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The aim of this review is to present a simple physical picture which shows how the electrical 
resistivity of a system depends upon the spatial extent and lifetime of the scattering disturbance 
measured in relation to the conduction electron mean free path and relaxation time. The 
contribution from spin fluctuations associated with isolated magnetic impurities is discussed 
on the basis of this model and it is shown that at temperatures below the characteristic spin 
fluctuation temperature the impurity acts as though it were nonmagnetic. Some results are given 
for both 'Kondo' (Anderson) and exchange enhanced (Wolfi) systems. Spin glasses are also 
discussed and the resistivity behaviour is shown to result from a competition between the RKKY 
interaction and spin fluctuation effects. Ordered magnetic clusters are shown to be static for 
periods comparable with the conduction electron relaxation time, so that there is no resistivity 
anomaly expected at the superparamagnetic blocking temperature. The observed temperature 
dependence of the resistivity then follows simply from the change in magnetic correlations within 
the cluster. 

1. Introduction 

It is a fairly simple matter to determine the electrical resistivity p of a material. If 
a specimen of uniform cross sectional area A is available, one simple passes a known 
current J through the specimen and measures the voltage drop V that occurs over 
some distance I. This arrangement is shown in Fig. I and one finds that 

V = Jpl/A. (1) 

However, such a description suggests that the measurement is quite 'static'. While 
this may well be true on the time scale of laboratory measurements it is certainly not 
so on the characteristic time scale of the conduction electrons concerned. In order 
to understand such behaviour we need to consider the actual scattering processes 
concerned and, in particular, we need to identify the characteristic scattering times 
and volumes. The aim of this review is to facilitate a simple conceptual understanding 
of the physical processes concerned, a more complicated and often quite subtle 
theoretical analysis being required to obtain solutions and quantitative data. As such 
it is hoped that the presentation will be digestible by 'non-experts' and will provide 
some insight into this fascinating field of study. 

• Paper presented at the Tenth AlP Condensed Matter Physics Meeting, Wagga, N.S.W., 
4-7 February 1986. 
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Fig. 1. Simple experimental arrangement for determining the 
resistivity of a conducting bar: A is the cross-sectional area, I 
the distance between contacts, I the current flowing and V the 
resultant potential drop. 

T c' de 

Fig. 2. Schematic picture of scattering 
of a conduction electron by a region of 
disorder characterised by a lifetime T c 
and a dimension dc. 

The scattering process may be represented by the simple scheme shown in Fig. 2. 
This represents an electron with a wavevector k being scattered by some deviation 
from perfect periodicity (described by some characteristic lifetime T c and size dc) into 
a state characterised by a new wavevector k'. However, if we denote the average 
distance between scattering events (i.e. the conduction electron mean free path) by 
A, the deviation from perfect periodicity is determined only over a volume _ A 3. 

Furthermore, it must exist for a time at least as long as the average time between 
scattering events T e. If we overlook for the moment arguments which seek to relate 
such a parameter to particular changes in the electron distribution via the Boltzmann 
or Kubo-Greenwood equations, we can simply regard Teas the conduction electron 
relaxation time. The parameters T e and A are of course related to each other and to 
the resistivity, the free electron relationships being the most transparent: 

A = TeVpo, p = m/ne2T e , (2,3) 

where n, m, e and Vpo are the free electron density, mass, charge and velocity 
respectively. More realistic models which take into account electron band-structure 
effects and scattering anisotropy lead to similar functional dependences. We can now 
see that our 'static' picture of a resistivity measurement is based on the assumption 
that the lifetime of the scattering centre T c is greater than the conduction electron 
relaxation time T e and that we are only sampling deviations from true periodicity 
on a scale - A. This latter point has been discussed in detail elsewhere (see Hillel 
and Rossiter 1981; Rossiter 1986, and references therein) and so we will concentrate 
here mainly on the lifetime effects. For typical metals and alloys, T e lies in the range 
10- 12_10- 16 s. Such periods are very much shorter than the time of fluctuation 
characteristic of any atomic defects which will cause conduction electron scattering. 
However, there is another form of readily available 'defect' that is much more fleet 
of foot. This is associated with the spin of an electron resident in an unfilled inner 
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orbital or narrow band and which is responsible for the dominant magnetic behaviour. 
Such a spin will interact with the conduction electrons via the short range Heisenberg 
exchange and/or Coulomb interactions. Conduction electrons will thus be scattered 
from those spins and a nonzero resistivity will result if the spatial distribution of the 
spins is not perfect (at least on a scale - A). Let us now consider the dynamics of 
these spins in relation to the conduction electron scattering process. 

