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Abstract 

Auroral kilometric radiation, Jupiter's decametric and Saturn's kilometric radio emissions, solar 
microwave spike bursts and microwave emissions from some flare stars have all been attributed to 
the electron cyclotron maser instability. The maser instability is usually assumed to involve the 
generation of magnetoionic waves. We investigate the modifications to the magneto ionic wave 
modes due to finite Larmor radius (FLR) corrections arising from a 'warm' background electron 
plasma with a Maxwellian distribution. We then consider the effects of these modifications on 
maser emission at frequencies near the fundamental of the electron cyclotron frequency fl e . The 
FLR effects are found to be small; the maximum temporal growth rate generally differs by ~ 10% 
from that for emission occurring in the magnetoionic modes. Small shifts occur in the frequencies 
and propagation angles corresponding to the maximum growth rates. 

1. Introduction 

Electron cyclotron maser emission (ECME) has been proposed as the mechanism 
for a variety of intrinsically very bright and highly polarized radio bursts from 
planetary and astrophysical sources. The most widely accepted proposal is that 
auroral kilometric radiation (AKR) is due to such maser emission, driven by electrons 
with a loss cone anisotropy (Wu and Lee 1979; Melrose et al. 1982; Omidi and 
Gurnett 1982; Wu et al. 1982). The process also provides favourable explanations 
of decametric radio emission (DAM) from Jupiter (Hewitt et al. 1981), of kilometric 
radio emission (SKR) from Saturn, of microwave emission from some flare stars 
(Melrose and Dulk 1982; Dulk et al. 1983), and of microwave spike bursts from the 
solar corona (Holman et al. 1980; Melrose and Dulk 1982; Sharma et al. 1982). 

The AKR is the most widely studied of these emissions because it has been 
possible to make various in situ measurements. Energetic (,inverted V') electrons 
precipitating along auroral magnetic field lines are associated with large potential 
drops' in an auroral plasma cavity very deficient in the 'cold' background plasma of 
ionospheric origin. This reduces the plasma frequency wp to a value much less than 
the electron cyclotron frequency [le' Some of the precipitating electrons are absorbed 
by the ionosphere while others are reflected by the converging magnetic field lines to 
produce a 'hot' electron distribution with an upward directed loss cone. It is the 'hot' 
anisotropic, loss cone distribution which supposedly drives the electron cyclotron 
maser (Wu and Lee 1979; Benson and Calvert 1979). The radiation is emitted 
predominantly with x-mode (fast extraordinary) polarization at frequencies just above 
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the local electron cyclotron frequency. Weaker bursts of o-mode (ordinary) and 
z-mode (slow extraordinary) radiation have also been observed. The other planetary 
emissions DAM and SKR display similar characteristics but the mechanisms differ 
in detail. 

Calculations of growth rates and other quantities for ECME have generally involved 
the assumption that there are two essentially independent plasma distributions in the 
emission region. The dispersive properties of the region are assumed to be determined 
solely by a relatively dense, cold, background plasma component. Thus emission 
occurs in the wave modes (x, 0 and z) determined by magnetoionic theory. The 
cyclotron instability causing maser action is assumed to be driven by an anisotropic 
distribution of 'hot' electrons, at a typical temperature of - 108 K and an average 
density very much less than that of the background plasma. These assumptions 
are consistent with the environments in the low and intermediate altitude source 
regions of AKR and probably with those of DAM and SKR. For the solar corona 
and the atmospheres of flare stars, however, the background plasma is probably at a 
temperature between 106 and 107 K. Some authors have considered the situation of 
a single hot plasma with no background distribution (Winglee 1983, 1985; Wu et al. 
1982). This model is relevant to high altitude source regions of AKR and will not be 
considered in this paper. 

