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In rotating magnetic field (RMF) current drive experiments, the RMF is usually generated by 
means of a two-phase radio frequency (r.f.) system which feeds a pair of orthogonal coils. The 
magnetic field generated in this manner consists of the desired RMF as well as the (undesired) 
odd spatial harmonics. The (2j-l)th spatial harmonic field rotates about the axis at an angular 
speed (-1)-i-lwl(2j-1), where w is the angular frequency of the r.f. current. In order to 
evaluate the effect of these spatial harmonics on the performance of the RMF current drive 
experiments, we have developed a simplified theoretical model for the plasma. In this model, 
the ions are assumed immobile and the motion of the electron fluid in the azimuthal direction is 
assumed to be a rigid rotation. It has been found using this model that the presence of the spatial 
harmonics makes the RMF current drive less efficient. It has also been found that the effect of 
the spatial harmonics can be made negligible by (a) making the width of the coils sufficiently 
larger than the diameter of the plasma, (b) carefully designing the coil configuration to eliminate 
the fifth harmonic or (c) using a three-phase system to generate the RMF. 

1. Introduction 

In RMF current drive experiments, a steady azimuthal current is driven in the 
plasma by means of a rotating magnetic field. This RMF is usually generated by 
using a two-phase r.f. source to feed two sets of orthogonal coils (see e.g. Blevin and 
Thonemann 1962; Hugrass et al. 1981; Durance et al. 1982). The magnetic fields 
generated in these practical situations consist of the desired RMF as well as the odd 
spatial harmonics of this field; the (2j-l)th spatial harmonic field rotates about the 
axis at an angular frequency (_ly-lw/(2j-l), where w is the angular frequency 
of the r.f. current. Nevertheless, it has been assumed in the previous theoretical 
investigations that a 'pure' RMF was applied to the plasma (Blevin and Thonemann 
1962; Jones and Hugrass 1981; Hugrass and Grimm 1981; Hugrass 1982a). The 
purpose of the present work is to estimate the influence of the spatial harmonics 
on the RMF current drive. It is extremely difficult to study the effect of these 
harmonics using an elaborate model for the plasma. We, therefore, have developed an 
approximate model for the plasma where the motion of the ion fluid is neglected and 
the motion of the electron fluid in the azimuthal direction is assumed to be a rigid 
rotation. Our assumptions, with the exception of the rigid rotation condition, are 
identical to the immobile ion model (Jones and Hugrass 1981). This extra assumption 
leads to a great simplification of the analysis and makes the concept easier to grasp 
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without sacrificing much of the accuracy. By adopting this model, and making use 
of the analogy between the RMF technique of current drive and the operation of the 
induction motor (Hugrass 1984), the study of the influence of the spatial harmonics 
on the RMF current drive has been made straightforward. The results obtained in 
this paper show that the spatial harmonics have, in general, an adverse effect. It is 
also shown that the effect of the spatial harmonics can be made negligible by carefully 
designing the coils and/or using a three-phase r.f. system to generate the RMF. 

The formulae for the magnetic field generated by infinitely long polyphase systems 
are given in Section 2. In Section 3 the simplified model for the plasma is used 
to calculate the torque exerted on the electron fluid by a single spatial harmonic 
component. The results obtained in Sections 2 and 3 are used in Section 4 to 
calculate the total torque applied on the electron fluid by the magnetic field generated 
using two-phase and three-phase systems. The effect of the spatial harmonics on the 
efficiency of the RMF current drive is considered in Section 5 and the results are 
discussed in Section 6. 

/' 
/' a 

(j /' rL __ 

I 
Fig. 1. Coordinate system for the 
calculation of the vector potential of 
an infinitely long dipole. Note that the 
z-axis is perpendicular to the plane; r, 
e and z are the standard cylindrical 
coordinates .. 

2. Magnetic Field Generated by Polyphase Systems 

In this section we consider the magnetic field generated by means of polyphase 
currents flowing in a set of infinitely long dipole coils arranged on a cylindrical surface 
of radius a. The vector potential of a dipole coil located at an angle </> (see Fig. 1) is 
given by 

Az = /-to I In(l+r2/a2 -2(r/a)Cos(o-</»). 
471" 1 +r2/a2 +2(r/a)cos(O-</» 

(1) 

In the region 0 <: r <: a, the vector potential can be expanded into 

Az = ~ ~ -. -!.. cos{(2j-l)(O-</»J. 
I 00 1 ( )2)-1 

71" )=12J-l a 
(2) 

For a general polyphase winding we consider a number of dipole coils; the ith dipole 
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is located at an angular position 4> i and carries a current 