N(E) 

Er E 

Fig. 3. Change in the density of states N(E) due to an impurity 
having a resonant energy Er and width of resonance r. 

2. Isolated Spins 

In order to understand the dynamics of an isolated spin we need to know where the 
spin and its associated magnetic moment comes from. From the static Hartree-Fock 
model (Stoner 1947, 1951) it was known that impurity atoms of Cr, Mn or Fe in 
Cu or Au hosts should carry a magnetic moment, but not isolated single impurity 
atoms of Co or Ni. It was later discovered in bulk magnetic studies that pairs 
of Co impurity atoms or groups of eight Ni impurity atoms appear to acquire a 
moment, and a variety of rather empirical models have been proposed to explain this 
dependence upon environment (Jaccarino and Walker 1965; Kouvel 1969; Perrier et 
al. 1970). We now understand that the presence or absence of a moment is tied up 
with the concept of virtual bound states introduced by Friedel (1958). Let us consider 
an impurity which has a strong attractive interaction with the conduction electrons. 
Electrons attracted to the impurity will be spatially localised in the potential well, i.e. 
'bound' states will form at energies somewhere below the Fermi level. If the potential 
of the impurity is such that this localised level lies within the conduction band, 
conduction electrons will be scattered into it and leak back out into the conduction 
band. This means that the lifetime of the state T r is limited leading, to first order, to 
a broadening of the impurity level. The formation of such a 'virtual' bound state leads 
to a locally increased density of states as shown schematically in Fig. 3. For sand p 
states the broadening is usually so large that the concept of a virtual bound state is 
meaningless. In the case of d states, however, the broadening is not so large and a 
well-localised virtual bound state can form. Whether or not such. a state can support 
a magnetic moment is determined by the electronic Coulomb interaction between the 
electrons occupying that state. That this interaction can have the effect of supporting 
a magnetic moment can be seen from the simple model of Anderson (1961). Let us 
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assume that there is a single localised energy level which can be occupied by only two 
electrons, one having a spin up and the other a spin down. The interaction U between 
these electrons causes a splitting of the level and if the higher state then lies above 
EF this leads to a significant net spin polarisation. If we neglect the effects of thermal 
fluctuations, a Hartree-Fock calculation shows that a localised moment will exist if 
U Nd(EF ) > 1, where Nd(EF ) is now the local density ofd states at the impurity. 
This leads to the predictions shown in Table 1. But what happens if UN d(EF) is just 
too small? In such cases there will be large fluctuations into the spin polarised state, 
the mean lifetime of these spin fluctuations T sf being given by 

Tsf = 1TlX!(EF)/!1- UNd(EF)J· (4) 

(Note that this is not the same as the lifetime of the virtual bound stateT r which 
must be greater.) We can then define a characteristic spin-fluctuation temperature 

~r= 

~f = fz/kBTsf· (5) 

Table 1. Presence or absence of localised moments of transition metals dissolved in non· 
magnetic hosts on the basis of the Hartee-Fock criterion 

Presence is indicated by 'Yes', while a question mark indicates uncertainty (from Heeger 1969) 

Impurity Host 
Au Cu Ag Al 

Ti No No 
V ? No 
Cr Yes Yes Yes No 
Mn Yes Yes Yes ? 
Fe Yes Yes No 
Co ? ? No 
Ni No No No 

Table 2. Approximate characteristic temperatures (in K) for magnetic impurities in some 
nonmagnetic hosts in the dilute limit 

Impurity Host 
Au Cu Ag Al Zn Pt 

V 290A 

Cr 3c 3E 1200B 200A 
Mn IE IE IE 530A lA 
Fe 5E 12A lOE 80A 

CO 100E 

A Rizzuto et al. (1973). B Caplin and Rizzuto (1968). c Sarachick (1968). 
D Rusby (1974). E See Daybell and Steyert (1968). 