Fundamental ECME driven by a single sided loss cone distribution occurs for the z 
and x modes at frequencies close to and just above fl e . At these frequencies, thermal 
effects are likely to be important because the elements of the cold plasma dielectric 
tensor exhibit singularities at w = fl e. Loss cone driven ECME at higher harmonics 
of fle also involves the generation of radiation at frequencies just above the relevant 
multiple of fl e and so thermal effects are likely to be important in these situations too. 
The thermal effects arise in two ways-from the finite Larmor radius of the electron 
and from the relativistic mass dependence of the electron gyrofrequency. Together, 
these effects can lead to significant modifications to the cold plasma wave mode 
structure. In addition to the probable importance of thermal effects at frequencies 
near fl e, the positions of the cutoffs (where n = 0) and resonances (where I n2 1 

becomes infinite) are changed when thermal effects are included. 
In this paper we relax the assumption that the background plasma in the source 

region is cold. As in most of the papers cited above, we assume that the electron 
distribution may be described by the sum of a relatively dense background distribution 
and an anisotropic energetic distribution. The former distribution dominates the 
hermitian part of the dielectric tensor E and determines the (time-reversible) dispersive 
properties of the plasma. We neglect thermal effects which arise from the relativistic 
mass increase of the electrons, but we do investigate the frequency range in which 
such effects are likely to be important. Our method of approximation of the dielectric 
tensor for the thermal background plasma is suitable only for frequencies near the 
electron cyclotron frequency fle and hence we consider only finite Larmor radius 
(FLR) modifications to maser emission at the fundamental. The antihermitian part of 
E is dominated by the anisotropic distribution and gives rise to growth (or damping). 

In Section 2 we calculate the dispersive properties for a background distribution 
which is taken to be Maxwellian at a temperature of 2x 106 K (corresponding to a 
typical temperature of the solar corona). We also estimate the parameter regimes in 
which our approximations break down, and in which a full relativistic treatment is 
required. In Section 3 we calculate the growth properties of the thermal modes due 



Finite Larmor Radius Modifications 409 

to maser action driven by a 'hot' loss cone distribution and compare our results with 
the corresponding results for growth in the magnetoionic modes as given by Hewitt 
et al. (1982), Hewitt and Melrose (1983) and Melrose et al. (1984). The results are 
summarized in Section 4. 

2. Dispersive Properties of the Warm Background Plasma 

(a) Dielectric tensor 

The dispersive properties of the warm background plasma may be described in 
terms of the hermitian part Eh of the dielectric tensor for a Maxwellian electron 
distribution. Analytic expressions for Eh may be obtained if purely relativistic effects 
are neglected by setting the Lorentz factor 'Y = (1- v2 I c2)-i equal to 1 (see for 
example Melrose 1980b; p. 264). The expressions obtained for the elements of Eh 
involve products of the real part of the plasma dispersion function of Fried and Conte 
(1961) with argument 

1 

Z = (w-sfle)tanOlfle(2A)"i, 

and the modified Bessel functions Is(A) and their derivatives. The parameter A may 
be written as 

11.= n2(vlci(wlfleisin2 0, 

where n = kclw is the refractive index, v is the thermal velocity of the electrons 
given by kB T = me v2 and 0 is the angle between the wavevector k and the magnetic 
field B. 

Calculations for maser emission at the fundamental-in the wave modes of a cold 
plasma-indicate that growth occurs in parameter regimes satisfying w ::::: fle and 
sin20 ~ 1 (Lee et al. 1980; Omidi and Gurnett 1982; Hewitt and Melrose 1983). 
In this case A ::::: n2( vi C)2 and for a 'warm' plasma (vi C)2 ~ 1 so A will gerrerally 
be small. It is therefore appropriate to expand Ehas a power series in A retaining 
terms to first order, provided A ~ 1 and I z2 1 > 1 (Sitenko and Stepanov 1957). The 
resulting expression may be written in the form 

Eh = EC + n2 E T , (1) 

where EC is the cold plasma dielectric tensor and is independent of both n and vic 
whilst ET is independent of n and proportional to (VIC)2 (Akhiezer et al. 1975; 
p. 232). So n2ET is the first-order nonrelativistic thermal correction (giving finite 
Larmor radius effects) to the cold plasma dielectric tensor. 

(i) Conditions for Validity 

The approximations made here place some constraints on the validity of equation 
(1). Firstly, in order to expand in terms of the small parameter A we require A ~ 1. 
For the cases of interest, w ::::: fle and sin20 ~ 1 which imply that this requirement 
is satisfied provided I n2 1 ~ (cl V)2. In addition, the expansion of the real part of the 
plasma dispersion function as a power series in A is only valid when I z2 1 > 1. The 
power series is approximated by its first two terms which should be justified provided 
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the magnitude of the ratio of the third-order term to the second-order term is :S to. 
This requires 13/2z21 :Sto or 

Iwlne-11 ~ 30~lncosOlvlc. (2) 