Ii = I sin(wt-O· (3) 

The simplest two-phase system consists of two orthogonal coils, located at 4>1 = ° and 
4>2 = 7T /2, and carrying the currents II = - 10 sin w t and 12 = - Io sin( w t - 4 7T). 
It follows that 

Az = _}-to 0 ~ _._!.. sin!wt+(-I),(2j-l)OJ. (4) 
L 00 1 ( )2j -1 , 

7T j=12J-l a 

Using the relationship \7xA = B, we obtain 

B = ~ ~(_ly-l!.. cos!wt+(-IY(2j-l)oJ, 
T 00 ( )2j -2 

r 7Ta j= I a 
(5) 

B = }-to 0 ~!.. sin!wt+(-IY(2j-l)8J. 
L 00 ( )2j -2 

e 7Ta j= I a 
(6) 

We note that the magnetic field consists of a fundamental U = 1) component, which 
rotates about the axis at an angular velocity w, and the odd spatial harmonics. 
The (2j-l)th harmonic component rotates about the axis at an angular velocity 
(-IY- I w/(2j-l). As shown later in this paper, the presence of these spatial 
harmonics can have a harmful effect on RMF current drive systems. It is, therefore, 
desirable to design the polyphase windings so that the relative magnitudes of the 
spatial harmonics are minimised. It is obvious that the relative magnitudes of the 
harmonics in the region occupied by the plasma (, ,;;; R) can be reduced by making 
the coil width much larger than the diameter of the plasma (i.e. 2a :> 2R). It is also 
possible to decrease the relative magnitudes of the spatial harmonics by using more 
than one coil for each phase or by using a larger number of phases. For a two-phase 
system with two coils per phase one obtains 

A = _ 2}-to 10 ~ COSt '2 /- a!.. sin! w t+( -1)'(2j-l)OJ ' (7) 
00 f 1(2 . 1) J ( )2j -1 , 

z 7T j=1 2J-l a 

where a is the angular spacing between the two coils pertaining to each phase. It 
is seen that the relative magnitude of the (2j-l)th harmonic is reduced by the 
factor cos! 4(2j-l)a J! cos ia. One may choose a = 7T/4 so that eight conductors 
corresponding to the four dipole coils are equally spaced in the azimuthal direction. 

For a three-phase system with one conductor per phase consisting of three dipole 
coils located at 4> = 0,7T/3 and 27T/3 and carrying current with phase angles, = 0, 
7T /3 and 27T /3, one bbtains 

3}-t L 00 1 (,)&-1. . 
Az = -~ ~ -. - - "Ij sm!wt-/3i2J-l)8J, 

27T j=12J-l a 
(8) 

where "II = 1, "12 = 0, "13 = 1 and "Ij+3 = "Ij and /3 1 = 1, /3 3 = -1 and /3j+3 = /3j. 
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The vector potential for a three-phase system with two conductors per phase is 

3/-Lo 1o ~ cos 2 ]- a _ y. sin!wt-~.(2]-I)OJ. 00 ! 1 (2' 1) J ( r )2)-1 . 
A - --- ~ J J 

z - 7T )=1 2j-l a 
(9) 

It is seen that the 3rd, 9th, 15th, ... harmonic components are not present and 
that the 1st, 7th, 13th, ... harmonic components rotate in one direction, while the 
5th, 11 th, 17th ... harmonic components rotate in the opposite direction. 

3. Generalised Induction Motor Model 

The analogy between the RMF current drive and the operation of the induction 
motor (Hugrass 1984) has proved to be a useful tool both in explaining the physical 
mechanisms involved in the RMF current drive and in predicting some of the subtle 
features of this current drive technique (Hugrass 1985). In this section, this analogy 
will be generalised in two respects. Firstly, the inductance-resistance (L-R) circuit 
model adopted in the earlier work is replaced by a more elaborate model. And 
secondly, we extend the analysis to describe RMF current drive by means of a rotating 
field configuration with an arbitrary value of m (the number of poles is 2m). 

