 20(· 2 2 )3 (59) :::; a7TOS m",- m7To : SIn m",- m'll : COS m",- m'll' , 

2 1 23 2 23 
T( l/J' ~l/J7TO) (a7TOs)2 {m"" - (""" + m1To) J 1: { m",' - (""" - m7To) J 1: 

, :::; -'-2 - 3 3' (60) 
T(l/J ~l/JTJ) sm 0 {m~, -(""" + ~)2 J 1: { m~, -(""" - ~)2 J 1: 

The predicted ratios of these decay rates for the AS are given in Table 4. These 
should be compared with the experimental values 

T(l/J~7T0'Y): T(l/J~TJ'Y): r(l/J~TJ''Y) 

:::; 0·08+0·06: 1·0±0·1 :4·2±0·6, (61) 

T(l/J'~l/J7TO) :::; (3.6+1.8)xlO-2, (62) 
r(l/J' ~l/JTJ) 

and to the values one obtains in the usual scheme of SCSB (see equations A6). One 
notices that although the usual scheme does not give a very good account of these 
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Table 4. Ratios of decay rates for specific values of ~s, with (J = 6°, 10° and 14° 

gs r(I\J~1T°'Y)/ r(1\J~1'j'Y) rw ~1\J1TO)/ rw ~1\J1'j) 
e = 6° e = 10° e = 14° (J = 6° e = 10° e = 14° 

0 6 .97x 10- 11 8.65x10- 7 4.05x10- 6 1.23x10- 9 1.53x10- 5 7.17xlO- 5 

1/12 7.29xlO- 6 1.02x10- 5 1.43xlO- 5 1.29x10-4 1.81xlO-4 2 .54x 10- 4 

1/6 2 ·08x 10- 5 2.36x10- 5 2.72x10- 5 3.68xlO- 4 4.18x10- 4 4.82xlO- 4 

1/3 5·19x10- 5 5.38x10- 5 5.59xlO- 5 9·20x10- 4 9.53x10- 4 9.90x10- 4 

1/2 8.33x10- 5 8.42x10- 5 8.49x10- 5 '1.48x10- 3 1.49x10- 3 1.50x10- 3 

1 1·65x10-4 1.63x10-4 1.61x10-4 2.91x10- 3 2·89xlO- 3 2.84x10- 3 

2 2·70xlO- 4 2.66xlO- 4 2.60xlO- 4 4.78x10- 3 4.71x10- 3 4.60x 10- 3 

5 4·00x10- 4 3.93x10- 4 3.82xlO- 4 7.08x10- 3 6.96x10- 3 6.77x10- 3 

ratios, those obtained in the AS [for reasonable (i.e. small) values of ~s] are further 
removed by at least another order of magnitude. 

Because of the comparatively large experimental errors this cannot be used to 
rule out the AS of SCSB. It is interesting to note however that models with ~s == 0 
(y = 0), which are extensively used in the literature, give results which differ from 
the experimental values by many orders of magnitude. 
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Appendix: Quark Mass Ratios and 1j'0-lJ-1( Mixing in the Usual Scheme of SeSB 

In the usual scheme of SCSB (where to leading order P", ;:::; PK ;:::; F8 and 
(uu> ;:::; (dd> ;:::; <ss> ;:::; ~<qq», we have 

2 (2 I - 2 (Ala) m",±- m",±)em = - p2 (ml +~)(uu>+O(mq), 

'" 
2 (2) I - 2 (Alb) mK±- mK± em = - p2(m1+m3)(uu>+O(mq), 

'" 
2 I _ 2 

(Alc) mKo,Ro = - p2 (~+m3)(Uu>+O(mq)' 

'" 
2 I _ 2 

(AId) m88 = - 3p2 (ml + ~ +4~)(uu>+O(mq)' 
'" 

X2 2a2 
m~9- N = - 3p2 (ml + ~+ m3Kuu>+O(m!) , (Ale) 

c '" 

2 li2a - 2 (Ali) m89 = - 3p2 (ml + ~-2m3)(uu>+O(mq)' 
'" 

2 I _ 2 
(Alg) m33 = - p2 (ml + ~)(uu>+O(mq)' 

'" 
2 I _ 2 

(Alh) m38 = - li3p2 (ml- ~)(uu>+O(mq), 

'" 
2 li2a - 2 (Ali) m39 = - li3p2 (ml- ~)<uu>+O(mq), 

'" 

where (m;")em and (m~±)em are the electromagnetic contributions to m;" and mi, 
respectively, a = P",/ PS' and X2/ N c is the 'anomaly' contribution to the singlet 
pseudoscalar mass squared. 
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The quark mass ratios can be determined from equations (Ala), (Alb), (A1c) and 
(42): 

2m3 

ml+~ 

~-mi 

ml+~ 

z 

z 

m~o+(m~+ -em)-(m~+ -em) z 26.146, 
m2 -em ,.,.+ 

m~o-(m~+ -em) z 0.2991. 
m2 -em ,.,.+ 

(A2a) 

(A2b) 

The 7To-TJ-r/, matrix elements (A1d)-(A1i) are then a function of only two variables, 
a = F,.,.I F'g and X21 N c. The equation (the trace of the mixing matrix) 

m~3+m~8+m~9 = m;'o+m~+m;, z 1·2363 Gey2 (exp) (A3) 

can be used to eliminate X21 N c. The equation (the determinant of the mixing matrix) 

2 2 2 2 2 2 2 (2)2 2 m33 m88 m99 + m38 m39 m89 - m39 m88 

( 2) 2 (2)2 2 2 2 2 - m38 m99 - m89 m33 = m,.,.o m'Tj m'Tj' 

z 0·5030x 10-2 Gey6 (exp) (A4) 

can then be used to determine a. The mixing matrix can then be diagonalized. The 
results are 

m;'o z 0·0180074 Gey2 (exp 0·018215 Gey2) , 

m~ z 0·3063 Gey2 

m;, z 0·9120 Gey2 

(exp 0·3012 Gey2) , 

(exp 0·9169 Gey2); 

I7TO) z (1- 7 ·Ox 1O-5)17T3)+ 1·132x 1O-217T8)+ 3 ·40x 10-31 s), 

ITJ) z -1·171x 1O-217T3)+0.988017T8)+0.15401 s), 

ITJ /) z -1·613x 1O-317T3)-0.154017T8)+0.9881I s); 

F'gIF,.,. = a-I z 2.32, X21Nc z 0.866 Gey2, () z 8·86°. (A5) 

Inserting the value of a,.,.os z 3· 40x 10-3 into equations (59) and (60) gives 

F(l./J--7T°'Y): F(l./J--TJ'Y): F(l./J--TJ''Y) z 5x 10-4 : 1: 33·5, 

F(l./J'--l./J7TO)IF(l./J'--l./JTJ) z 9.4x1O-3. 

(A6a) 

(A6b) 

Manuscript received 30 October 1985, accepted 6 January 1986 

.~--".,.-'--- """~,,,,~,~,~~,,~, ~""~ -,,~,-~-~-,=.=-~~,---~,,----~,~--~~,,~-~,,~, ~,~-----