The other approximatidn made in the derivation of equation (1) generally imposes 
a more stringent requirement on I wi ne -11 when 0 ;::; 90°. Calculations of maser 
action for cold background plasmas indicate that for growth to occur 0 must generally 
lie 'near' 90° (within - 30). The approximation is to neglect all relativistic mass 
dependence-most importantly, that of the resonant denominator in the formulation 
given by Melrose (1980 a; p. 41), namely w - s n Jy - kll 1-1 I + i 0 where the sUbscript 
II denotes components parallel to the magnetic field. If the relativistic effects are 
small then y-l ;::; 1 - v2 /2c2 and the resonant denominator may be approximated 
by w - s n e - kll 1-1 I + s n e v2/2 c2 + i O. In the case of perpendicular propagation 
where kll and hence the longitudinal Doppler term kll vII are zero, the only velocity 
dependence of the denominator is that due to relativistic mass effects. 

We assume that the relativistic effects are important over essentially the same 
frequency range for all the propagation angles of interest (i.e. 10 - 90° I :S 30°) to 
estimate the frequency regions for which the FLR approximation (1) is sufficient. 

Calculations of the weakly relativistic dielectric tensor by Dnestrovskii et aZ. (1964) 
and Shkarofsky (1966) show that for perpendicular propagation and A < 1, £ can be 
expanded to first order in A; it follows that £ can be written in the form 

£(0=90) = £(0)+ n2 £(1) , (3) 

where £(0) and £(1) are independent of n (Robinson 1986). In contrast with the 
nonrelativistic (FLR) result (1), the hermitian parts of £(0) and £(1) both contain thermal 
contributions; £c is, by definition, independent of thermal effects. In addition, whilst 
£c and £T both exhibit a singularity at ne-due to terms dependent on (w2-n~)-j 
for j = 1,2,3 arising from the nonrelativistic resonant denominator-neither (£(O»)h 

nor (£(1»)h exhibits such a singularity because the resonance is 'smeared out' by the 
relativistic Doppler effect. 

For 'warm' plasmas, at frequencies outside a narrow band centred on the 
gyrofrequency, the functions occurring in (£(O»)h and (£(1»)h can be approximated by 
their asymptotic forms, yielding the FLR approximation (£(O»)h = £c and (£(1»)h = 
£ T (0 = 90). We assume that the asymptotic approximation is valid provided the 
magnitude of the ratio of the second term in the asymptotic expansion to the first term 
is :S to. Then at 0 = 90°, the FLR approximation to the dielectric tensor (equation 
1) is valid if w ;::; ne , A < 1 and 

Iwlne -11 ~ 25(vlci· (4) 

In summary, at T = 2x 106 K corresponding to the temperature of the solar 
corona, vic = 0·0184 and we expect equation (1) to be valid provided w ;::; n e , 

I nl < 50, Iwlne -11 ~ tol n cos OI and Iwlne ....,.11 ~ 0·01. 

(b) Dispersion equation and dispersion relations 

The general dispersion equation may be written as A n4 - B n2 + C = 0, where A, 
Band C are functions of the dielectric tensor elements (see for example Melrose 
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1980a; Ch. 2). The coefficients A, Band C may be expanded to first order in 
n2(vlc)2 using equation (1) and then written as 

A = .40+ n2 A[, B = Eo+n2B[, C = CO+n2C[, 

where the subscripted quantities are independent of n; .40, Eo and CO are independent 
of vi c whilst A[ , B[ and C[ are proportional to (vi C)2; explicit expressions for these 
six quantities were derived by Sitenko and Stepanov (1957). The dispersion equation 
is then 

A[ n6 +(.40- B[)n4 +(C[ - Eo)n2 + CO = 0 (5) 

which is cubic in n2• The important features of this equation are that the leading 
coefficient A[ is a purely thermal term, being proportional to (vi c)2, whilst the 
constant term CO is independent of the FLR corrections. In the cold plasma limit 
vi c = 0 and equation (5) reduces to a quadratic equation in n2, 

.40 n4 - Eo n2 + CO =; 0, (6) 

the roots of which give the dispersion relations for the well-known magnetoionic 
modes. 

The thermal dispersion equation (5) is of third order in n2 , in contrast with the 
cold plasma dispersion equation (6) which is quadratic. In principle this implies 
that thermal effects lead to an extra wave mode. However, at most frequencies 
the modifications may be regarded as changes to the topology of the cold plasma 
dispersion curves. 