Ir Rh 

225c 12D 

At temperatures below 1'"r rapid temporal spin fluctuations occur, but above 1'"r 
the spin polarisation exists for a time that is long compared with the spatial thermal 
fluctuation of the moment. That is, for temperatures above ~r' the impurity acts as 
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though it had a well-defined thermally fluctuating moment but this· vanishes below 
1;;c as the polarisation begins to fluctuate more rapidly. Some values for 1;;c are 
given in Table 2 and comparison with Table 1 shows that a 'No' in the Hartree-Fock 
sense really just implies a high 1;;r. The concept of localised spin fluctuations thus 
replaces the artificially sharp boundary between magnetic and nonmagnetic. impurities 
of the Hartree-Fock model with a smooth transition between slow and fast localised 
spin-fluctuation regimes. A single Co atom in a Cu host probably has a spin-fluctuation 
temperature around 500 K. From equation (5) this gives a mean spin lifetime of 
- 2x 10- 14 s, quite long enough for the moment to scatter a conduction electron. 
Thus, while a bulk magnetic property study would pronounce a dilute random Co-Cu 
alloy nonmagnetic, a resistivity study would indicate a scattering component due 
to isolated magnetic moments. Such a component has a calculated temperature 
dependence as shown in Fig. 4 (see e.g. Rivier and Zlatic 1972 a). Some experimental 
data are shown for comparison in Fig. 5. At very low temperatures, the conduction 
electrons being scattered are those which have already formed the resonant virtual 
bound state and thus have already experienced the resonant phase shift of 7T /2 (i.e. 
they are at the 'unitary limit'). The additional scattering resultant from the thermal 
excitations of the long lived spin fluctuation at T > 1;;c drives them off resonance 
and the resistivity decreases as the temperature increases. This behaviour leads to 
the ubiquitous 'Kondo' minimum when it is added to the conventional temperature 
dependent phonon scattering term, as shown for example in Fig. 6. 

Another form of behaviour can occur if the host is nearly magnetic (e.g. Pt, Pd or 
Rh). These materials already have a large spin enhancement and the presence of an 
impurity which causes a local increase in UN d(Ep) (such as Ni or Fe) will further 
increase the amplitude of these fluctuations into the magnetic state (see e.g. Lederer 
and Mills 1968). Thus, even though there is no impurity scattering resonance in the 
band structure, there can still be large localised spin fluctuations. If the temperature 
is above the characteristic spin-fluctuation temperature 1;;c, the conduction electrons 
are again scattered by the thermal fluctuation of the localised spin. However, in this 
case the conduction electron is simply scattered by the sum of the impurity potential 
and the scattering interaction with the localised spin fluctuation. This is in contrast 
to the case described previously in which the conduction electron has to first scatter 
into the extra localised state before seeing the spin fluctuation. The high temperature 
resistivity is thus characteristic of the scattering by a disordered array of spins and 
reaches a plateau at the spin-disorder limit as shown in Fig. 7 (Rivier and Zlatic 
1972 b). At low temperatures the spin-fluctuation scattering rate approaches zero as 
the fluctuation lifetime T sC becomes much shorter than T e. Note that this behaviour 
is the complement of that shown in Fig. 4. 

The nature of the localised spin fluctuations are the same in the 'Kondo' or 
exchange-enhanced alloys. Whether the resistivity increases or decreases with increas­
ing temperature depends upon their electronic structures and in particular whether 
the host conduction states are orthogonal to the impurity states. If they are, the 
conduction electron must first scatter into the extra impurity orbital to see the 
localised spin fluctuation and the behaviour is given by the Anderson (1961) model. 
If they are not (i.e. the extra 'orbital' is simply a linear combination of host d states 
without additional orbitals), then the fluctuations are seen by the conduction electrons 
in the conduction band and the Wolff (1961) model applies. The change in the 
orthogonality is illustrated by the series of Cr, Mn, Fe, Co impurities in Pd, Pt 
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Fig. 4. Reduced resistivity as a function of reduced 
temperature X = 27T UN d(EF) T I Tsf' The position of Tsf 
for UN d(EF) ::::; 1 is indicated. [From Rivier and Zlatic 
(1972 a).] 
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or Rh hosts. The orthogonality decreases from Cr to Co. Thus dilute alloys of Pd, 
Pt or Rh with Cr impurities act as 'Anderson' alloys and exhibit resistivity minima 
at low temperature, whereas the impurity states of Mn, Fe, Co in Pd, Pt or Rh 
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are sufficiently non-orthogonal for them to act progressively (from Mn to Co) more 
like 'Wolff' alloys, with a resistivity that increases monotonically with temperature. 
The effects of this orthogonality have been discussed in detail by Rivier and Zitkova 
(1971). A summary of the type of behaviour found in a variety of alloys is given in 
Table 3. 
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Fig. 6. Electrical resistivity of some 
dilute Cu-Fe alloys as a function of 
temperature indicating the ubiquitous 
Kondo minimum. [From Franck et aZ. 
(1961).] 
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Fig. 7. Reduced resistivity as a function of reduced temperature 
X = 27T T / Tsf. The solid circles indicate the experimental 
data for Rh-Fe «0.1% Fe, Tsf = 12 K) and the open circles 
indicate the results for In-Fe (Tsf = 225 K). The spin-fluctuation 
temperature Tsf is indicated. [From Rivier and Ziatic (1972 b).] 