We consider an infinitely long cylindrical plasma ofradius a. The ions are assumed 
to be infinitely massive and to have a uniform density. The electrons are assumed to 
form a massless cold fluid. We further assume that the motion of the electron fluid in 
the azimuthal direction is a rigid rotation; the azimuthal component of the electron 
fluid velocity is 

Ve wrr, (10) 

where W r is a constant. It is also assumed that the radius of the plasma is much 
smaller than the free space wavelength associated with the frequency of the RMF, 
hence the displacement current can be neglected. The fields and currents satisfy 
Maxwell's equations 

\lxE = -oB/ot, \lxB = /-Lo J (11, 12) 

and Ohm's law 

YJJ = E -(l/ne)JxB, (13) 

where n is the number density and the current density J is related to the velocity of 
the electron fluid by 

J = - neve' (14) 

To this cylindrical plasma, an RMF is applied. The vector potential associated 
with this field is 

Az = ReCa:m (~) m ei(wt- me)} , (15) 

where Bm is the magnitude of the RMF at r = a (in the absence of the plasma). 
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From now on we adopt the standard phasor notation. For example, Az' Br and lz 
will denote the complex amplitudes of these quantities. It can be shown that the z 
component of the electric field satisfies 

2 d2 Ez + r dEz _(m2 +a;" r2)Ez = 0, 
r dr2 dr 

(16) 

where a;" = 2i18;" and 8 m is the Doppler shifted skin depth defined by 

82 = 2TJ/w}-to Sm' m (17) 

and Sm is the slip factor 

Sm = (w- mwr}/w. (18) 

The solution to equation (16), which is finite at r = 0, continuous at r = a and 
tends to the externally applied field at r > a, is given by 

E = 2w B Im(a m r) 
z m ( )' am 1m _ I am a 

(19) 

where I m is the modified Bessel function of order m. All the other field and current 
components can be obtained in terms of Ez using equations (11) and (12). The torque 
(per unit length) applied by the RMF on the electron fluid is given by 

Tm = ! J: 27Tr21~ Br dr 

_ 2 ~2 B;" berm(x)bei~(x) -ber~(x)beim(x) 
- 7Tmu m - 2 2 ' 

}-to berm_l(x)+beim_l(x) 
(20) 

where the argument of the Kelvin functions is x = y2 a/8 m' Equation (20) can be 
written in a more convenient form by expanding the products of the Kelvin functions 
into power series: 

7Twa4 B2 S ~,. 
T = m m_J 

m 2m(m+ I)TJ ~ ~j , 
(21) 

where 'I = ~I = 1 and 

'j+1 x4
, . 

• ~ " J _ ... ; _ .. ...... , 

X4~j 

~j+1 = 16j(m+ j-l)(m+2j-2)(m+2j-l) 

Note that the torque is in the same rotational direction as the mth component of the 
rotating field for W r < w/ m and is in the opposite direction for w,. ;;;. w/ m. 
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Fig. 2. (a) Normalised torque T1g plotted against the normalised frequency of rotation as for 
a system with pure RMF (k = 0) and for A = 4, 8 and 16; (b) the corresponding as versus 'YI 
curves. 

4. RMF Current Drive with Practical Coil Configurations 

We now use the results obtained in Sections 2 and 3 to calculate the steady state 
azimuthal d.c. current driven in a unit length of a cylindrical plasma by means of the 
RMF generated using a number of practical coil configurations. We note that, in the 
steady state, the torque applied on the electron fluid by the RMF is exactly balanced 
by the retarding torque Te , which arises from the electron-ion collisions, 

Te J: 27Tr2 nme vee vei dr = 47Tnme vei wr a4 , (22) 

where me is the electron mass and vei is the electron-ion collision frequency. 
Considering equations (21) and (22) and recalling the classical formula 1J = me v e/ ne2, 
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Fig.2b. 

one finds that the analysis can be simplified by normalising the torque to the quantity 

2 4 2 
7T ne wa B",!, 

Tq = '2 me Vei 
(23) 

where B"'l is the magnitude of the fundamental component of the RMF. Equations 
(21) and (22) can now be written in the normalised form 

where 

m m J ( 
B )

2 S l:~. 

T mq = B",! m(m+ 1) l: ~j , 

eB",! 
'Y! = me vei 

Wee! 

Vei 

I wr 
Teq = 'Y! -;-' (24,25) 

(26) 
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The analysis presented so far shows that the performance of an RMF current drive 
system (as described by our simplified model) is determined by three dimensionless 
parameters: k, the ratio of the diameter of the plasma cylinder to the width of the 
coils; A, the ratio of the plasma radius to the classical skin depth 8 = (2'T)IJ-Lo w)~; 
and 1'1 = wce1/vei' These three parameters are sufficient to determine the normalised 
angular velocity of the electron fluid as = W rl w which, in this model, is equal to the 
ratio of the steady azimuthal current to the maximum possible value of this current 
corresponding to the electron fluid rotating synchronously with the RMF. 