The topology of the solutions to dispersion equations such as (5) and (6) is 
determined by the cutoffs (where n2 = 0) and resonances (where I n2 1 goes to infinity). 

(i) Cutoffs 

For a cold plasma, equation (6) implies that cutoffs occur where COlAo = 0; this 
only occurs where CO = o. (We note that .40 and CO both become infinite at the 
gyrofrequency in such a way that COlAo tends to a non-zero limit so no cutoff occurs 
at {le.) Analytic expressions for the frequencies of the three cutoffs which occur in 
the magnetoionic modes may be obtained by solving the equation CO = 0 (see for 
example Melrose 1980 b; p. 259). 

When FLR effects are included, equation (5) implies that cutoffs occur where 
COl A[ = O. In general, A[ is finite and non-zero at frequencies for which CO = 0 so 
the cold plasma cutoffs are unchanged by FLR corrections. This is consistent with 
the expansion in A since, at a cutoff, n = 0 implies A = 0 and £h reduces to £c (see 
equation 1). In addition, we find that A[ becomes infinite at the gyrofrequency in 
such a way that 

lim (COl A[) = 0, 
o W ------. {}e 

which suggests that there is a cutoff at Ctl = {le. However, this cutoff is unphysical 
since the necessary inclusion of relativistic effects near Ctl = {le removes the singularity 
at the gyrofrequency. [It should be noted that the cold plasma cutoffs are modified by 
relativistic thermal effects. This can be seen by setting n = 0 and taking the hermitian 
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parts of the relativistic equation (3) giving (Eh)n=O = (E(O)h. Thermal contributions 
arising from the relativistic mass dependence of the electron gyrofrequency, fl = 

fle/"!, are contained in (E(O)h; these lead to a decrease in the cutoff frequencies (cf. 
for example, Winglee 1985; Robinson 1986).] 

(ii) Resonances 

Equation (6) implies that resonances in the magnetoionic modes occur where 
Ao = O. This equation may be solved analytically to give the frequencies of the two 
cold plasma resonances, namely 

w~(O) = H(fl~+w~)±{(fl~+w~)2 -4w~ fl~ cos2 oJi]. (7) 

Provided wp < fle (which we assume for the rest of this discussion), w±(O) satisfy 
w_(O) < fle and w+(O) > fle for all O. 

The resonances in the FLR modes-as determined by equation (5)-occur at 
frequencies satisfying the equation Al = O. This is entirely different from the 
condition for cold plasma resonances, Ao = O. It follows that in general I n2 1 does not 
become infinite at w = w+(O) when thermal effects are included; at these frequencies 
I n2 1 becomes very large b~t remains finite (Akhiezer et al. 1975; p. 232). 

The equation, Al = 0, can be written as a quartic equation in (wi fle)2 with 
coefficients dependent only on 0 (i.e. independent of wpl fle and vi c). This quartic 
equation is found to have only two real solutions which we call w~(O) and which 
satisfy w~(O) < fle and w~(O) > fle for all O. The resonances at w!(O) and w~(O) 
occur in the modes which are modified versions of the cold plasma whistler (or slow 
ordinary) and z (or slow extraordinary) modes respectively. 

We note that the approximations used to derive equation (5) break down at 
frequencies very close to a resonance because I n2 1 .( (cl V)2 is no longer satisfied. 
However, for 'warm' plasmas with (cl V)2 > 1, wl(O) provide very good estimates 
of the true resonant frequencies and are useful in determining the topology of the 
dispersion curves. 

(iii) Thermal Modifications to the Plasma Modes 

. At frequencies away from the cold plasma resonances and the gyrofrequency, two 
of the modes determined by equation (5) have almost exactly the same values of n2 

as the two modes determined by equation (6), whilst the third mode appears with 
very large values of I n2 1. At these frequencies then two thermal modes correspond to 
the cold plasma ordinary and extraordinary modes; the third mode does not satisfy 
the requirement I n2 1 .( (cl V)2 and cannot be described by using this approximation. 
At frequencies very near fle we expect the behaviour of the cold plasma wave modes 
to be modified significantly by relativistic mass effects. 