The above results are based on the assumptions of a single conduction band, that 
the virtual bound state (determined by the impurity potential scattering) lies at EF 
and consists of a single orbital in the Anderson model, and of zero atomic scattering 
potential in the Wolff model. It appears that these assumptions are not trivial. For 
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Table 3. Nature of impurity states in a number of alloy systems (from Rossiter 1986) 

Solvent Solute Solvent Solute Solvent Solute 
Anderson Wolff Anderson Wolff Anderson 

Al Cr Rh Cr Mn Pt 
Mn Fe 

Co 
Zn Mn Ni 

Fe 
Pd V Mn? Au 

Cu Ti Cr Fe 
V? Mo Co 
Cr Ru Ni 
Mn Rh 
Fe AgA 
Co ptA 
NiA AuA 

U 
Np 

A Concentrated. 
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O·g 

S' 
:2 0·6 

i 
! 
Q.. 

~ 

o 

Ivl = 104 

0·4 O·g 1·2 1·6 2·0 

T/Tsf 

Fig. 8. Normalised resistivity due to localised spin fluctuations 
as a function of reduced temperature for different atomic scattering 
strengths (measured in terms of the shift V of the resonance with 
respect to the Fermi surface in units of kB 1). [From Fischer· 
(1974).] , 
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Ni 

example, Fischer (1974) has shown that in alloys with a small enhancement of the 
host susceptibility, the resistivity due to the localised spin fluctuation in the Wolff 
model is modified by the host scattering potential (measured in terms of the shift 
V of the resonance with- respect to the Fermi surface) as shown in Fig. 8. These 
results show that both the magnitude and sign of the T2 coefficient found at low 
temperatures are dependent upon the degree of atomic scattering. In fact for very 
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Fig. 9. Schematic representation of conduction electron spin density around an isolated magnetic 
impurity. 
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Fig. 10. Reciprocal of the apparent spin-glass freezing temperature To 
as a function of the characteristic frequency of measurement fm . [From 
Maletta (1981).] 

large V one obtains the mirror image of the curve for V = O. This corresponds 
to the Anderson model with V = 0 and reflects the changes expected with differing 
degrees of orthogonality between the host and impurity states described above. 

We can also now understand why small groups of Co or Ni impurities appear to 
suddenly acquire a magnetic moment in a bulk magnetic property study. The effect 
of impurities in close proximity is to change the local Coulomb interaction U by 
some amount a u, thus leading to a change in the spin-fluctuation temperature (or 
lifetime): 

1'gf(P) = ~ l-(U +paU)~(EF) 
kB 1T Nd(EF) , 

(6) 
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where P is the number of impurity nearest neighbours. This effectively lowers the 
temperature of the onset of magnetic behaviour or, in terms of the fluctuations, it 
increases the spin-fluctuation lifetime, 