The performance of the RMF current drive systems is customarily evaluated by 
considering the as versus 1'1 characteristics (see e.g. Hugrass 1985); here we follow 
this conventional approach. We obtain the torque in terms of as using equations (18) 
and (24). The as versus 1'1 characteristics are then obtained by equating this applied 
torque to the 'load' torque (equation 25). We start by considering systems with 'pure' 
RMF (k = 0 in this model). Fig. 2 a shows the normalised torque plotted against 
the normalised frequency for A = 4, 8 and 16, and Fig. 2 b shows the corresponding 
as versus 1'1 curves. We note that, for a pure RMF, the predictions of this simple 
model are qualitatively similar to those obtained using other models (Hugrass 1985). 
In practical systems, however, the ratio of the plasma diameter to the width of the 
dipole coils is 0·5 < k < O· 8. It follows that the magnitudes of the spatial harmonics 
are not much smaller than that of the fundamental component and the pure RMF 
approximation can lead to erroneous conclusions. Fig. 3 a shows the normalised 
torque applied by the fundamental RMF field, the third and the fifth harmonics 
as well as the total normalised torque, plotted against the normalised frequency for 
A = 8 and k = 0·8. In the steady state the total torque applied by the field is equal 
to the retarding torque; one, therefore, can use Fig. 3 a to construct the as versus 
1'1 curve for this case (see Fig. 3 b). It is seen that the performance of the system 
for A = 8 and k = 0·8 is qualitatively different from that for A = 8 and k = 0 in 
Fig. 2. For 1'1 :> 8 there are three possible steady state solutions; the solution with 
the smallest value of as (:::::0.2) is the actual steady state solution obtained for a 
system starting from a zero initial rotational velocity. It is seen from Fig. 3a that 
the normalised driven current is clamped to as ::::: 0·2 because the total torque is 
negative for as slightly larger than 0·2. This, in turn, arises from the large negative 
torque applied by the fifth harmonic field which is synchronous with the electron 
fluid for as = 0·2. The fact that total torque is negative over a certain range of W r 

may seem paradoxical; however, it is a physically valid result. The field generated by 
means of practical polyphase windings is not a pure mode rotating field, but consists 
of a number of modes rotating at different angular velocities. Bearing this in mind, 
it is not surprising that the total torque can be negative for certain values of W r' 

especially for W r :> w15. In fact, even for a pure rotating field, the torque is negative 
for Wr > w. 

It is obvious that the effect of the spatial harmonics on the performance of the 
system can be made less pronounced by making the width of the dipole coils sufficiently 
larger than the diameter of the plasma cylinder. Fig. 4 shows the characteristics 
of an RMF current drive system for A = 8 and k = O· 7. It is seen that the as 
versus 1'1 curve is qualitatively similar to the corresponding curve for a pure RMF 
system (k = 0). One can conclude that for a given value of A, there exists a critical 
value of k above which the performance of an RMF current drive system is strongly 
influenced by the spatial harmonics. Fig. 5 shows the characteristics of the RMF 
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Fig. 3. (a) Normalised torque applied by the fundamental, third and fifth harmonics and the total 
normalised torque plotted against as for a two-phase system and for A = 8 and k = 0·8; (b) 
the corresponding as versus 1'1 curve. 
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Fig. 4. (a) Normalised torque applied by the fundamental, third and fifth harmonics and the total 
normalised torque plotted against as for a two-phase system and for A = 8 and k = O· 7; (b) 
the corresponding as versus 1'1 curve. 
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Fig. 5. (a) Normalised torque applied by the fundamental, third and fifth harmonics and the total 
normalised torque plotted against as for a two-phase system and for A = 16 and k = 0·7; (b) 
the corresponding as versus "Y1 curve. 
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total normalised torque plotted against as for a two-phase system with two coils per phase spaced 
at rr/4 and for A = 8 and k = 0·8; (b) the as versus"Y1 curve for A = 8 and k = 0·8. 
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Fig. 7. (a) Normalised torque applied by the fundamental and third harmonics and the total 
normalised torque plotted against as for a two-phase system with two coils per phase spaced at 
1T IS and for It = 8 and k = O· 8; (b) the as versus Yl curve for It = 8 and k = O· 8. 
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Fig. 8. (a) Normalised torque applied by the fundamental, fifth and seventh harmonics and the 
total normalised torque plotted against as for a three-phase system with two coils per phase 
spaced at 1T16 and for It = 8 and k = 0·8; (b) the as versus Yl curve for It = 8 and k = 0·8. 
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Fig. 9. Efficiency r plotted against 'Yl for A = 8 and for (a) a pure RMF; (b) a two-phase 
system with one coil per phase and k = 0·7; (c) a two-phase system with one coil per phase 
and k = 0·8; (d) a two-phase system with two coils per phase (spaced at 7T/4) and k = 0·8; 
and (e) a three-phase system with two coils per phase (spaced at 7T / 6) and k = 0·8. 

current drive for A = 16 and k = O· 7. By comparing Figs 4 and 5, it is seen that 
the critical value of k is smaller for larger values of A. 