There is a small range of frequencies about the cold plasma resonances at w±(O) in 
which all three solutions of equation (5) satisfy the requirement I n2 1 .( (CIV)2. Thus 
there are three physical wave modes in these frequency ranges. 

The modifications to the cold plasma wave modes at frequencies near w_(O) may 
be briefly summarized as follows: 

(i) The z mode, which is continuous at w = w_(O), is essentially unchanged by 
FLR effects. 
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(ii) The 0 mode (fast ordinary mode) no longer exhibits a resonance at w = 
w_(O). The dispersion curve for this mode is continuous at w = w_(O) 
with n2 remaining large and negative for w < w_(O) and going to - 00 as w 
approaches zero. 

(iii) The dispersion curve for the modified whistler mode is continuous at w = 

w_(O) since the thermal resonance frequency satisfies w:'(O) > w_(O) for all 
o (wp < fJe); n2 remains large and positive before going to + 00 at w = w:'(O). 

The modifications to the cold plasma wave modes at frequencies near w + (0) are 
relevant to the discussion of growth in Section 3. The modified z and x (slow and 
fast extraordinary) modes show two distinct type$ of behaviour depending on the 
propagation angle 0 (as suggested by Akhiezer et al. 1975). The two situations 
arise because while w+(O) increases monotonically from fJe at 0 = 0°,180° to 
wUH = (fJ~+w~)~ at 0 =;:: 90°, w~(O) decreases mbnotonically from 2fJe to fJ e. So 
w~(O) < w+(O) for some small range of angles near 0 = 90°. Empirically we find 
w~(O) ~ w+(O) for 10-90°1 ~ 80, where 

80 = m{(1 +w~/fJ~)~-1) 

and m ::::; 55 is independent of vic. 
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Fig. 1. Extraordinary mode dispersion relations including FLR effects (solid curves) for a 
background plasma temperature of 2x 106 K with wpl n,e = O· 3 and (a) e = 1050 and (b) 
e = 910. In (a) the dotted portions near the gyrofrequency show the regions in which relativistic 
mass effects need to be considered. In (b) the alternating dashes indicate the region in which the 
modes are mutual complex conjugates (in n2). The corresponding cold plasma modes (da.shed 
curves) are shown for comparison. 
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The modifications to the extraordinary mode dispersion curves in the cases 
w ~ (e) > w + (e) and w ~ (e) < w + (e) are shown in Figs 1 a and 1 b respectively. The 
behaviour of the wave modes may be summarized as follows: 

(i) The 0 mode, which is continuous at w = w+(e), is essentially unchanged by 
FLR effects. 

(ii) The modified z mode exhibits a resonance at w = w ~ (e). If w ~ (e) > w + (e) the 
dispersion curve for this mode is continuous at w = w+(e) with n2 remaining 
large and positive for w> w+(e) and going to + 00 at w = w~(e)-see 
Fig. 1a. If w~(e) < w+(e) the modified z-mode dispersion curve passes 
continuously through w = w ~ (e) but 'bends back on itself before reaching 
w + (e)-see Fig. 1 b. The dispersion relation is double-valued for a small range 
of frequencies above w~(e). 

(iii) If w~(e) > w+(e) the modified x-mode dispersion curve is continuous at w = 

w + (e) and displays an apparent (non-physical) cutoff at the gyrofrequency
see Fig. 1 a. If w ~ (e) < w + (e) the dispersion curve 'bends back on itself just 
above w+(e) and the dispersion relation is double-valued for some range of 
frequencies-see Fig. 1 b. 

Behaviour similar to that depicted in Fig. 1 b also occurs (at perpendicular 
propagation) when relativistic effects are included-see Fig. 5 of Robinson (1986). 

3. Growth 

(a) Kinematics 

The cyclotron resonance condition for the fundamental, w - De/y - kll VII = 0, 
may be represented by an ellipse in velocity (vII-VI) space (Hewitt et al. 1981). The 
condition for the resonant ellipse to have a non-vanishing semi-major axis implies 
the kinematic requirement w2 - D~ - kTI c2 > O. The boundary of the region in w-e 
space for which resonance is possible may therefore be obtained by changing variables 
and replacing the inequality by an equality, giving 

n2 = (w - D~)I w2 cos2 e , (8) 

where n2 is determined by the appropriate dispersion relation (Hewitt and Melrose 
1983). 