3. Spin Glasses 

Let us now increase the concentration of impurities so that they can start to interact 
via the comparatively long range RKKY type of interaction. The usual static picture 
of this interaction is as follows. A localised moment induces a local spin density 
polarisation of the conduction electrons which oscillates and decays with distance 
from the impurity, as shown schematically in Fig. 9. Randomly distributed individual 
moments will interact indirectly via these spin density polarisation fluctuations with a 
random sign of interaction and so will freeze into a spin glass below some characteristic 
spin-glass freezing temperature To. However, the physical properties of a spin glass 
are determined by the dynamic spin-spin correlations. At very high temperatures the 
spins will behave paramagnetically, although there may be some short range spin-spin 
correlations. As the temperature is reduced, spin clusters emerge from these short 
range correlations, their size and shape being determined by the distribution of other 
spins in the immediate neighbourhood (see e.g. Levin et aZ. 1979). Furthermore, 
the coupling within and between the clusters depends upon the spatial distribution 
of the spins according to the RKKY interaction. At this stage an experiment would 
encounter a wide distribution of relaxation times varying from that of the single 
paramagnetic isolated spin to those of some much larger more slowly responding 
clusters associated with favourable concentration fluctuations. As the temperature 
is further lowered towards To, the size and density of the clusters increases until 
finally at To an 'infinite' glassy cluster of frozen spins forms. However, there will 
still be many free smaller clusters that are not part of this large cluster and which 
can respond to external fields maintaining a distribution of relaxation times. As r is 
lowered well below To, more and more of those clusters join the 'infinite' cluster or 
become blocked due to a lack of thermal activation energy (see the next section). The 
wide spectrum of relaxation times characteristic of excitations over a wide range of 
energy barriers can make analysis of spin-glass behaviour confusing. Again the value 
of a measured property will depend upon the frequency (or characteristic time) of 
measurement. This aspect is graphically demonstrated in Fig. 10 where the reciprocal 
of the apparent freezing temperature To of a spin glass is plotted as a function of the 
characteristic frequency of measurement (Maletta 1981). 

The magnetic excitations of the spin glass at low temperatures may be regarded as 
diffusive spin waves, the damping resulting from the lack of translational periodicity. 
These will give rise to a r 312 resistivity behaviour if scattering from long wavelength 
spin waves is allowed, or a r2 behaviour if the rate of scattering by other imperfections 
is significant, this effectively excluding coherent scattering from the long wavelength 
spin waves by the effects of a finite conduction electron mean free path. Some 
experimental data are shown fitted to a r 3/2 power law in Fig. 11. 

However, we must also consider the fluctuations of the individual spins. From the 
discussions above, it is clear that spin-glass behaviour is only possible at temperatures 
above I'sf. It appears that in many cases the RKKY interaction below To may be 
sufficiently strong to destroy the resonant spin-fluctuation state. Well below To the 
r3/2 or r2 behaviour should thus be observed. However, as the temperature 
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Fig. 11. Resistivity (corrected 
for the phonon scattering) as a 
function of T3/2 for Au-Cr, 
Ag-Mn and Au-Mn. [From 
Ford and Mydosh (1974).] 

Fig. 12. Schematic representation of the resistivity due to isolated impurities Psr, interacting 
impurities PRKKY and phonons Pp as a function of log T. The combined effect is shown as the 
solid curve. 



540 P. L. Rossiter 

approaches To the thermal breakdown of the RKKY interaction allows the resonant 
state to be established leading to a decrease in the resistivity with increasing 
temperature. This behaviour is shown schematically in Fig. 12, and it is clear that a 
maximum in the resistivity at Tmax can result from a competition between the RKKY 
interaction and the spin-fluctuation effects. Such a maximum is characteristic of many 
spin glasses based on noble metals as shown for example in Fig. 13. Note that there is 
no obvious resistivity anomaly at 1'0 (indicated by t) since on the characteristic time 
scale of a resistivity measurement (_10- 14 s) the spin-glass structure has already 
formed at much higher temperatures. 
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, I I I I d lO .5 
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Fig. 13. Temperature depen­
dence of the resistivity (in fJ-!1 cm 
and corrected for the phonon 
contribution) of Au-Cr, Au-Mn, 
Ag-Mn and Au-Fe. The static 
spin-glass freezing temperatures 
To are indicated by the arrows 
on each curve. [From Ford and 
Mydosh (1974).] 

Spin-glass behaviour is also observed in alloys with exchange enhanced hosts (such 
as Pd or Rh), again characterised by a T 3/2 law at low temperatures. However, in 
these cases the coefficient of the T 3/2 term may be negative if the magnitude of the 
atomic scattering potential is sufficiently large (Rivier 1974; Rivier and Adkins 1975), 
the resistivity then exhibiting a minimum at low temperatures. The inversion in slope 
with increased atomic scattering is of the same nature as discussed in the previous 
section. 