It is also possible to minimise the effect of the spatial harmonics by using two 
dipole coils per phase. As stated in Section 2, the angle between the two dipole coils 
pertaining to the same phase can be made either equal to 7T /4, so that the eight sides 
of the coils are equally spaced in the azimuthal direction, or it can be made equal to 
7T /5 so that the potentially harmful fifth harmonic vanishes. Figs 6 and 7 show the 
characteristics of RMF systems utilising two-phase r.f. sources and having two coils 
per phase, for 11.= 8 and k = 0·8, for angular spacings of7T/4 and 7T/5 respectively. 
It is possible to achieve further improvement by using a three-phase r.f. source. In 
this case the seventh spatial harmonic is potentially the most harmful. Fig. 8 shows 
the characteristics for an RMF system utilising a three-phase r.f. source feeding two 
coils per phase (the angle between the two coils corresponding to the same phase is 
7T /6) for A = 8 and k = O· 8. It is seen that the effect of the spatial harmonics on 
the system. is negligible for this case. 

5. Efficiency of the RMF Current Drive 

The efficiency of the RMF current drive has been the subject of controversy in 
the literature in the last few years. Fisch and Watanabe (1982) used a particle orbit 
model to calculate the efficiency of the RMF current drive, and concluded that it was 
a very inefficient technique. It was shown later (Hugrass 1982 b), using the global 
cbnservation laws derived from Maxwell's equations (Klima 1973, 1974), that the 
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efficiency of the RMF current drive technique is very high because the phase velocity 
of the RMF is not much greater than the electron drift velocity. Recently, Kaw and 
Sen (1986) used a fluid model to calculate the efficiency of the RMF current drive. 
Their conclusions are in agreement with those obtained using the global conservation 
laws (Hugrass 1982b, 1984) in the limit where the magnitude of the RMF is much 
smaller than the equilibrium field. It is shown later in this section that the predictions 
of our simplified model are in complete agreement with the global conservation laws. 

We define the efficiency of the RMF current drive r as the ratio of the Joule 
dissipation per unit length associated with the driven d.c. azimuthal current Pdc ' to 
the power per unit length transferred from the r.f. source to the plasma Prf. Using 
equations (20) and (22) and the relationship Ezm = (wlm)rBrm> it can be shown 
that 

Pdc = f: 27Tr1JJ~c dr = i7T7je2 a4 w; = wr Tc' (27) 

fa 
1 ~l W 

Prf=z 27TrJ~Ezdr=l:(-lY -.-12J-l· 
o J 2J-1 

(28) 
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We also note that equation (28) can be derived directly from the Klima (1974) 
theorem. In the steady state we have Tc = ~ 12j-l; it follows that 

r=-=-l:12'_1 l: . 12'-1' Pdc W r ( )/( (-1)1-1 ) 
Prf W j J j 2J-l J 

(29) 

We note that equations (28) and (29) are written for a two-phase system. The 
corresponding equations for a three-phase system are similar. 

Fig. 9 shows the efficiency r plotted against 'Y 1 for A = 8 and for the five cases 
listed. We see that, for k = o· 8, the efficiency of the system is much less than for a 
pure RMF system, whereas the effect of the spatial harmonics is less significant for 
k = 0·7. It is also seen that the three-phase system is almost as efficient as the pure 
RMF system. 

6. Discussion and Conclusions 

We have shown that the magnetic field generated by means of the practical 
polyphase systems consists of the desired RMF component as well as the spatial 
harmonic fields. These spatial harmonics can severely impair the performance of the 
system; however, it is also shown that the effect of these harmonics can be made 
negligible by (a) making the width of the dipole coils sufficiently larger than the 
diameter of the plasma, (b) carefully designing the coils to minimise the relative 
magnitude of the harmonic fields or (c) using a three-phase system. These conclusions 
were obtained using a very simplified model for the plasma. It should be pointed out 
that our model has the following limitations: (1) the motion of the ion fluid and the 
compressible oscillations that may arise from it are neglected; (2) the motion of the 
electron fluid in the azimuthal direction is assumed to be a rigid rotation; and (3) 
we have assumed an infinitely long cylindrical plasma, whereas the plasma equilibria 
obtained in many RMF experiments are oblate compact toroids (Durance et al. 
1982)-the end effects should be appreciable in such experiments. We think, however, 
that the predictions obtained using this simple model are qualitatively correct and 
may provide some useful guidelines for the design of future RMF experiments. 
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