Alternatively, if equation (8) is substituted into the dispersion equation (5) to 
eliminate n2 , the resulting equation may be written in the form 

a cos6 e + b cos4 e + c cos2 e + d = 0, (9) 

where the coefficients are functions of vic, wpl De and wi De. When vic and 
wpl De are treated as fixed parameters the solutions of equation (9) give the 'growth 
boundaries' in w-e space for the three wave modes determined by equation (5). The 
constant coefficient d is proportional to (vi c)2 so in the cold plasma limit of vi c = 0, 
d = 0 and equation (9) reduces to the quadratic equation 

Go cos4 e + it cos2 e + CO = 0, (10) 
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where 

Go = P(S2-D2)+lS(S-P)-D2J(1- y2), 

ib = lD2-S(S+P)+(1- y2)(P-S)J(1- y2), 

Co = S(l- y2)2 ; 

P = l-(wpl ile)2 y2, S = 1 -(wpl ile)2 y2/(1- y2), 

D = -(wpl ile)2 y 3/(1- y2), y = nelw . 

(b) Numerical results 

415 

In this subsection we describe the modifications due to thermal (FLR) effects to the 
growth boundaries and growth rates due to maser emission at the fundamental. The 
cold plasma cases have been discussed in detail for the 0, x and z modes by Hewitt 
et al. (1982; hereafter referred to as HMR), Hewitt and Melrose (1983; hereafter 
HM) and Hewitt et af. (1983; hereafter HMD). Our method of calculation is that 
described in HMR and our growth rates are for the distribution function defined in 
equations (11) and (12) of that paper. Specifically, we consider a hot Maxwellian 
distribution with a hole at pitch angles a > a o and with the distribution falling off 
as [sinl i1T(1T-a)/(1T-ao)J]N for a > ao > i1T. Here we consider only N = 6 and 
a o = 1500 with the other parameters as chosen in HMR. 

Since maser emission at the fundamental occurs at frequencies just above ile (and 
above the cutoff frequency in the case of the x mode), the relevant modifications to 
the dispersion relations due to the thermal backgmund plasma are those illustrated 
in Figs 1 a and 1 h. 

(i) The a mode 

We find that the o-mode growth boundaries and growth rates are essentially 
unchanged by the FLR effects of a thermal background plasma at a temperature of 
2 x 106 K. This is consistent with the agreement between the dispersion relations for 
the 0 mode and the corresponding thermal mode in the frequency range shown in 
Fig. 1 a. 

(ii) The x mode 

The growth properties of the x mode for a cold background plasma have been 
treated in some detail by HMR and by HM. The general shape of the x-mode growth 
boundary is shown in Fig. 14 of HMR and the fact that growth occurs in two bands 
is discussed in HM-see their Fig. 1. Our calculations show that when thermal effects 
are included the x-mode growth boundary is shifted to larger values of 1 cos () I. The 
change is very small along the 'upper arm' of the boundary but increases near the 
'nose' and along the 'lower arm', i.e. at frequencies approaching the cutoff. The shape 
of the boundary is such that if we consider the temporal growth rate maximized over 
frequency r maxi ile , as a function of angle, the thermal effects appear quite large at 
angles near the nose. However, changes to r maxi il€ maximized over (), as a function 
of wi ile, are much smaller. An example of the x-mode growth rates, as a function 
of (), calculated according to the cold plasma and FLR approximations, is presented 
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Fig. 2. Temporal growth rates, as a function of e, for the x mode at the fundamental with 
wplne = 0·15 and wine = 1·0325. The solid curve shows the growth rate including FLR 
effects for a background plasma temperature of 2 x 106 K and the dashed curve shows the cold 
plasma results for comparison. 

in Fig. 2. In general, the growth rate maximized over both wi fle and () decreases 
when thermal effects are included but the change is typically :s 10%. The shift of the 
growth boundary to larger values of i cos () 1 does lead to a shift in the values of wi fle 
and () at which the maximum growth rate occurs (see Fig. 2). This shift is most 
significant in the lower band due to its extremely narrow bandwidth (see HM). The 
changes in the position of the growth boundary and of the maximum growth rate in 
() space due to a thermal background plasma at 2x 106 K, are presented in Fig. 3a for 
wplfle = 0-15. Calculations for wplfle in the range 0-1--0·3 have shown that the 
corrections due to thermal effects do not strongly depend on the plasma frequency. 