4. Magnetic Clusters 

At higher concentrations of a magnetic impurity, the direct interactions between 
the spins may become strong enough to condense small regions into a magnetically 
aligned state. Such regions will usually be associated with composition fluctuations 
which increase the local concentration of magnetic species. Here there are two 
separate situations that should be identified. If the magnetic clusters develop from 
a spin-glass state they will interact with the (isolated) spins in the surrounding 
spin-glass matrix, giving the so-called mictomagnetic structure (Beck 1972). Below 
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the spin-glass freezing temperature To these clusters will be locked into directions 
determined by the local frozen spin alignment. Above To they will act as giant 
paramagnetic (i.e. superparamagnetic) units and at still higher temperatures (i.e. at 
the Curie temperature of clusters) the magnetic alignment within the clusters will be 
destroyed. An alternative situation applies to systems in which the impurity atoms 
only acquire a magnetic moment if they are present in sufficient concentration, for 
example Co or Ni in a Cu matrix (although, as in the case of isolated moments 
discussed above, it should be remembered that whether or not a cluster is deemed to 
have a magnetic moment depends upon the rate of spin fluctuation of the cluster in 
relation to the coherence time of the probe being used). If the particle concentration 
is small they will act as independent entities in a nonmagnetic matrix. However, if 
the density of clusters is sufficiently large, the RKKY intercluster interaction may 
be sufficiently strong to promote freezing of the cluster moments into a cluster glass 
below some particular temperature. Evidence for this type of behaviour has been 
found at compositions near the ferromagnetic transition in systems such as Au-Fe 
(Coles et al. 1978; Sarkissian 1981), Cu-Ni (Aitken et al. 1981) and Pd-Ni (Cheung 
and Kouvel 1983). In the case of an alloy system with a nearly magnetic matrix 
there is also the interesting possibility of polarisation fluctuations in the matrix being 
enhanced by the particle moments. 

Table 4. Superparamagnetic relaxation time as 
a function of t:..E/ kB T 

t:..ElkB T 

50 
25 
25·3 
10 

1 

T (s) 

5 .2x 1012 

7·2xl0 
102 

2.2xlO- 5 

2.7xl0- 9 

Whatever the situation, there will in general always be some local magnetic 
anisotropy described by an anisotropy constant K. If the volume of each particle is 
V then the energy barrier that must be overcome before a particle can change its 
direction of magnetisation is ll.E = K V. The rate of change of magnetisation is 
given approximately by (see e.g. Cullity 1972) 

dM M 9 
- - = - = 10 Mexp(-ll.ElkB T), 

dt Tsp 
(7) 

where the rate of change dMldt has been written as MlTsp for a single relaxation 
time process. This equation allows definition of the superparamagnetic freezing or 
blocking temperature TB which gives a relaxation time T sp of - 1()2 s, a typical period 
of observation in a bulk magnetic experiment. Application of a field H causes a 
decrease in the height of the energy barrier to 

ll.E = KV(I-HMs/2K), (8) 

where Ms is the magnetic moment per atom within the cluster. Thus the bulk 
magnetic behaviour will depend upon time, temperature, field and particle size. The 
variation of T sp with KV/ kB T (for small H) is given in Table 4 and shows that 
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Fig. 14. Magnetic contribution of the resistivity of a cluster of four 
atoms as a function of reduced temperature kB T / Jdd for three different 
atomic configurations and three values of kF Go as indicated. The 
resistivity has been normalised to that of a single isolated spin pl. 
[From Levin and Mills (1974).] 

Ts :::: KV /25 ks . A comparison of T sp with the conduction electron relaxation 
time (_10- 14 s) shows that over all temperatures up to the Curie temperature of 
the particle, the superparamagnetic particles will appear to be stationary (frozen 
or blocked) in a resistivity study, a clear example of the caution suggested in the 
Introduction. While the freezing processes involving a glassy phase are fundamentally 
different to superparamagnetic blocking in a nonmagnetic matrix [it has been argued 
that the former process is the result of a cooperative process involving all of the 
particles of the system (see e.g. Edwards and Anderson 1975) whereas the latter is 
an independent particle effect], in both cases the Curie temperature of the cluster or 
particle will be relatively independent of particle size (Kneller 1958), although it could 
of course depend upon the chemical composition of the cluster. A determination 
of the resistivity due to magnetic scattering from a cluster p~( T) thus requires 
some model calculation of the spin-spin correlation function within the cluster as 
a function of temperature. To this end Levin and Mills (1974) have employed the 
Heisenberg Hamiltonian to treat the interaction between spins within the same cluster 
and the molecular field approximation for interactions between clusters if the alloy is 
ferromagnetic. Their result for the temperature dependence of p~( T) for a cluster 
of four spins in different configurations within a simple cubic lattice is shown in 
Fig. 14 for three different values of the parameter kF ao (corresponding to three 
different values of n), where kF is the Fermi wavevector and ao the lattice parameter. 
These results were obtained using the first Born approximation, and inclusion of the 
next higher terms in the perturbation expansion can lead to a Kondo effect at low 
temperatures. 
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There are two main features that we want to point out. Firstly, the general form 
of the behaviour is not particularly sensitive to the cluster topology, and secondly, 
whether the cluster causes an increase or decrease in P compared with the high 
temperature (spin-disordered) value p~( (0) depends upon kF 00 (i.e. n). It might also 
be noted that the cluster resistivity does not reach the high temperature value until 
temperatures well above 5Jdd / kB . Increasing the size of the cluster was found to 
increase the magnitude of the deviation in p~(O) from the high temperature value. 