(iii) The z mode 

The growth properties of the z mode for a cold plasma background have been 
discussed in detail by HMD; the growth boundaries and the existence of two bands 
are shown in their Fig. 1. Our calculations show that when thermal effects are 
included the z-mode growth boundary is shifted to larger values of 1 cos () I, as was 
the x-mode boundary. In contrast with the x mode, the z-mode growth boundary 
is not significantly changed along the lower arm, but thermal effects increase near 
the nose and along the upper arm, i.e. at frequencies approaching the upper hybrid 
frequency wUH' Once again, the change in the maximum growth rate is generally 
small with decreases of :s 10% being typical. Fig. 3 b gives the results for the z mode 
at wpl fle = 0·35. The major point to note here is that as W approaches wUH the 
difference between the angles at which the growth boundary and maximum growth 
occur for a cold background decreases to zero. This is because the region between 
the growth boundary and the cold plasma resonance at W + «()) becomes very narrow 
as W approaches wUH (see Fig. 1, HMD). This forces the maximum growth to occur 
at angles closer and closer to the growth boundary until in the limit of W = wUH the 
two are coincident. That this behaviour is modified by the FLR effects is obvious 
from the sharp 'turnover' of the two relevant curves in Fig. 3 b. This 'turnover' is 
due to the qualitative change when FLR effects are included in the dispersion of the 
z mode at frequencies near w+«()) and for propagation angles close to 90°. 
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Fig. 3. Positions of the growth boundaries and maximum temporal growth rates for (a) the 
x mode at the fundamental with wpl ne = 0·15 and (b) the z mode at the fundamental with 
wpl ne = O· 35. The magnitude of an angular shift to larger values of Icos e I is denoted by Doe, 
measured relative to the cold plasma growth boundary. The curves of alternating dashes are the 
FLR growth boundaries and the solid curves are the positions of the maximum temporal growth 
rate r maxi ne (maximized over e, as a function of wi ne) for the FLR mode. The dashed curves 
show the position of maximum growth for the cold plasma mode for comparison. In (a) 'wx' 
denotes the x-mode cutoff and in (b) wUH denotes the upper hybrid frequency. The 'nose' of 
the growth boundary separating the upper and lower bands is denoted by 'n'. 

4. Conclusions 

In this paper we have investigated the modifications to the cold plasma dispersion 
relations, and to the growth rates for fundamental cyclotron maser emission, due to 
the finite Larmor radius effects of a 'warm' background Maxwellian electron plasma. 
Our analysis is valid at all frequencies below 2fle except in a narrow region centred 
on fle where a full relativistic treatment is necessary in order to evaluate the thermal 
corrections. However, for most parameter regimes, there is a frequency band on 
either side of this central region in which thermal eftects are still important but where 
the FLR approximation is sufficient. At frequencies sufficiently removed from fle the 
wave modes of the thermal plasma may be approximated by the magnetoionic modes. 

We have also shown that although, in principle, the inclusion of FLR effects 
leads to an extra wave mode, at most frequencies this extra mode appears with very 
large I n2 1 and so cannot be treated by using our method of approximation, nor is it 
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important. At those frequencies where our treatment is valid for all three 'modes', 
the extra mode appears as a modification to the topology of the cold plasma modes 
and not as a separate branch. 

The FLR modifications do not generally lead to large changes in the growth rates 
due to fundamental electron cyclotron maser emission because, in most parameter 
regimes where growth is important, the FLR wave modes are simple modifications 
of the magnetoionic modes. The results may be briefly summarized as follows: 

(i) The FLR modifications to the o-mode dispersion relation and hence to the 
growth properties are entirely negligible. 

(ii) The FLR modifications to the x-mode dispersion relation are very small at 
frequencies above the cutoff. As a result the maximum growth rates are 
only marginally affected but there is a shift in the position (in w-O space) of 
maximum growth. 

(iii) The FLR modifications to the z-mode dispersion relation at frequencies near 
the upper cold plasma resonance are the most significant. However, the 
maximum growth rates are again only slightly affected although there is a 
small shift in the position of maximum growth. 

Our results imply that FLR effects on fundamental electron cyclotron maser 
emission are likely to be important only in situations where z-mode emission occurs 
very close to the upper hybrid frequency. In most other cases it appears to be valid 
to assume that emission occurs in the magnetoionic wave modes. 
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