The behaviour shown in Fig. 14 effectively assumes that the cluster size d is 
smaller than A. If d > A the cluster resistivity p~(O) should always lie below the 
high temperature value p~( (0) since the electron in the cluster is then effectively 
inside a body with long range magnetic order. The magnetic contribution to the 
resistivity will thus pass through a maximum with increasing cluster size at d - A, 
provided that kF 00 (or n) is such that the cluster initially causes an increase in 
Pm. However, there is the additional complication that the magnitude of the mean 
magnetic moment per atom may depend upon the number of other magnetic atoms 
and degree of atomic correlation within the cluster. This effect is probably due to a 
change in the spin-fluctuation rate as discussed above, although it must be admitted 
that specific details of the effect on a time scale of - 10- 14 s are not really known. 
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Fig. 15. Sum of the magnetic cluster resistivity P'iA( 1) and 
the atomic disorder resistivity Po of Cu-Ni as a function of 
temperature. The Ni concentrations are indicated. [From 
Rossiter (\98\).] 

Unfortunately, there are few systems that permit an experimental verification of 
this behaviour. One requires that the alloy can be prepared in an initially fairly 
random state, that the magnetic clusters associated with composition fluctuations 
can be formed by suitable heat-treatment and that the temperature dependence of 
the resistivity can be determined over a temperature range at least up to - Jdd / kB 
without introducing changes to the atomic configuration. Many potentially suitable 
alloys involving a nonmagnetic host such as Au or Cu with Fe, Co or Ni solutes 
have been investigated. The precipitate formed is usually fairly pure Fe, Co or Ni 
and so Jdd / kB is given roughly by their bulk Curie temperatures which are 770°C, 
1131°C and 358°C respectively (see Cullity 1972, Appendix 5). This effectively rules 
out systems containing Fe or Co precipitates, as significant atomic diffusion will 
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occur before the variation of p~ with temperature due to magnetic disordering can be 
determined. The Au-Ni decomposes at quite low temperatures into a finely divided 
two phase modulated structure and so is not a suitable candidate. However, the 
rate of atomic diffusion in Cu-Ni alloys is quite low up to 200-300°C. The magnetic 
contribution to the resistivity of these alloys has been investigated over a wide range 
of compositions and measuring temperatures and does indeed have the form expected 
from the above discussions as shown in Fig. 15 (see e.g. Rossiter 1981). 

5. Conclusions 

Any deviation from perfect periodicity will lead to a resistivity contribution which 
will depend upon the spatial extent and lifetime of the disturbance measured in relation 
to the conduction electron mean free path and relaxation time. A spin associated with 
an isolated impurity has a lifetime which depends upon the environment such that 
at high temperatures the electrons 'see' a long lived thermally fluctuating spin, i.e. a 
good magnetic moment, whereas at low temperatures the spin-fluctuation lifetime is 
less than the relaxation time and no moment is registered. However, the dynamics 
of spin aggregates like spin glasses or superparamagnets are such that they are 
effectively static over the conduction electron relaxation time so that there is no 
resistivity anomaly directly associated with the spin-glass freezing temperature or 
superparamagnetic blocking temperature. In general, the short conduction electron 
relaxation time means that a resistivity measurement is sampling a structure on a 
much shorter time scale than many other techniques such as the Mossbauer effect 
or neutron scattering, a factor which should be borne in mind when analysing any 
experimental data. 
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